ON A THEOREM OF LEFSCHETZ
Raoul Bott

1. INTRODUCTION

This note concerns the Lefschetz hyperplane theorem in both homology and
homotopy. (See Theorem I and its corollary, for the statement of the result.) We
shall deduce our refinement of this oft-proved theorem (see [2], [3], [4], [6]) as an
immediate consequence of what in {2] I called the main theorem of the nondegenerate
Morse theory.

Morse and Lefschetz lived within a few steps of one another for over twenty
years. It is therefore amusing that the idea of applying the former’s theory in this
connection is quite recent. I first saw this approach taken in a lecture by R. Thom
in 1957, and this note is no more than a technical elaboration of his idea. My main
observation is that the notion of a nondegenerate critical manifold, when properly
applied, eliminates all the troubles with infinity which Thom encountered in his orig-
inal account.

The proper dual of the Lefschetz theorem states that the homology of a Stein
manifold vanishes above its middle dimension. In a forthcoming paper [1], Andreotti
and Frankel use the Morse theory in its most elementary form to prove this dual
statement. Poincaré duality then completes their proof of the classical version of
the Lefschetz theorem. This approach is in a sense the simplest. But it does not
yield the homotopy statement.

2. STATEMENT OF THE LEFSCHETZ THEOREM

Throughout this note, X will denote a compact, complex, analytic manifold of
complex dimension n. Let E be an analytic line bundle over X. A global holomor-
phic section s of E will be called nonsingular if the following condition is satisfied:

CONDITION T. For each x € X with s(x) = 0, there exist (a) a holomovphic sec-
tion s, of E over some neighborhood of x with s,(x) # 0, and (b) a local analytic
coovdinate system (z,, z,, ***, z,), centered at X, such that near X the section s is
represented by

(2.1) S =% 5,.

Suppose now that s is a nonsingular section of E, and denote the set of zeros of
s by S. By (2.1), this set is a closed complex analytic submanifold of X. The Lef-
schetz theorem compares S with X, under certain conditions on E which will be
formulated next.

The fiber of E over x € X is denoted by Ex. A smooth (that is, C*) function J
which assigns to each x € X a positive definite hermitian form 5, on E, is called
a hermitian structure on E. That such structures exist is easily verified. Given
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a hermitian structure ) and a global section s of E, we denote by (s, s) the function
on X which assigns to x the value of the hermitian form on Ex at the point s(x).
Thus (s, s)(x) = §x(s(x), s(x)), represents the square of the “height” of s(x) over the
zero section.

A hermitian structure § on E defines a form c¢(E, )) on X. This form is char-
acterized by the following condition: If U is an open set of X which admits a non-
vanishing holomorphic section sy; of E vestricted to U, then, over U,

(2.2) c(E, D) = %aa log (sy, 51) -

The form is clearly closed, and it is known to represent the first Chern class of E.
In terms of a local analytic coordinate system (z1, z2, -+, 2Zn), it is of the type

igag dza/\d.-z,g, where the matrix ggg is hermitian. We say that § is a positive
structure if at each point of X the matrix just defined is positive definite. This con-
dition is also expressed by the statement c(E, ) > 0. Finally, the bundle E is
called positive if E admits a positive hermitian structure. All these definitions are
of course standard; see [ 5], for instance.

The version of the Lefschetz theorem which we are after now takes the following
form.

THEOREM 1. Let E be a positive line bundle over X, let s be a nonsingular
holomorphic section of E, and let S denote the null set of s. Then X is obtained
Jrom S by successively attaching cells of dimension > n. Symbolically,

(2.3) X=8UejUepuU--Ue, (dim ey > dims X =n).

Here we use the standard notion of attaching a cell to a space: Given S, a cell e,
and a map o of the boundary, &, of e into S, we form the space SUe (S with e at-
tached) by identifying the points x € & with a@(x) € S. The formula (2.3) then just
means that, up to homotopy type, X is obtained by a finite series of such steps, the
important part of the theorem being that at each siep the dimension of the cell to be
attached is no less than the complex dimension of X.

COROLLARY. Let j: S ¢ X be the inclusion of S in X. Then under the conditions
of Theorem 1, the homomovrphism induced by j in both homotopy and integral homology
is onlo in dimensions < n, and is one-to-one in dimensions <n - 1.

This is a standard consequence of (2.3); see [7]. In homotopy it is established
by freeing a point in the attaching cell. In homology, excision and exactness yield
the corollary.

Remarks. In the situation envisaged by Lefschetz, X was an algebraic manifold
imbedded regularly in a complex projective space Pm(C), and S was the intersection
of X with a hyperplane of P,(C) which cut X transversally. His conclusion was
then the homology statement of our corollary. It is well known that Pn(C) admits a
positive line bundle E whose global holomorphic sections vanish precisely on the
hyperplanes of Pm(C). Hence the restriction of E to X can play the role of E in
our version. Condition T then expresses the transversality to X of the hyperplane
determined by s. Hence (2.3) at any rate contains the classical result. The main
generalization expressed by (2.3) is that one obtains the homotopy analogue of the
Lefschetz result. Even if the theorem were assumed t{o be true in homology and for
the fundamental group, the general homotopy statement would not be immediate; one
encounters the usual road block that 7,(S) may operate nontrivially on m(X; S).
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In [5], K. Kodaira proved the beautiful theorem that if X admits a positive line
bundle, then X is an algebraic manifold. Thus our statement is no improvement
over the classical one in this direction. Nevertheless a slight step forward is in-
volved here, because not every positive line bundle is induced by an imbedding from
the hyperplane bundle.

3. A THEOREM IN THE NONDEGENERATE MORSE THEORY

In the next section, Theorem I will be derived from Theorem II, which is formu-
lated below. In[2] this result appears as the third corollary of Theorem IIl. The
reader is referred to [2] for details; here we shall only review the pertinent defini-
tions.

Throughout, we use the term “smooth” to denote C*, and we assume all mani-
folds to be smooth. Our functions will always be real-valuéd.

Let ¢ be a smooth function on the manifold M. The differential of ¢ is denoted
by d¢. The points where this form vanishes are called the critical points of ¢. In
terms of local coordinates, these are precisely the points where all the first partial
derivatives of ¢ vanish.

Let m € M be a critical point of ¢, and let M, be the tangent space to M at m.
The Hessianof ¢, denoted by H,,¢, is the symmetric quadratic form defined on M,,,
which in terms of local coordinates near m is defined by

2 9 e
Hm¢(8xa’ aXB) " 9xg ax,ﬁ"m )

The dimension of a maximal subspace on which the Hessian H,,¢ is negative definite
is called the index of the critical point.

DEFINITION 3.1. A connected smooth submanifold V of M is called a nondegen-
" evate critical manifold of ¢ provided

(3.1) dp=0on V,

(3.2) if ve V, then the nullspace of H, ¢ is precisely the tangent
space to V at v.

Finally, we agree to call a function on M nondegenerate if it is smooth and its
critical set consists entirely of nondegenerate critical manifolds.

THEOREM II. Let ¢ be a nondegenevate function on the compact manifold M.
Let M, be the set on which ¢ lakes on its absolute minimum. Also, let ‘¢l be the
lowest index which occurs among the indices of critical points on M - M,. Then M

is rbltained Srom M by successively attaching a finite number of cells of dimension
> | ¢|. Thus

(3.3) M=M,UeUe,U--Ue,. (dimeg > |¢])-

Comparing (3.3) with (2.3), we see that in order to deduce (2.3) from Theorem II
it will be sufficient to construct a nondegenerate function ¢ on X with X ,=S and
|¢| = dimg X. As we shall see, a slight perturbation of the function (s, s) will have
these properties.
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4. THE PROOF OF THEOREM I

In this section we assume the conditions and the notation used in Theorem I.

Let ) be a positive hermitian structure on E, and consider the corresponding
function (s, s).

(4.1) Each component of S is a nondegenerate critical manifold of
the function (s, s).

Proof. Let p be a point of S, and let {(z Iy Z25 ***y Zp); s*} have the same mean-
ing as in condition T, so that near p the section s has the representation s = z, Sy-
We set (s, s,) equal to a. Then a is a smooth positive function near p, and in
terms of it we have (s, s) = az,z,. Hence condition (3.1) is certainly satisfied on S.
By Condition T, the set S is also a smooth submanifold of M. Hence there remains
only the verification of (3.2). This amounts to checking that H s, s) is nondegener-
ate on the transversal quotient space Mp/Sp. Let {xa} be functions such that
Z; =X, + ixX,. The Xy (o =1, 2) form a part of a real coordinate system near p,
and we clearly have Hy(s, s)(0/0xy, 3/ 9xg) = Za(p)ﬁaB. Hence (3.2) is verified.

(4.2) Let p be a critical point of (s, s) on X - S. Then the index of p
' is no less than dimg X = n.

Proof. On X - 8, the function (s, s) is positive. Hence the function f = log (s, s)
is smooth and well-defined near p, and we have (s, s) = ef. From the Taylor series
of the exponential function, we see immediately that p is a critical point of f, and
that the index of p, as a critical point of (s, s), is equal to its index as a critical
point of f. Let then H be the Hessian of f at p. We extend H to a hermitian form
on the complexification of Mp,. This form, denoted by H, will have the same index
as H. Now, by hypothesis, the hermitian structure on E is positive. Hence the
differential form (i/2md0f is positive near p. In terms of local analytic coordi-
nates, this is expressed by

2
(4.3) the form

0z azB“a ug s negative definite.

Here we have written

2 .18 ;0 6 _1e2 ;2
aza“z(axa ayo,)’ 3z,  2\0xg @ '3ya /’

the x4 and yn being the real and imaginary parts of zy. It follows that H is nega-
tive definite on a complex subspace of dimension n, whence the index of p is at least
equal to n.

Combining (4.1) and (4.2), we see that the function (s, s) has all the properties of
the function ¢ of the last section, except possibly the nondegeneracy on X - S. We
shall next show that this drawback can be eliminated by a suitable small perturbation
of (s, s).

For this purpose, recall the generic character of nondegenerate functions, as ex-
pressed by the following approximation theorem. Let U be a finite covering of X
with smooth coordinate functions. If then k is a positive integer and £ is a positive
number, one has the notion of an (g, k)-small function on X (with respect to U).
Namely, the function f is called (g, k)-small if the absolute value of f and of all
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its partial derivatives (with respect to the coordinates in U) up to order k are less
than £ at all points of X.

APPROXIMATION THEOREM., Let F be a smooth function on X. Then, corre-
sponding to each pair (€, K) as above, there exists an (g, K)-small function n such
that F + n is nondegenerate.

(This is by now a well-known theorem. For a completely selfcontained account,
see [8].)

. We apply this theorem in our situation in the following manner. Let A and B be
two open, smooth, normal neighborhoods of S in X such that A ¢ B and such that
(s, s) has no critical values in B other than S. Such neighborhoods exist, because
S is nondegenerate. Let g be a smooth function on X whichis 1 on X - B and
vanishes on A.

PROPOSITION 4.1. There exists a positive number €, such that, if n is any
(€4, 2)-small function on X, then the function ¢ = (s, s) + gn satisfies the conditions

(4.4) ¢ is positive on X - A,
(4.5) ¢ has no critical points on the closure of B - A,
(4.6) the form -zi——ﬂ'é 9 log ¢ is positive on X - A.

Remark first that if # is an (g, k)-small function, then gn is (Msg, k)-small,
where M is some fixed positive number depending only on k. Hence the factor g
causes no trouble. Next, observe that each of the conditions imposed on ¢ is an
“open” condition to be imposed on a compact set, and is furthermore a condition
which holds for the function (s, s). Hence the proposition is true.

By the approximation theorem, there exists an (g,, 2)-small function 1, such that
(s, s) + 7, is nondegenerate. Consider now the function ¢ = (s, s) + gn,. The factor
g affects this function only on the closure of B. Hence, by (4.5), ¢ is also nonde-
generate. Because g vanishes on A, the set S is a nondegenerate critical manifold
of ¢. Finally, by (4.4) and (4.6), the argument of (4.2) applies to ¢, whence
|¢| > dimc X = n. This is therefore the desired function on X, which in view of (3.3)
establishes Theorem 1.

5. THE GENERALIZED LEFSCHETZ THEOREM

Looking back upon the proof of Theorem I, we see that modulo the Morse theory
the heart of the proof lies in (4.1) and (4.2). These propositions in turn have their
direct antecedents in condition T and in the condition c¢(E, ) > 0, respectively. It
is therefore natural to see whether these conditions can be weakened without sub-
stantially affecting the remainder of the argument. For instance, the condition T
could well be replaced by the condition that the null set of s be a deformation re-
tract of the set (s, s) <& for ¢ > 0 small enough. Here we shall record only one
such technical generalization, which is obtained by weakening the second condition,
in the hope that it will find some application in the future.

DEFINITION 5.1. The hermitian stvucture Y) on E will be called of type k if at

each point of X the form c(E,V) is positive definite on a k-dimensional subspace of
the tangent space.
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For example, if | is of type n = dim: X, then y is positive in the old sense.

THEOREM IIl. Let ) be a hermitian structure of type k on the line bundle E
over X. Let s be a nonsingular holomorphzc section of E with null set S. Then X
is obtained from S by successively attaching cells of dimension > k.

The proof parallels exactly the proof of Theorem I. The only change to be made
is that wherever the positiveness of c(E,)) was used, we now apply the condition
that 5 be of type k, and we obtain a corresponding result. Thus (4.1) applies as be-
fore, while in (4.2) the n has to be replaced by k. (In the new argument, the form H
is negat1ve definite on a k-dimensional subspace.) Finally, in Proposition 4.3 the
condition (4.6) is changed in the obvious manner.
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