SEMIGROUPS AND SUBMODULAR FUNCTIONS

Fred B. Wright

The structure of opén additive semigroups of complex numbers was investigated
by Hille and Zorn [2], who obtained a characterization of them in terms of subadditive
functions. Rosenbaum [3] extended this to a characterization of open semigroups in
Euclidean n-space. That these results are sufficient to give a nearly complete de-
scription of the open semigroups of a locally compact abelian group was observed by
the author [4]. It is natural to try to extend this characterization to arbitrary real
linear topological spaces.

One cannot simply copy the proofs of Hille and Zorn, since these proofs use the
local compactness of the plane to select a suitable basis of coordinates. Rosen-
baum’s characterization in n-space depends on the characterization in (n-1)-space,
and thus is highly finite-dimensional. The assumption that 0 is a limit point of the
semigroup is explicit in most of the results; when this is true the semigroup is
called angular. In this note we shall consider open semigroups in a real linear
topological space, and we shall consider only those which we shall call radiant. The
purpose of this assumption is to enable us to have the infinite-dimensional version
of Theorem 7.6.4 of [1] at our disposal. This restriction is made at some cost; it is
no longer true, even in the plane, that we are discussing all angular semigroups. On
the other hand, the restriction also results in some gain: some of the semigroups
under discussion are not angular, and, of course, we can obtain some results in the
infinite-dimensional case.

Throughout, let E denote a real linear topological space, and let R denote the
field of real numbers.

Definition 1. A subset A of E is said to be radially convex if, for x € E and-
a,BeR, ax e A and Bx € A imply vx € A for every y € R satisfying o <y <B8.

Thus A is radially convex if and only if the intersection of A with any one-
dimensional subspace of E is either void or is a convex subset of that one-dimen-
sional subspace.

A subset S of E is called a semigroup if X,y € S implies x+y e S. If S is an
open semigroup, then either S = E, or else there exists a continuous linear functional
f on E such that Sc {x € E: f(x) > 0}; that is, S is contained in a half-space of
E [5]. We shall call an open semigroup propev if S ¢ E;. the latter condition is
equivalent to the assumption that 0 §S.

Definition 2. A semigroup S in E is said to be a radiant semigroup if S isa
proper open semigroup in E which is radially convex.

In the real line R, the only radiant semigroups are the semigroups of one of the
following forms: (1) {A eR:A>E> 0}, (2) {x eR: A <& <0}. Henceif S isa
radiant semigroup in E and if x # 0 is any element of E, then either S and the one-
dimensional subspace Rx of E do not meet, or else SﬂRx = Tx, where T is a ra-
diant semigroup of the reals.

Definition 3, For any nonvoid subset A of E, we define a function dy on E as
follows: dp(x) = inf {& € R: ax € A}. We call dp the order function of A.
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We adopt the standard convention that da(x) = +« if the set over which the in-
fimum is taken is empty. Observe that da(0) = -0 if and only if 0 € A, and that
d A(0) = + if and only if 0 § A. The remarks above concerning the radiant semi-
groups of reals yield at once

LEMMA 1. If S is a radiant semigroup in E, then for each x € E either
dg(x) = -0 07 0<dg(x) < +=.

We shall use the notation U B to denote the maximum of two extended reals o
and B. We shall say that o and B have the same finitary character if one of the fol-
lowing is true: (1) @ = B = -», (2) @ = B =+», (3) @ and B are both finite; otherwise
a and B are said to have different finitary character. In what follows, the restric-
tion that two extended reals have the same finitary character plays the role usually
filled by the restriction against expressions of the form « - .

LEMMA 2. Lel S be a radiant semigroup in E with ovder function dg. If dg(x)
and dg(y) have the same finitary character, then dg(x + y) < dg(x) Uds(y).

Proof. If dg(x) = dg(y) = +, the result is trivial. Suppose then that
dg(x) = dg(y) = -0}
then there exist positive reals o, 8 such that -ax € S, -gx € S. Hence
-(@upB)xeS, -(@UB)ye€ S,

and since S is a semigroup, -(@UB)(X + y) € S. Thus dg(x+ y) = -. Finally, let
0<dgx)=a <+w, 0<ds(y) =B <+w. Thenfor any ¢ >0, [(¢UB)+ €]xe S and
[(@uB)+ ely € S, and hence [(@ UB) + £ Jx+ y) €S. Thus (@ UB)+ ¢ > dg(x +y)
for every ¢ > 0, and therefore aU g > dg(x + y).

Numerous easy examples show that this inequality will in general fail to hold if
ds(x) and dg(y) have different finitary character.

We omit the proofs of the next four lemmas, because the proof of Lemma 2 illus-
trates sufficiently the type of argument which is needed.

LEMMA 3. The ovder function of a vadiant semigvoup is upper semicontinuous.

LEMMA 4. If S is a vadiant semigroup in E with ovder function dg, then
S={x€E:0<dgx) <1}.

LEMMA 5. If S is a radiant semigrvoup in E, and if 0 < dg(x) < +o and
0 < a < +wo, then adg(ax) = dg(x).

We shall call a set C in E a cone if C is a semigroup which is closed under
multiplication by strictly positive scalars. A cone is called proper if 0 {: C.

LEMMA 6. Let S be a vadiant semigvoup in E, with ovdevr function dg. Then
the set {xe E: 0 <ds (x) < +o } is the least proper cone in E which contains S.

Now we shall assemble the properties of the order function of a radiant semi-
group into a definition.

Definition 4. Let f be a function defined on a real linear topological space,
whose range is contained in the set of real numbers with +«~ and -« adjoined. The
function f is said to be submodular if, whenever f(x) and f(y) have the same finitary
character, f(x + y) < f(x)Uf(y). The function f will be called conventional if (i) the
set on which it takes finite values is a nonvoid open set, but is not the entire space,
and (ii) the function is nonnegative when it is finite. The function f is said to be an
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order function if the conditions 0 < f(x) <+ and 0 < @ <+ together imply that
af(ax) = £(x).

We use the term “submodular” by analogy with the term “subadditive.”

The preceding results can be summarized as follows: the order function of a
radiant semigroup in E is an upper semicontinuous conventional submodular order
function.

Conversely, let f be an upper semicontinuous conventional submodular function
on E. Set S={x€eE: 0<{x)< 1}; S is clearly an open semigroup in E. Also S
is neither void nor all of E, since f is conventional. Further, suppose f is an order
function. It is then clear that S is radially convex, and hence S is a radiant semi-
group. Let dg be the order function defined by S; we shall compare f and dg.
Suppose that 0 < f(x) = @ <+w. For any € >0,

(@+ e)[la+ €)x] ={x) = a,

so that f[(a@ + €)x]= a(a + €)"*< 1, and hence (@ + £)x € S. Hence a + & > dg(x)
for any & > 0, and therefore f(x) > dg(x). If « # 0, then f(ax) = 1, so ax ¢S, and
hence dg(x) > o = f(x). Thus dg(x) = f(x) if f(x)# 0. If f(x) = 0, then x € S, so that
- dg(x) > 0 = f(x). Thus dg(x) = f(x) whenever f(x) is finite. Similarly this holds
whenever dg(x) is assumed to be finite. The reader will be able to convince him-
self that, given a suitable radiant semigroup S, the function dg(x) can be modified,
on the set on which it is infinite, to yield a different upper semicontinuous submodu-
lar function defining the same semigroup. This leads us to make the following
normalization.

Definition 5. A conventional function f is said to be a normalized function pro-
vided f(-x) = —o if and only if f(x) is finite.

The discussion above then establishes the following result.

THEOREM 1. In any veal topological linear space E, theve exists a one-to-one
correspondence between the set of radiant semigroups of E and the set of upper
semicontinuous normalized submodulayr ovdey functions on E. In pariicular, such a
corvespondence is deleymined by the relations

S={xeE:0<dglx)<1}, dgi)=inf{aeR: axe S},

where dg(x) denotes the function associated with the radiant semigroup S.

As indicated in [1], angular semigroups are of considerable importance. We can
give necessary and sufficient conditions that a radiant semigroup S be angular, in
terms of the order function defining S.

Definition 6. Let f be any function defined on E which assumes either real values-
or the values +« and -, and let F be the set of points at which f is finite-valued.
If x, is any point in E, by the restricted limit inferior of { at x, we shall mean
supy inf, e yf(x), where U runs over the neighborhoods of x,.

THEOREM 1II. Let S be a vadiant semigroup in a veal linear topological space E.
A mnecessary and sufficient condition that S be angular is that the restricted limit in-
fevior p of dg at 0 satisfy p < 1.

Pyroof. In any case p > 0. If S is angular, then given any neighborhood U of 0;
there exists an element x, € UNnSc UN F, so that dg(x,) <1, inf cynpds(x) <1,
and hence p < 1. Conversely, if u< 1, then ¢(U) = inf, .y Hp dg(x) satisfies
¢#(U) < 1. If U, C U,, then $(U,) > ¢(U,), so that S will be angular if we show that
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¢(U) < 1 for any U. Let V be a neighborhood of 0 such that 2V c U. Since

¢(V) < 1, there exists an element x, € VNF such that dg(x,) < 1+ 3. Then 2x, € S,
by properties of one-dimensional radiant semigroups, and hence ds(2x,) < 1. Since
2%, € UNF, we have ¢(U) < 1, which completes the proof.

The connection between this characterization and the characterizations in [1,2,3]
is not at all clear. For example, one can not say that the set {x € E: ds(x) = 1} is
the graph of the Hille-Zorn subadditive function describing S, as might be expected.
In fact, this set may be empty. In connection with this, however, it is easily seen
that the following is true:

THEOREM IIl, A necessary and sufficient condition that a radiant semigroup S
be acone is that dg take on only the values -, 0, +0; 07 equivalently, that the set
{x € E: dg{x) = 1} be empty.
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