GROUPS ON Rⁿ OR Sⁿ

Deane Montgomery

1. INTRODUCTION

Throughout this paper G will be a compact connected Lie group acting on a manifold M which is either R^n or S^n , that is, euclidean n-space or the n-sphere. Furthermore the group is assumed to act differentiably, by which is meant that each homeomorphism of M is of class C^1 in the ordinary differentiable structure of M. The space M is divided into certain disjoint subsets as follows. If r is the highest dimension of any orbit, let B be the set of points on orbits of dimension less than r. The set B is closed, and it is known [1] that dim $B \le n - 2$. Let D be the set of points x satisfying

- a) dim G(x) = r,
- b) in every neighborhood of x there is a point y such that G_y , the isotropy group at y, has fewer components than G_x .

Any orbit in D is called an exceptional orbit of highest dimension. Near such an orbit G(x), there is another highest-dimensional orbit G(y) which "wraps around" G(x) more than once.

Let U be the set of all points on orbits of highest dimension which are not in D. Then $x \in U$ if and only if

- a) dim G(x) = r,
- b) for all y in some neighborhood of x, G_x and G_y have the same number of components.

The sets B, D, U are invariant and disjoint, and

$$M = B \cup D \cup U$$
;

B is closed, $B \cup D$ is closed, and U is open. For the case at hand [2],

dim
$$D < n - 2$$
.

The orbits of M can be made into a space M^* , called the orbit space; and M^* contains the disjoint sets B^* , D^* , U^* which are the images of B, D, U under the map from M to M^* . The map from M to M^* is denoted by T.

This paper studies some of the properties of these sets, and it proves the following theorems.

THEOREM 1. Let a compact connected Lie group G act differentiably on $M=R^n$ or S^n . Then $U^*\cup D^*$ is simply connected.

COROLLARY. Under the hypothesis of Theorem 1, let dim $D \le n - 3$. Then U^* is simply connected.

Received July 29, 1958.

THEOREM 2. Let a compact connected Lie group G act differentiably on $M = R^n$ or S^n . Then U^* is orientable.

This implies (see Corollary 1, stated later) that the r-dimensional homology of the orbits in U forms a constant sheaf over U*.

2. DEFINITION AND STRUCTURE OF C*

Let m(x) be the number of components of G_x , and let

$$M_{i} = \{ x, x \in M, \dim G(x) = i \},$$

 $M_{i,j} = \{ x; x \in M_{i}, m(x) = j \}.$

Then

$$B = \bigcup_{i=0}^{r-1} M_i,$$

and it is known [2] that if k is the smallest number of components in any r-dimensional orbit, then

$$U = M_{rk}$$
.

Any component of M_{ij} is a manifold. Let

$$C = \{x; x \in B, m(x | B) \text{ continuous at } x, \text{ dim } B = n - 2 \text{ at } x \},$$

and

$$E = \{x; x \in D, m(x|D) \text{ continuous at } x, \dim D = n - 2 \text{ at } x\}.$$

Note that each point of C must be in M_{r-1} [1]. Note also that it is shown later, in Lemma 4, that $U^* \cup E^*$ is simply connected, which sharpens Theorem 1.

LEMMA 1. Under the hypothesis of Theorem 1, let $b^* \in C^*$. Then M^* contains a closed (n-r)-cell which is a neighborhood of b^* ; the boundary of the cell contains b^* and a neighborhood of b^* relative to B^* . Furthermore the cell may be so chosen as to contain no point of D^* .

For the proof, let b be a point of C such that

$$T(b) = b*.$$

and let K be an (n - r + 1)-cell which is a slice at b [3, 5], or a pseudo-section in the terminology of Mostow. It may be assumed that G_b acts orthogonally on a neighborhood of b in M and on K. The slice K is chosen by definition to satisfy the following [3, 5]:

- a) $G_b(K) = K$,
- b) for any $x \in K$, $G_x \subset G_b$,
- c) there is a closed (r-1)-cell Q in G (a section of the cosets of G_b at e) such

that $(g, x) \rightarrow g(x)$ gives a homeomorphism of $Q \times K$ onto a neighborhood of b in M,

d) if $g \in G - G_b$, then $K \cap g(K) = \emptyset$.

Let the fixed points of G_b be denoted by $F(G_b)$, and let

$$L_1 = F(G_h) \cap K;$$

 L_1 is an (n-r-1)-cell, and if L_2 is an orthogonal two-cell in K, we may assume that

$$K = L_1 \times L_2$$
.

Then, for $k \in K$,

$$k = (l_1, l_2)$$
 $(l_1 \in L_1, l_2 \in L_2)$,

and for any $g \in G_b$,

$$gk = (gl_1, gl_2) = (l_1, gl_2).$$

Thus the action of G_b on K is determined by its action on L_2 . If N is the subgroup of G_b leaving all of K fixed, then dim $G_b/N = 1$. There are two possibilities:

- a) G_h/N is a circle which acts on L_2 as the rotation group;
- b) G_b/N is a circle, extended by an element of order 2, which reverses the orientation of L_2 .

However, case b) is impossible because an element which reverses orientation in L_2 would reverse orientation in M. Therefore G_b/N is a circle, and the orbits of G_b/N in L_2 are concentric circles.

In L_2 choose a segment A from the origin to the edge of L_2 . This is a cross-section of the orbits in L_2 . Hence $L_1 \times A$ is a cross-section of the orbits of G_b in K; it is also a cross-section of the orbits of G in G(K). Hence $L_1 \times A$ is mapped topologically by T, and the image $T(L_1 \times A)$ is the cell (note that it contains no point of D*) whose existence is asserted in the Lemma. This completes the proof.

LEMMA 2. Let $M = R^n$ or S^n , and let K be a finite C^1 -complex in M, dim K = i. Then M may be triangulated so that no (n - i - 1)-cell of M touches K.

We may assume $i \le n - 1$, since otherwise there is nothing to prove; therefore K can not be all of S^n . If we omit one point, S^n becomes R^n , and it will be assumed that $M = R^n$, which involves no loss of generality.

Assume that a triangulation of $M = R^n$ is given. It will be shown that this can be modified slightly to yield a triangulation which satisfies the conclusion. The given triangulation may be assumed to have the property that it is a triangulation after a slight alteration of the vertices [8, p. 370].

The vertices of the given triangulation are countable and may be denoted by p_1, p_2, \cdots . If p_1 is not on K, let $p_1' = p_1$; if p_1 is on K, let p_1' be a point not on K and sufficiently near p_1 to satisfy the remark above [8, p. 370]. Assume now that the new vertices p_1' , \cdots , p_w' have been selected. Choose p_{w+1}' sufficiently near p_{w+1} (in the sense above) and so that any (n-i-1)-linear space spanned by any set of (n-i) of the points p_1' $(j \le w+1)$ does not touch K. This is possible since the

cells of K are of class C^1 . Continuing by this inductive procedure, we obtain points p_1^1, p_2^1, \dots , and the triangulation they determine has the desired properties. This completes the proof.

3. PROOF OF THEOREM 1

Let α^* be a path in $U^* \cup D^*$ with end points at p^* . It is known that α^* is covered by a path α in $U \cup D$ with end points at p, $T(p) = p^*$ [3]. By hypothesis α can be shrunk in M. This means there exists a map f into M of the unit square

$$\sigma = \{ s, t: 0 \le s \le 1, 0 \le t \le 1 \}$$

with

- 1) f(0, t) defining α ,
- 2) f(s, 0) = f(s, 1) = f(1, t) = p.

In order to prove the theorem it will be sufficient to prove that f can be deformed so that $f(\sigma)$ does not touch B.

We shall proceed by a finite induction to show that $f(\sigma)$ may be successively freed from M_0 , M_1 , ..., M_{r-1} . The procedures for M_0 , ..., M_{r-2} are similar, but the procedure for M_{r-1} is different. We begin by considering M_0 and making the successive steps required to reach the case of M_{r-1} . In doing so, we assume these cases to be present; for if they were not, we could proceed at once to the case of M_{r-1} , which will need separate consideration.

Now M_0 is a C^1 -submanifold [7], because G acts in a locally orthogonal manner. Since it has been assumed that 0 < r - 1, it is known [1] that

dim
$$M_0 < n - 3$$
,

and therefore by Lemma 2 there is a triangulation of M such that no 2-cell of the triangulation meets M_0 . By the standard deformation theorems, $f(\sigma)$ may be deformed to be in the two-skeleton of the triangulation of M, and thus to a position not meeting M_0 . We continue to denote the deformed $f(\sigma)$ by $f(\sigma)$. The deformation can and will be assumed to take place without altering α by more than a preassigned amount, and this deformation of α does not affect the proof.

Next assume i=1, 1 < r-1. Then $f(\sigma)$ may intersect M_1 . Here we proceed step by step on the sets M_{1j} ; it is sufficient to consider a finite number of indices j because it is known that there are at most a finite number of conjugacy classes of isotropy groups [6]. Let t be the largest value of j which needs to be considered, so that $M_{1t} \cup M_0$ is closed. The set M_{1t} is a C^1 -submanifold and contains a finite C^1 -complex K_t such that

$$f(\sigma) \cap M_{1t} \subset K_t \subset M_{1t}$$
.

By the assumption 1 < r - 1, it follows that

$$\text{dim } K_t \leq \text{dim } M_{1\,t} \leq \text{dim } M_1 \leq n$$
 - 3.

By Lemma 2 we may find a triangulation of M such that no 2-cell in the triangulation of M meets K_t . Then $f(\sigma)$ may be deformed into the 2-skeleton by a

deformation so slight that it does not create an intersection with M_0 , and now $f(\sigma)$ does not meet $M_0 \cup M_{1t}$. By continuing to M_{1t-1} , M_{1t-2} , ..., we obtain in a finite number of steps a deformed $f(\sigma)$ such that

$$f(\sigma) \cap [M_0 \cup M_1] = \emptyset$$
.

We continue to M_2 and analyze M_{2j} step-by-step on j, and so on; in this way we obtain, after a finite number of steps, a deformed $f(\sigma)$ such that

$$f(\sigma) \cap [M_0 \cup M_1 \cup \cdots \cup M_{r-2}] = \emptyset$$
.

Thus $f(\sigma)$ now satisfies the condition $f(\sigma) \cap B \subset M_{r-1}$.

We next wish to examine the set $A \subset M_{r-1}$, where $m(x | M_{r-1})$ is discontinuous. Take $p \in A$, and let K be a slice at p; assume m(p) = a. Since $p \in A$, there must be points y,

$$y \in K \cap M_{(r-1)j}$$
 $(j < a)$.

Let

$$\beta = K \cap F(G_p).$$

Then β is a closed rectilinear cell in $M_{(r-1)a}$, and dim $\beta \leq \dim K - 2$. There are a finite number of points y_1, \dots, y_s in K such that if and only if $y \in K \cap B$ and m(y) < a, then

$$G_y = G_{y_i}$$
 for some $i (1 \le i \le s)$.

Let

$$\beta_{\mathbf{i}} = \mathbb{K} \cap \mathbb{F}(\mathbb{G}_{y_{\mathbf{i}}'}),$$

so that β_i is a closed rectilinear cell not identical with β .

The points of A in K are formed by the intersections of pairs of the cells β , β_1 , ..., β_s . The set $A \cap K$ is therefore the union of certain rectilinear cells of dimension at most (dim K - 3). This proves the following:

LEMMA 3. Any compact part of A is contained in the union of a finite set of C^1 -complexes of dimension at most n-3.

The Lemma, together with the results on deforming $f(\sigma)$ already obtained, enables us to conclude that $f(\sigma)$ may be deformed so that

$$f(\sigma) \cap B \subset M_{r-1} - A$$
.

Among the components of the sets $M_{(r-1)j}$ there are some which have dimension at most n-3. By the procedures already outlined, we may deform $f(\sigma)$ so that it does not interesect any such components. As a matter of fact, it is not necessary to proceed in any particular order to do this, since $f(\sigma)$ does not touch any points where two such components might come together. Therefore we may now assume that

$$f(\sigma) \cap B \subset C$$
.

Now let $f^*(\sigma) = Tf(\sigma)$, so that

$$f^*(\sigma) \cap B^* = f^*(\sigma) \cap C^*$$
.

and to complete the proof of the theorem we must deform $f^*(\sigma)$ into $U^* \cup D^*$.

Let $b^* \in f^*(\sigma) \cap C^*$, and let β^* be the (n-r)-cell whose existence is asserted in Lemma 1. We see that b^* and points of C^* in a neighborhood of b^* may be deformed into the interior of β^* . This may be done so as not to introduce any new points into $f^*(\sigma) \cap C^*$. Since $f^*(\sigma) \cap C^*$ is compact, we obtain, in a finite number of steps, a deformation of $f^*(\sigma)$ which does not touch B^* . This completes the proof of the theorem.

For the proof of the corollary we proceed as follows: Take α^* in U* with α a covering path bounding $f(\sigma)$. We may assume

$$f(\sigma) \cap B \subset C$$
.

If dim $D \le n-3$ we may deform away from it, as for the part of B having dimension $\le n-3$. After this,

$$f^*(\sigma) \subset U^* \cup C^*$$
,

and we may deform away from C* as before. This proves the corollary.

4. PROOF OF THEOREM 2

LEMMA 4. Under the hypothesis of Theorem 1, $U^* \cup E^*$ is simply connected.

Let α^* be in $U^* \cup E^*$, and let α be a covering path in $U \cup E$. Let $f(\sigma)$ be a singular 2-cell with boundary α . By the proof of Theorem 1, it may be assumed that

$$f(\sigma) \cap B \subset C$$
.

Let Q be the set of points of D where m(x|D) has a discontinuity. Take $d \in Q$; let K be a slice at d, and let

$$\beta = F(G_d) \cap K$$
,

so that β is a rectilinear cell of dimension at most (dim K - 2). There is a finite set of points y_1, y_2, \cdots, y_s in K such that $m(y_i) < m(d)$, and if $y \in D \cap K$ and m(y) < m(d), then

$$G_y = G_{y_i}$$
 for some $i (1 \le i \le s)$.

Let

$$\beta_i = F(G_{y_i}) \cap K$$
.

Then β_i is a rectilinear cell, and points of $Q \cap K$ are made up by intersections of pairs of the cells β , β_1 , ..., β_r , and therefore $f(\sigma) \cap Q$ is in a finite C^1 -complex, in D, of dimension $\leq n-3$. Therefore $f(\sigma)$ may be deformed so that

$$f(\sigma) \subset U \cup (D - Q)$$
.

Among the components of the sets M_{rj} (j > k) there are some which have dimension at most n-3. By the standard procedure, $f(\sigma)$ may be deformed so as to avoid these components. Therefore it may now be assumed that

$$f(\sigma) \subset U \cup C \cup E$$
, $f^*(\sigma) \subset U^* \cup C^* \cup E^*$.

But as at the conclusion of the proof of Theorem 1, we may deform $f^*(\sigma)$ away from C^* so that

$$f^*(\sigma) \subset U^* \cup E^*$$
.

This proves the Lemma.

LEMMA 5. $U^* \cup E^*$ is a manifold.

The set $U^* \cup E^*$ is connected, so that to be sure it is a manifold we need only show that it is locally euclidean at each point. It is known to be locally euclidean at points of U^* , and it remains only to examine points of E^* .

Take $p^* \in E^*$ and $p \in E$, so that $T(p) = p^*$, and let K be a slice at p. Then

$$L_1 = K \cap F(G_p)$$

is a cell of dimension (n - r - 2), and we may assume that

$$K = L_1 \times L_2$$
,

where L_2 is a 2-cell orthogonal to L_1 . For $g \in G_p$ and $k = (l_1, l_2)$ in K, we have

$$g(k) = g(l_1, l_2) = (l_1, gl_2)$$
.

Thus the action of G_p on K is determined by its action on L_2 . If N is the subgroup of G_p leaving all of K fixed, then N is a normal subgroup of G_p , and G_p/N acts effectively on L_2 . Since G_p/N is finite and since $p \in E$, G_p/N is a cyclic group equivalent to a cyclic group of rotations. Hence L_2^* is a 2-cell. But L_1^* is an (n-r-2)-cell, and

$$K^* = L_1^* \times L_2^*$$

is an (n - r)-cell which is a neighborhood of p^* . This completes the proof of the Lemma.

The proof of Theorem 2 may now be completed: The manifold $U^* \cup E^*$ is simply connected and is therefore orientable. But U^* is a submanifold, and hence U^* is orientable.

COROLLARY 1. Let a compact connected Lie group act differentiably on $M = R^n$ or S^n . Then no closed path in U^* can reverse the orientation of an orbit in U; that is, the r-dimensional homology of an orbit in U forms a constant sheaf over U^* .

The orbits in U form a local product, and therefore each of them is orientable. However an even stronger result is true, as follows:

COROLLARY 2. Let a compact connected Lie group G act differentiably on $M = R^n$ or S^n . Then every orbit of highest dimension is orientable.

COROLLARY 3. Let a compact connected Lie group act differentiably on $M = R^n$ or S^n . If n - r is odd, there can be no isolated orbits in D.

In order to prove Corollary 1, let α^* be a closed path in U^* , and let α be a covering closed path in U with end points at p. If a motion around α reversed the orientation of G(p), it would also reverse the orientation of a slice at p. This would imply that U^* is nonorientable, and this is impossible. This proves Corollary 1.

To prove Corollary 2, let G(p) be an orbit of highest dimension, and let K be a slice at p. If G(p) were nonorientable, there would be an element $g \in G_p$ which reverses the local orientation of G(p). Such an element would reverse the orientation of a slice at p. There is an arc in G(p) which joins p to g(p), and there is an arc in K - D joining g(p) to p. The first arc reverses the orientation of K, and the second preserves it because K is orientable. Hence the union of these two arcs is a closed path in U which reverses the local orientation of the slice K. But this is impossible, and this contradiction proves Corollary 2.

To prove Corollary 3, let p be a point of D and let K be a slice at p. Let N be the subgroup of G_p leaving all of K fixed, and consider the finite group G_p/N which operates on K. Since D is isolated, the group G_p/N operates freely on K - p, and each of its elements preserves the orientation of K. But if a is an element of G_p/N , a is cyclic, and if it operates freely, n - r must be even, so that the spheres in K - p have odd dimension.

REFERENCES

- 1. D. Montgomery, H. Samelson, and L. Zippin, Singular points of a compact transformation group, Ann. of Math. (2) 63 (1956), 1-9.
- 2. D. Montgomery, H. Samelson, and C. T. Yang, Exceptional orbits of highest dimension, Ann. of Math. (2) 64 (1956), 131-141.
- 3. D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108-116.
- 4. D. Montgomery and L. Zippin, *Topological transformation groups*, Interscience Press, New York, (1955).
- 5. G. D. Mostow, Equivarient embeddings in euclidean space, Ann. of Math. (2) 65 (1957), 432-446.
- 6. ———, On a conjecture of Montgomery, Ann. of Math. (2) 65 (1957), 513-516.
- 7. J. H. C. Whitehead, On C1-complexes, Ann. of Math. (2) 41 (1940), 809-824.
- 8. H. Whitney, Geometric integration theory, Princeton Univ. Press (1957).

Institute for Advanced Study