GROUPS ON R" OR S"
Deane Montgomery

1. INTRODUCTION

Throughout this paper G will be a compact connected Lie group acting on a
manifold M which is either R™ or S, that is, euclidean n-space or the n-sphere.
Furthermore the group is assumed to act differentiably, by which is meant that each
homeomorphism of M is of class C! in the ordinary differentiable siructure of M.
The space M is divided into certain disjoint subsets as follows. If r is the highest
dimension of any orbit, let B be the set of points on orbits of dimension less than r.
The set B is closed, and it is known [1] that dim B < n - 2. Let D be the set of
points x satisfying B

a) dim G(x) = r,

b) in every neighborhood of x there is a point y such that Gy, the isotropy
group at y, has fewer components than G,.

Any orbit in D is called an exceptional orbit of highest dimension. Near such an
orbit G(x), there is another highest-dimensional orbit G(y) which “wraps around”
G(x) more than once.

Let U be the set of all points on orbits of highest dimension which are not in D,
Then x € U if and only if

a) dim G(x) = r,

b) for all y in some neighborhood of x, G, and Gy have the same number of
components.

The sets B, D, U are invariant and disjoint, and
M=BUDUTU;
B is closed, BUD is'closed, and U is open. For the case at hand [2],
dimD<n- 2. |

The orbits of M can be made into a space M¥*, called the orbit space; and M* con-
tains the disjoint sets B*, D*, U* which are the images of B, D, U under the map
from M to M*. The map from M to M* is denoted by T.

This paper studies some of the properties of these sets, and it proves the follow-
ing theorems.

THEOREM 1. Let a compact connected Lie group G act differentiably on
M= R"™ or S, Then U*UD* is simply connected.

COROLLARY. Under the hypothesis of Theorem 1, let dim D < n - 3. Then U*
is simply connected. -
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THEOREM 2. Let a compact connected Lie group G act differventiably on
M = R™ or S®. Then U* is orientable.

This implies (see Corollary 1, stated later) that the r-dimensional homology of
the orbits in U forms a constant sheaf over U¥*,

2. DEFINITION AND STRUCTURE OF C*
Let m(x) be the number of components of G,, and let
M;={x, x€ M, dim G(x) = i} ,
M;; = {x; xe M;, m(x) = j} .

Then
r-1
B = U Mi’
i=0

and it is known [2] that if k is the smallest number of components in any r-dimen-
sional orbit, then

U=M,.
Any component of Mij is a manifold. Let
C={x; xe€e B, m(x‘B) continuous at x, dimB=n- 2 at x},
and
E = {x; xe€ D, m(x|D) continuous at x, dim D =n - 2 at x} .
Note that each point of C must be in M, _; [1]. Note also that it is shown later, in

Lemma 4, that U*U E* is simply connected, which sharpens Theorem 1.

LEMMA 1. Under the hypothesis of Theorem 1,let b* € C*. Then M* contains
a closed (n - r)-cell which is a neighborhood of b*; the boundary of the celil contains
b* and a neighborhood of b* relative to B*, Furthermore the cell may be so chosen
as to contain no point of D¥*,

For the proof, let b be a point of C such that
T(b) = b*,

and let K be an (n - r + 1)-cell which is a slice at b [3, 5], or a pseudo-section in
the terminology of Mostow. It may be assumed that G, acts orthogonally on a
neighborhood of b in M and on K. The slice K is chosen by definition to satisfy
the following [3, 5]:

a) Gb(K) = K,
b) for any x€ K, Gy C Gy,
c) there is a closed (r - 1)-cell Q in G (a section of the cosets of G, at e) such
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that (g, x) — g(x) gives a homeomorphism of QXK onto a neighborhood of b
in M,

d) if ge G- Gy, then Kng(K) = g.
Let the fixed points of G,, be denoted by F(Gy), and let

L, isan (n - r - 1)-cell, and if L, is an orthogonal two-cell in K, we may assume
that

K = L,XL,.
Then, for k € K,

k=(,,1L) (1, € Ly, I, € Ly,
and for any g € Gy,

gk = (gln glz) = (1, glz) .

Thus the action of G, on K is determined by its action on L,. I N is the subgroup
of Gy leaving all of K fixed, then dim G,/N = 1. There are two possibilities:

a) G,/N is a circle which acts on L, as the rotation group;

b) G,/N is a circle, extended by an element of order 2, which reverses the
orientation of L,.

However, case b) is impossible because an element which reverses orientation in L,
would reverse orientation in M. Therefore Gi/N is a circle, and the orbits of G,/N
in L, are concentric circles.

In L, choose a segment A from the origin to the edge of L,. This is a cross-
section of the orbits in L,. Hence L;XA is a cross-section of the orbits of Gy, in
K; it is also a cross-section of the orbits of G in G(K). Hence L,XA is mapped
topologically by T, and the image T(L,XA) is the cell (note that it contains no point
of D*) whose existence is asserted in the Lemma. This completes the proof.

LEMMA 2. Let M =R" or S?, and let XK be a finite C'-complex in M,
dim K = i. Thern M may be triangulated so that no (n - i - 1)-cell of M touches X.

We may assume i < n - 1, since otherwise there is nothing to prove; therefore K
can not be all of S™, If we omit one point, S® becomes R2?, and it will be assumed
that M = R, which involves no loss of generality.

Assume that a triangulation of M = R2 is given. It will be shown that this can be
modified slightly to yield a triangulation which satisfies the conclusion. The given
triangulation may be assumed to have the property that it is a triangulation after a
slight alteration of the vertices [8, p. 370].

The vertices of the given triangulation are countable and may be denoted by
P1, Pa, ***- If p, is not on K, let p; = p;; if p, is on K, let p} be a point not on K
and sufficiently near p, to satisfy the remark above [8, p. 370]. Assume now that
the new vertices pi, ey p'W have been selected. Choose p:” +1 sufficiently near
Pw+1 (in the sénse above) and so that any (n - i - 1)-linear space spanned by any set
of (n - i) of the points p} ( < w+ 1) does not touch K. This is possible since the
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cells of K are of class C!. Continuing by this inductive procedure, we obtain points
P}, P2, +-+, and the triangulation they determine has the desired properties. This
completes the proof.

3. PROOF OF THEOREM 1

Let a* be a path in U* UD* with end points at p*. It is known that a* is
covered by a path @ in UUD with end points at p, T(p) = p* [3]. By hypothesis «
can be shrunk in M. This means there exists a map f into M of the unit square

o={st:0<s<1, 0<t<1}
with
1) £(0, t) defining «,
2) (s, 0) = f(s, 1) = £(1, t) = p.

In order to prove the theorem it will be sufficient to prove that £ can be deformed so
that f(o) does not touch B.

We shall proceed by a finite induction to show that £(0) may be successively freed
from My, My, *»-, M._;. The procedures for My, -, M.._, are similar, but the pro-
cedure for M, _; is different. We begin by considering M, and making the succes-
sive steps required to reach the case of M, _;. In doing so, we assume these cases
to be present; for if they were not, we could proceed at once to the case of M, _,,
which will need separate consideration.

Now M, is a C!-submanifold [7], because G acts in a locally orthogonal manner.
Since it has been assumed that 0 < r - 1, it is known [1] that

dim My <n- 3,

and therefore by Lemma 2 there is a triangulation of M such that no 2-cell of the
triangulation meets M,. By the standard deformation theorems, £(0) may be de-
formed to be in the two-skeleton of the triangulation of M, and thus to a position not
meeting M,. We continue to denote the deformed f(o) by f(0). The deformation can
and will be assumed to take place without altering a@ by more than a preassigned
amount, and this deformation of & does not affect the proof.

Next assume i =1, 1 <r - 1. Then £(0) may intersect M,. Here we proceed
step by step on the sets M, $ it is sufficient to consider a finite number of indices
j because it is known that there are at most a finite number of conjugacy classes of
isotropy groups [6]. Let t be the largest value of j which needs to be considered,
so that M;,UM, is closed. The set M;; is a C!'-submanifold and contains a finite
Cl-complex K; such that

fo)NM;;c K;C My;.
By the assumption 1 < r - 1, it follows that
dim K; < dim M;; <dim M; <n - 3.

By Lemma 2 we may find a triangulation of M such that no 2-cell in the triangula-
tion of M meets K;. Then f(0) may be deformed into the 2-skeleton by a
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deformation so slight that it does not create an intersection with M,, and now £(c)
does not meet MgUM;;. By continuing to Mj:_j, Mj;_2, ***, we obtain in a finite
number of steps a deformed f(0) such that

floXN[My, UM,] = p.

We continue to M, and analyze M 2j step-by-step on j, and so on; in this way we ob-
tain, after a finite number of steps, a deformed (o) such that

fo)n [MguM, U-- UM, ,]=0.

Thus f(0) now satisfies the condition f(c) NB C M. _;.

We next wish to examine the set A € M,._;, where m(x |[M,_;) is discontinuous.
Take p € A, and let K be a slice at p; assume m(p) = a. Since p € A, there must be
points y,

y € KnM(r—l)j (j < a).
Let
B=KNF(G).

Then 8 is a closed rectilinear cell in M(;_j),, and dim 8 < dim K - 2. There are a
finite number of points y,, --+, y; in K such that if and only if y € KN B and
m(y) < a, then ,

G =G forsomei (1<i<s).
Y Yi - -

Let

so that B; is a closed rectilinear cell not identical with S.

The points of A in K are formed by the intersections of pairs of the cells
B, B1, ***, Bs. The set AN K is therefore the union of certain rectilinear cells of
dimension at most (dim K - 3). This proves the following:

LEMMA 3. Any compact part of A is contained in the union of a finite set of
Cl-complexes of dimension at most n - 3.

The Lemma, together with the results on deforming f(o) already obtained, en-
ables us to conclude that f(o) may be deformed so that

fo)NBc M,._; - A.

Among the components of the sets M(r-l)j there are some which have dimension at
most n - 3. By the procedures already outlined, we may deform £(0) so that it does
not interesect any such components. As a matter of fact, it is not necessary to pro-
ceed in any particular order to do this, since f(¢) does not touch any points where
two such components might come together. Therefore we may now assume that

fe)nBC C.
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Now let f*(0) = Tf(c), so that
f*(0) NB* = f*(0) NC*,

and to complete the proof of the theorem we must deform f*(0) into U*U D*,

Let b*e f*(o)n C*, and let 8* be the (n - r)-cell whose existence is asserted in
Lemma 1. We see that b* and points of C* in a neighborhood of b* may be de-
formed into the interior of B*. This may be done so as not to introduce any new
points into f*(0)N C*. Since f*(0)N C* is compact, we obtain, in a finite number of
steps, a deformation of f*(0) which does not touch B*. This completes the proof of
the theorem.

For the proof of the corollary we proceed as follows: Take a* in U* with @ a
covering path bounding f(o). We may assume

f(o)NnB c C.

If dim D < n - 3 we may deform away from it, as for the part of B having dimension
<n - 3. After this,

£*(0) C U* yC*,

and we may deform away from C* as before. This proves the corollary.

4, PROOF OF THEOREM 2

LEMMA 4. Under the hypothesis of Theorem 1, U*UE* is simply connected.

Let a* be in U* UE*, and let @ be a covering path in UUE. Let £(0) be a
singular 2-cell with boundary a. By the proof of Theorem 1, it may be assumed
that

flo)nBc C.

Let Q be the set of points of D where m(x|D) has a discontinuity. Take d € Q;
let K be a slice at d, and let

B = F(Gd)n Ks

so that B is a rectilinear cell of dimension at most (dim K - 2). There is a finite set
of points yi, y2, ***, ¥s in K such that m(y;) < m(d), and if y € DNK and
m(y) < m(d), then

G, =G for some i (1 <i<s).
s i

Let

- By= F(Gy) K.

Then B; is a rectilinear cell, and points of QMK are made up by intersections of
pairs of the cells B, 83, ***, By, and therefore f(0) N Q is in a finite C*-complex, in
D, of dimension < n - 3. Therefore f(0) may be deformed so that
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fo)c UV (D - Q).

Among the components of the sets M..:. (j > k) there are some which have dimension
at most n - 3. By the standard proceciure f(0) may be deformed so as to avoid these
components. Therefore it may now be assumed that

f(o) c UUCUE, f*(0) C UXUC* UE*,

But as at the conclusion of the proof of Theorem 1, we may deform f*(¢) away from
C* so that

t*(0) C U*UE*.

This proves the Lemma.
LEMMA 5. U* UE* is a manifold.

The set U* UE* is connected, so that to be sure it is a manifold we need only
show that it is locally euclidean at each point. It is known to be locally euclidean at
points of U*, and it remains only to examine points of E*,

Take p* € E* and p € E, so that T(p) = p*, and let K be a slice at p. Then
L; =Kn F(Gy)
is a cell of dimension (n - r - 2), and we may assume that
K=LXL,,
where L, is a 2-cell orthogonal to L,. For g € Gp and k = (1,, 1,) in K, we have

g(k) = g(lp 12) = (11, glz) .

Thus the action of G, on K is determined by its action on L,. If N is the subgroup
of G, leaving all of K fixed, then N is a normal subgroup of Gp, and G /N acts ef-
fectively on L,. Since Gp/N is finite and since p € E, G /N is a cychc group equiv-
alent to a cyclic group of rotations. Hence L}Xis a 2-ce11 But L¥ isan (n-r - 2)-
cell, and

K* = L¥XL¥

is an (n - r)-cell which is a neighborhood of p*. This completes the proof of the
Lemma.

The proof of Theorem 2 may now be completed: The manifold U*UE* is simply
connected and is therefore orientable. But U* is a submanifold, and hence U¥* is
orientable.

COROLLARY 1. Let a compact connected Lie group act differentiably on
M = R"? or S™. Then no closed path in U* can veverse the ovientation of an ovbil in

U; that is, the r-dimensional homology of an orbit in U forms a constant sheaf over
U*'

The orbits in U form a local product, and therefore each of them is orientable.
However an even stronger result is true, as follows:
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COROLLARY 2. Letl a compact connected Lie group G act diffeventiably on
M = R™ o S Then every orbil of highest dimension is ovientable.

COROLLARY 3. Let a compact connected Lie group act diffeventiably on
M=R™or S™ If n-r is odd, theve can be no isolated orbits in D.

In order to prove Corollary 1, let a* be a closed path in U*, and let @ be a
covering closed path in U with end points at p. K a motion around a reversed the
orientation of G(p), it would also reverse the orientation of a slice at p. This would
imply that U* is nonorientable, and this is impossible. This proves Corollary 1.

To prove Corollary 2, let G(p) be an orbit of highest dimension, and let K be a
slice at p. If G(p) were nonor1entab1e there would be an element g € G which re-
verses the local orientation of G(p). Such an element would reverse the or1entat1on
of a slice at p. There is an arc in G(p) which joins p to g(p), and there is an arc in
K - D joining g(p) to p. The first arc reverses the orientation of K, and the second
preserves it because K is orientable. Hence the union of these two arcs is a closed
path in U which reverses the local orientation of the slice K. But this is impossible,
and this contradiction proves Corollary 2.

To prove Corollary 3, let p be a point of D and let K be a slice at p. Let N be
the subgroup of G leavmg all of X fixed, and consider the finite group G / N which
operates on K. Smce D is isolated, the group Gp/ N operates freely on K p, and
each of its elements preserves the orientation of K. But if a is an element of G / N,
a is cyclic, and if it operates freely, n - r must be even, so that the spheres in
K - p have odd dimension.
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