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1. INTRODUCTION

In[1], R. P. Agnew studied in detail a method for evaluation of sequences and
series which seems to have fundamental significance comparable to that of the
classical methods of Cesaro, Abel, and others. Lototsky had introduced this method
in an article published in 1953 (see [2]), and Agnew named it the Lototsky method.
However, Lototsky’s method is essentially a special case of a class of summation
methods introduced in 1935 by J. Karamata (see [3]). Karamata (see Section 2)
gives a fundamental theorem about inclusion of Borel’s, Euler’s and his own method
for positive sequences. Agnew pointed out that, without the restriction to positive
sequences, the Borel method does not include the Lototsky method.

The paper of Agnew raises interest in a detailed study of Karamata-Stirling
methods. Agnew shows the power of the method; he gives counter-examples and de-
velops, although in a special case, the technique which is applicable also to the
larger class. In the present paper we shall study the mutual inclusion of Karamata-
Stirling methods. .

2. DEFINITIONS
Since the paper [3] of Karamata is now not readily accessible, we give the nec-
essary definitions in full.

For x real (or complex) let (x), =0 and

Xy =xx+ 1)(x+2)-(x+n-1) n=1, 2, --),

and define the numbers [ 3] and { f}l} in the following manner: [ 11}1] = {2} =0,
except in the case where the pair of integers n, v satisfies the conditions n > 1 and

1 <v <n; in the latter case, define [ 2] and { 2} by the conditions

n

x), = 2o [n] xV,

v=1 v

n
x"= 2,
V=

SV S YO

1 {

The numbers [ 2] and {3} are Stirling numbers of the first and second kind,

respectively, with a slight modification of the definition of Nielsen (see [4, pp. 66-
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71]). One readily obtains the recurrence formulae

@ [ = LR
@) M SR P E

which are valid for n= 1, 2, --- and every integer v. It is also easy to show that
from

n

(3) Ap=B,, A,=2 |[]|B
0 0 vt [v] v
follows
(4) Bn=(-1)n2n(-1)” LA (n=1,2,-..).
v= {V} g

DEFINITION 1. The sequence s =1{s,} is KS(\)-summable to S if
def 1 n
(5) Sé(s) = a—)l—l- b [';]A”sy—»s (n — ).
v=0

This is the definition of the class of Karamata-Stirling summability methods.
When A = 1, Karamata-Stirling summability of the sequence sy, s,;, S,, **+ 1s equiva-
lent to Lototsky summability of the sequence s,, S,, S;, **-. The KS(A)-methods are
regular for A > 0. This restriction on A will be made in the sequel.

To be able to state Karamata’s theorem, we recall

DEFINITION 2. The sequence s ={s,} is E(\)-summable to S if

def n
Mg) = L n) e o — o
E}(s) = TPEYS vzzo; (V ) Xsy,—8 (n ).

It is B-summable to S if
def ° SV
By(s) = e‘YE—;'—yV—»S (y— o).
v=0""

3. THEOREMS

Karamata’s fundamental result is contained in

THEOREM K. For positive sequences and every A > 0,

E(A) c KS(\) c B;
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that is, for positive sequences the Borel method includes each regular Karamata-
Stirling method, and each of these includes the corresponding Euler method.

We shall prove
THEOREM 1. For every a (0 <a < 1) and each » (A> 0),

KS(A) C KS(a));

that is, the KS(A)-summability of a sequence impliés its KS(7)-summability for
every 0 < 7 < A to the same limit, (but not conversely).

Before the proof of Theorem 1, we quote also

THEOREM 2. If the sequence s = {s,} is KS(\)-summable for X >0, then
theve exists a constant M, independent of n, such that

T'(A + n)

Isn| < M(R log 2)11'

We do not give the proof of this theorem, because it follows the same lines as
Agnew’s proof in [1] for A = 1.

Pyoof of Theorem 1. Suppose that, for a fixed A > 0,
n
(6) A=(—1—Z> ] Ws—s (-,

and for 0 <a < 1, let
ax _ 1 n| vy
(7) S m VZ}O[V]O!ASV
In view of (3) and (4), it follows from (6) that
v . N
1
- (-1)v§(-1) {7} o 8.
1=

Therefore

A 1 i i, 1 i A n
® - 2 (5] v D% () {1 @8t =@y Z 8 0, e,

i=0

where

1" T (0 H {i}ai,

i=v v
® @) =

0 for negative v and for v > n.
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From (9) and the recurrence formulae for [ I;] and { 2} , or from

(10) (@x), = 27 (x),75(),

v=0

one gets the recurrence formula

n+l - _ n n
(11) T (@) = (n - av) TV(C!) + aTV_l(a) ,
valid for n= 1, 2, --- and for every integer v. We have, for instance,
To(@) = 0;
(12) Ha) = 0, THa) = a;

73(a) = 0, TiHa)=a(l -a), Ti(a)=a?;

and generally
(13) Pe)=a(l-a)-@m-1-a), -, T2)=a®,
From (11) and (12) follows by induction '
(14) |T2@)] = 2(a) .
Also,

'r;(a)SOl, THa)< 11,
and by induction
(15) TB(C!) <{(n-1)! for n=1, 2, ---.
Therefore, the triangular matrix ((pn, ») with

Py = 1), (@)} /(an),

is pbsitive, an,,, = 1, and for every fixed v

Pn V=O A———(n —a]}t)—!l}_-’o (n — ).

’ n!n
It follows, by Toeplitz’ theorem, that ((p,,,)) is regular, that is,

S%* . lim St=58 (n— ).

n —o0

To complete the proof, we have to show that for each A > 0 there exist sequences
that are KS(\)-summable, but are not KS(A + £€)-summable for ¢ > 0.

LEMMA. The sequence s = {s,} (v=0, 1, «-+) with
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So =0  (or any constant),

NG V{URS VI N il Sl I A _
5, = =5 _go - (-x) it (=1, 2, x> 0)

is KS(A\)-summable only for x> Alog 2.

(For the convenience of the reader we give the proof in some detail, although the
treatment is similar to that of Agnew, [3, pp. 109-111].) The S

transform of our
sequence is

tn+1

1 e” n+1] v/ t\’
) o (%)
m TR Y ) e

o () (2) - (Ren)a

n+l 00 -"'{“1
(-1) A

=m oe (u-1Mu-2)+-(u-n)du.

We split Sﬁ +1 into two parts:
1 n+1l
_ P 3"“ (1)~
I {tau, I = S' { } au.
T W
For J, we have

-y

|J I<WZ S (u— 1)-'~(u-n)|du.
But for v -1 <u <y,

|(u -1)-(u- n)|5 n!
(Agnew [3, p. 110], and therefore

X

n! n TXY
lJHIS—G\)—n_i_TS‘ e du — 0 (n—mo)

for every A > 0 (since (A), +1 ~nl n}). For the second part I,, we have



296 VLADETA VUCKOVIC

1 = -3u
I _.__S' 1) e (g -
| n|§_(h)n+l R e (u-1)-(u-n)du
X
e-xn v+l -}—;’C
<—7«_.)_E§ e m+t-1)--(n+t-mn)dt
_( n+l v=0 V
X
AR o X,

e A
vage n+v)--(v+1)
—-Xn o —EV
n!e n+v A
'<"(A$n+l VE) ( v ) ©
<{nteAm,,, /- 11},

and this expression tends to zero for x > A log 2.
Take now the case 0 < x <A log 2. We still have

Jn= 0(1), (n—>oo),
but we shall show that I,, does oscillate, in this case. Let

X

1 (3
Hn=m ne (u-1)+-(u-n)du,
so that I_ = (-1)™*'H_. For n> 2,
X

n-1C° "2
anms;le (u-2):-(u-n)du

i e _X
>((171t)- 1)e A Egv+le A(t+n-2)---(t+n-n)dt
n+l y=0v ¥V
—icn o0 —E(V+1)
ZE;)-+:::)E Ase? n-1+v=-1)--(v+ v
n v=1
-Zn o -Xu+2)
Z%}%-—l—)el 2 e n-1+p)---(u+1)
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x . 2% %
AN % -~
n-Dln-1e n-1+p Py
Z (A)n-l—l H.Z—O( !l ) €
_&x
S@-Di@-ne* 1 ’
= (VN (ex/* - 1)m

and for 0 < x < A log 2, 1/{(eX/* - 1)} > 1, so that H, —® as n — o, and I, oscil-
lates between -~ and +o. This proves the lemma.

To complete the proof of Theorem 1, take s, as in the lemma. For
Alog2<x<Alog2+e¢log2,

this sequence is not KS(A + €)-summable, although it is KS(A)-summable.

The author expresses his acknowledgment to the referee, who pointed out the un-
satisfactory manner in which the counter-example in the lemma had originally been
introduced.
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