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Convexity Properties for Cycle Spaces

D. BARLET & V. VAJAITU

1. Introduction

In this article we study compagtcycles on a complex reduced analytic space
mainly in the case wherg is the maximal dimension of a compact (irreducible)
analytic subset oX.

We first give a result that generalizes a classical result due to Norguet and Siu
[18] about finiteness of compact hypersurfaces pr@onvex manifold,; it gives a
suitable sufficient condition fak to have only finitely many irreducible compact
g-cycles.

THEOREM 1. LetX andY be complex spaces such thais contained inY as a
locally closed analytic subset. Suppose that

(@) HY(X, 2}) has finite dimension oveE, sayN; and

(b) H9*X(Y, F) = 0 for every coherent subshed C Q.

ThenX has at mostV compact irreducible analytic subsets of dimensjon
We then study the convexity properties of the space of compagtlesC, (X).

THEOREM 2. Let X be a cohomologically-complete complex space that is
Kahlerian and (¢ + r)-convex for some nonnegative integerThenC,(X) is
r-complete with corners.

This looks like a nice “convexity transfer”, but it is quite weak becauserthe
convexity with corners is not so restrictive for- 0. The method is similar to the
one used in [18] but requires us to work witkplurisubharmonic functions (see
Section 3.1 for definitions) and to prove an approximation result by functions that
arer-convex with corners.

THEOREM 3. LetZ be a complex space admitting a continuous exhaustion func-
tion ¢ that isg-plurisubharmonic. IfZ belongs taSy, thenZ is g-complete with
corners.

Note. Sy is the class of complex spaces such that, on every relatively compact open
subset, there exist continuous strongly plurisubharmonic functions. For instance,
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Z belongs toSy if Z is K-complete[15] and a fortiori if Z is holomorphically
separable (see Lemma 5).

THEOREM 4. LetZ be a complex space and lgtbe a stronglyg-plurisubhar-
monic continuous function aA. Then, for every € C%(Z, R) with e > 0, there
is a functiong on Z such thatp is g-convex with corners anfh — ¢| < e.

In order to get more information than that stated in Theorem 2—namely, the (rel-
ative) 0-completenes®-complete= Stein of C,(X)—we must make a more
restrictive hypothesis: we ask to bek-Stein in the sense of [7] for some inte-
gerk > g. This is slightly more than usu&lcompleteness, but it gives (strong)
convexity information forg-cycles in a situation where they are not necessarily
maximal.

THEOREM 5. Let X be ak-Stein space via the mapping: X — P* for some
integerk > ¢. Then every connected compongnof C, (X) has a continuous ex-
haustion function that is strongly plurisubharmonic along the fibers,0fZ —
C,(P*), wherer, is the direct image map af-cycles.

2. Proof of Theorem 1

2.1. Preliminaries

Let Z be a complex space. The definitiongstonvexity used in this paper is that
of Andreotti and Norguet [4]: A functiop € C%(Z, R) is said to bey-convexif,
for every pointa € Z, there is a coordinate patcl, ., U), whereU > a, U is
open in some Euclidean complex space, and — Uisa holomorphic embed-
ding such that there existsgae C2(U, R) with ¢ ot = ¢|y and the Levi form
of ¢ has at mosg nonpositive eigenvalues at every pointL?z)fWe say thatZ is
g-convexf there exists a clas§? exhaustion functiog on Z that isg-convex on
Z \ K, whereK C Z is a compact set. If we may také as the empty set, then
Z is said to bey-complete

The spaceZ is said to becohomologicallyg-convex(resp.,cohomologically
g-complet¢ if Hi(X, F) has finite dimension as a complex vector space (resp.,
Hi(X, F) vanishes) for every > ¢ and every coherent sheafon X. (Cohomo-
logically 0-complete= Stein= 0-complete.

Also, we recall the definition of the sheaf of germs of hoIomorghformsQé
onZ, j eN. If Zis an analytic subset of a domalihc C” then we define

Q)= Q) )T, +dT, A QLY)2.

whereZ, is the ideal sheaf of in D. In general, by using local embeddings and
patching we obtain coherefit;-modules?,, jeN.

If 7: X — Y is a holomorphic map of complex spaces, then there is a canon-
ical Oy-module morphisnﬂ§' — n*Q)’; that induces a map in the cohomology
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Hi(Y, Q{}) — HI(Y, n*sz)f;); furthermore, when composed with the natural map
HUY, 7,.Qy3) — HYX, Qy), this morphism gives

wps HIY, Q) — HUX, Q).

REMARK 1. Let X be a complex space and IEt ¢ X be a compact analytic
subset of dimension. By a classical theorem due to Lelong [16], there exists a
canonical trace map (see [8] for details)

Trr: HA(X, Q%) — C, §|—>/E,
r

given by “integrating cohomology classes” bn
Now suppose thaX is contained as an analytic subset of a complex space
The natural map

HYY,Q]) - HIX, Q}),

which can also be defined more explicitly via tiech cohomology and the fore-
going trace maps, give the commutative diagram

HYY, Q) — HIYX, Q)

l l

C p— C 3
where the vertical arrows are given by integratingion

REMARK 2. LetZ be a compact complex space of dimensicand letr : Z —
Z be the normalization map. Then, integrating cohomology classesamd Z
gives the canonical commutative diagram

H™(Z,Q}) — H"(Z.Q})

l |

C f— C.

LemMma 1. If X is an analytic subset of a'complex spacwith H9+Y(Y, F) van-
ishing for every coherent subsheaf c Qj, thenu; is surjective.

Proof. Letv: X — Y denote the inclusion map. We note that the natural map
Bi: Q) — 1.9y is a surjection oBy-modules; then the hypothesis and an exact
cohomology sequence give the surjectivity (Y, Q;') — HI(Y, v*Q)’;). We
conclude easily sinc8l*(Y, v,Q}) = H'(X, Q1). O

LEMMA 2. LetX be a complex space and let X — X be the normalization
map. Letn = dim(X). Then the natural magf"(X, Q%) — H"(X,Q}) is
surjective.
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Proof. Let y: Q% — m,Q% be the canonical map. Because Igeand Cokery
are supported on Sinig ), which has complex dimension less tharthe lemma
follows by standard machinery of long exact sequences and [21]. O

LemMma 3. Let Z be a normal compact complex space of dimensiofhen the

following statements hold.
(1) The canonical maH(Zweg, F) — H"(Z,F) is bijective for everyF e
Coh(Z).
(2) If Z is connected, thefir,: H"(Z, ) — Cis an isomorphism.
Proof. (1) Let A := Sing(Z); hence dintA) < n — 2. Then the exact sequence
H" A, Fla) > H!Zieg. F) > H"(Z, F) —> H"(A, F| ),

whereF| 4 is the topological restriction, together with [21] gives the conclusion.
(2) We have a canonical diagram that is commutative; namely,

H!(Zeg, Q7)) —> H'(Z,Q7)

! l

C p— C.

Thus the map in statement (2) of the lemma is not zero; hence itis surjective. Then
we conclude easily by statement (1), taking into account that

H"(Zyeg Q) = (H%(Z1eg, O7))* = C. O

LEMMA 4. LetY be a complex space and I&t, ..., Z,, be distinct irreducible
compact analytic subsets af of dimensiony. Then the map

H%Y,Qf,)aé»(/ 5/ g>e<cm
Z Zm

is surjective ifH7*1(Y, F) = 0 for every coherent subshed c Q7.

Proof. LetZ := Z; U ---U Z,,. By Lemma 1, it suffices to prove Lemma 4 for
Y = Z. But this is a straightforward consequence of Lemmas 2 and 3 and the
canonical commutative diagram in Remark 2. O

2.2. Proof of Theorem 1 and Consequences

For a complex spacg, let V,(Z) be the vector space of compact cycles of di-
mensiory with complex coefficients. That is, an elementigi(Z) is given as a
formal sum

m

Z)»iri,
i=1

wherem € N, A; € C, andI'; C Z are distinct compact irreducible analytic subsets
of dimensiong. By integrating cohomology classes, we thus obtain a canonical
complex linear map
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®,(2): V,(Z) > HUZ, Q))* := Homc(HY(Z, %), C).

Let now X andY be complex spaces such théatc Y as a locally closed analytic
subset. Then we have a commutative diagram of canonical maps:

V,(X) —> HIYX, Q)"

l l

V,(Y) — HIYY, Q.

Coming back to the situation of Theorem 1, we deduce by Lemma 4Lth@t)
is injective. Thus, the preceding diagram and the (obvious) injectivity of the map
V,(X) — V,(Y) imply that®, (X) is injective, which proves Theorem1. [

CoroLLARY 1. Let X be a cohomologicallyg — 1)-convex space that is coho-
mologicallyg-complete. TherX has finitely many compact irreducible analytic
subsets of dimensian and their number is bounded loym H4(X, Q%).

CoRrOLLARY 2. LetX be an irreducible complex space of dimensiorSuppose

that X is cohomologicaly(n — 2)-convex and noncompact. Theéhhas only
finitely many compact irreducible hypersurfaces, and their number is bounded by
dim H"-Y(X, Q47Y).

Proof. SinceX is cohomologicallyn — 1)-complete by [22], Corollary 2 follows
immediately from Corollary 1. O

REMARK 3. ForX smooth, we recover a result in [18].

ProposITION 1. Let X be a complex space such that+1(X, F) vanishes for
every coherent subshed c Qf. ThenC,(X) is K-complete. In particular, on
every irreducible component af, (X) there exist smooth strongly plurisubhar-
monic functiongsa fortiori, they are Kahlerian.

Note. By [15] we say that a complex spaéeis K-completeif, for every point
z0 € Z, there is a holomorphic mapping: Z — CV, N = N(zo), such that
is isolated in its fibe “1(F(z0)).

REMARK 4. Another possibility for obtaining continuous strongly plurisubhar-
monic functions orC, (X) is to have &g, g)-form «, smooth of clas€?on X,
such thabda >> 0 in the sense of Lelong. In particular this holdXihas a Kah-
ler formw and ifw?t! := w A - - - Aw (the product is takeqp+1 times) isdd-exact;
see [27].

Proof of Proposition 1.To conclude, by [23, Cor. 6, p. 235] it remains to show
thatC,(X) is K-complete. In order to settle this, we give the following lemma.

LemMma 5. Let Z be a holomorphically separable complex space. Thés K -
complete.
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Proof. First we demonstrate the following.

CLamM. Leta € Z and letY C Z be an analytic subset containiag Then, for

every discrete sequen¢e,} C Y such that;, # « for all v, there exists a holo-
morphic functionf on Z with f(a) = 0 and f(z,) # O for all v. Moreover, if

dim, Y > 0, then we may choosg with the additional property that

dim,YNn{f =0} <dim,Y.

To see this, we leE = {f € O(Z); f(a) = 0} andG, = {f € E; f(z,) # 0}.
Clearly E is a nonempty Fréchet space and eéghis a dense open subset Bf
for everyv. Since the index set is at most countable, by Baire’s thegrenw, is
dense inE and a fortiori is not empty. Then ange (), G, will do the job.

Now, in order to settle the “moreover”, IgX, },, be the irreducible components
of Y that contairu and are of positive dimension. By adding further points to the
sequencéz,}, we may assume that on eakhthere is at least ong,. Then we
conclude as before.

To finish the proof of the lemma, we ley € Z and setY := the union of all
irreducible components & containingzo. ThenY is a neighborhood af, and
n = dim(Y) < oo. The claim readily gives holomorphic functiorfs, ..., f, €
O(Z) such that setting” := (fo, ..., fu): Z — C"lyieldsY N FX(F(zp)) =
{zo}. This proves the lemma and hence the proposition as well. O

REMARK 5. LetX be a complex space and let
AN, : Hi(X, Q) — O, (X))

be theAndreotti-Norguet transformabtained by integrating cohomology classes
[3; 4], which is well-defined by [8]. If#9*1(X, F) vanishes for every coherent
subsheafF c 7, then IMAN,) separates the points 6f (X).

3. g-Plurisubharmonic Functions

3.1. Preliminaries

Let X be a complex space. A functigne C°(X, R) is said to bej-convex with
corners[11; 12; 20] if every point ofX admits an open neighborho@tion which
there are finitely many-convex functionsfy, ..., fi such that

ely = max(fy, ..., fo).

Denote byF, (X) the set of all functiong-convex with corners oX.

We say thatX is g-complete with corners there exists an exhaustion function
¢ € F;(X). (Hence Stein spaces correspond to spaces that are 0-complete with
corners.)

This g-convexity with corners is weaker than usgatonvexity. For instance,
the intersection of finitely many-complete open subsets @f* is g-complete
with corners, but in general it is ngtcomplete. However, by [11; 12], every com-
plex spaceX of dimensiom that isq-complete with corners i&-complete, where
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g = n—[n/(g +1)]. Notice that, foig with (n —1)/2 < ¢ <n—1, we have =
n — 1; this gives no new information, in view of [10] and [19].

Note that, ifp, ¢ € F,(X) andx € C*(R, R) with x" > O andx” > 0, then
max(p, ¥) andx(¢) belong toF, (X). However, if{p,}, C F,(X) is an arbitrary
family andg = sup_g, is (even) continuous, then it may happen thadoes
not belong toF, (X), as simple examples show. To avoid this, we enlarge the set
F,(X) by introducingg-plurisubharmonidunctions.

An upper semicontinuous functign X — R U {—oo} is said to be:

(a) subpluriharmonidf, for every @ € X and every pluriharmonic functioh
defined neaf? (i.e., h is locally the real part of a holomorphic function), we
havegp < h onQ wheng < i onog;

(b) g-plurisubharmonidf, for every open seG ¢ C?*+* and holomorphic map
f: G — X, the functiong o f is subpluriharmonic oG.

ExampLE [14]. Let X be a complex manifold of pure dimension. Then a func-
tion ¢ € C2(X, R) is g-plurisubharmonic if and only if the Levi form (¢) has, at
every point ofX, at mostg nonpositive eigenvalues.

NotatioN. We useP, (X ) to denote the set of afi-plurisubharmonic functions
onX, andSP,(X) denotes the set of atronglyg-plurisubharmonidunctions on
X—that is, thosey € P,(X) such that, for every € C§°(X, R), there exists an
e > 0 with ¢ + €0 € P,(X). Obviously we haver, (X) C SP,(X) N C%X, R).

REMARK 6. Pgo(X) andSPo(X) are precisely theveakly plurisubharmoniand
weakly strongly plurisubharmonfanctions (respectively) introduced by Fornaess
and Narasimhan [13].

ReEMARK 7. If D C C" is an open set, then an upper semicontinuous fungtion
on D is subpluriharmonic if and only i is (n — 1)-plurisubharmonic.

REMARK 8. LetQ c C"*!be an open set. For every unit vecioe C"+ we
consider the directional distanég: Q2 — R U {oo} with respect taw, which is
given as follows:

8,(2):i=suplr >0; z+rweQ,vVieC, |t| <r}, ze.
If © is g-complete with corners, thenlog$, is g-plurisubharmonic [14].
We shall also need the following two lemmas (the first one is obvious).

LEMMA 6. Letrm: X — Y be aholomorphic map of complex spaces, and/let
P,(Y). Theny o € P;(X).

LEMMA 7. Letrw: X — Y be a finite holomorphic surjective map between pure
dimensional complex spaces, and¢et P,(X). Lety: Y — RU {—o0c} be de-
fined by

Y(y) = max{p(x); xex ()}, yev.
If ¥ is continuous, thery € P,(Y).
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Proof. Let A C Y be a rare analytic set such that’(A) is rare inX andx in-
duces a locally biholomorphic map betwe¥n 7 —(A) andY \ A. Clearlyy; :=
Yly\a € Py(Y \ A). Let ¢, denote the upper semicontinuous extensiogpfo
Y; sinceA is locally complete pluripolaryr, € P,(Y) in view of [25, Prop. 6].
But sinceys is continuousyr = v,, whence the lemma. O

3.2. Proof of Theorem 3
First we quote the following from [25].

THEOREM 6. LetX be a complex space admitting a continuous exhaustion func-
tion @ that is stronglyg-plurisubharmonic. TheX is g-complete with corners.

Thus, to conclude Theorem 3, we must produce an exhaustion fundtien
SP,(X) N C%X, R) as in Theorem 6.

For this we proceed as follows. Clearly we may supposestha. (Otherwise,
replaceyp by ¢ + C for some large constarit > 0.) Forn € N* we letK, =
{¢p <n}yandD, = {¢ < n+2}. Lety, € C%X,R), ¥, > 0, such thaty, is
strongly plurisubharmonic o, ;1.

Choose constants, > 1such that;, > ¢ + ¥, onK, 2, and defing:,,: R —
R by

h,(t) ;= maxt,a,(t —n—1), teR.
Thenh, is strictly increasing and convek, (t) =t forr < n+1, andh,(n+2) >
ay; thush,(¢) > ¢ + ¥, on a neighborhood of the sgt = n + 2}, a fortiori on
a neighborhood 08D,. We may thus defing, € C%(X, R) by

~ { max(h,(@). ¢ + ¥u) 0N D,
"= hate) on X\ D,.

One may easily check that, > 0, ¢, is exhaustivep, € P,(X), andg,|p, , €
SP,(D,-1) (where it equalsp + v,,). Now, if the sequencégs,},, ¢, > 0, de-
creases (fast enough) to zero, then we may debieeC °(X, R) by

D=9+ Z EnPn-
Sinced > ¢, itfollows that® is exhaustive; we need only check tdat SP, (X),
which is straightforward owing to the construction of the O

Mutatis mutandisthe same proof gives also the following.

CoroLLARY 3. Letw: Z — Y be a holomorphic map of complex spaces such
that there exists an exhaustion functipre C°(Z, R) that isg-plurisubharmonic
along the fibers ofr.

If Z € S, then there exists an exhaustion functibre C°(Z, R) that is strongly
g-plurisubharmonic along the fibers of.

CoroLLARY 4. Let X be a complex space that is an increasing union of Stein
open subsets. Thehis Stein if and only ifX admits a plurisubharmonic exhaus-
tion functiong: X — R.
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3.3. Proof of Theorem 4

We give the proof in three steps. The first two deal with a local statement; in the
final step, we prove our theorem by a (standard) perturbation procedure.

LetV € U € X be open subsets such ttiatis holomorphically embedded as
an analytic subset of some open et CV.

Step 1: There exist an open neighborhdd@af U in U and ¢ € P,(D) that is
locally bounded from below and such thalt, = ¢|y.
In order to check this, consider the Hartogs donigjrof ¢ defined by

U, ={(x,1)eU x C; |t| < exp(—e(x))}.

It can be seen thdli, is g-complete with corners (applying e.g. Theorem 6); then,
as an analytic subset 6f x C, it admits a neighborhood system of open sets that
areg-complete with corners (see [26, Prop. 1, p. 1194]). Thereforg,: i/ —
R is a continuous function that extengds;, then there exists an open setc
U x C that isg-complete with corners and such that:
(@ N U xC) =U,;
(b) @ C Uy ={(z,1) eU x C; |t]| < exp(—¥(2))}.
LetD := {z € CV; (z, 0) € 2}. ThenD is an open subset &f that containg/. Let
8 denote the boundary distance functiortofvith respect tav = (0, ...,0,1) €
CN+1(see Remark 8). Thenlogs is ¢-plurisubharmonic. Defing: D — R by
setting, forz € D,

¢(z) = —logé(z, 0).
Theng andD are as desired (e.@, > ¥|p), from which Step 1 follows.

Step 2: For every > Othere exists) € F, (V) with [y —¢| <conV.
We show this by using the next two lemmas (the first one is quoted from [9]).

LeEmMa 8. LetD € CV be an open set and let e C%D, R) N P,(D). Then,
for everye > 0, there exists & € F, (D) with |¢ — ¢| < ¢.

LEmma 9. LetQ C CV be an open setand lete P,(2) withg > 0. Then, for
everyW € Q, there exists a sequen¢#, }, C F,(W) that decreases pointwise
toglw.

Proof. By standard arguments, this reduces to the following claim.

Cramm. Letv € C%, R) with ¢ < v on W. Then there exists & € F,(W)
such thatp|y < ¥ < vlw.

In order to show this, considé¥ € 2 an open set such th&t € W’. Then
chooser > 0 (small enough) such that, for eveyye CV with ||£]| < r andz
W,onehadé}+ W' C Q, (£} + W C W/, andg(z + &) < v(2).

Letg € C°(CY, R) be suchthat 6< ¢ < 1, g(0) = 1, and suppg) C B(0; r)
(the ball of radius- in C¥ centered at the origin). Then defige: W — [0, co)
by setting
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V/(2) = supl@(z + £)g(&); £€CN}, zeW,

whereg is the trivial extension ap to CV (i.e., = 0 onC" \ ©). Rewriting this
definition yieldsy’ = sup ., ¥, wherey, : W — [0, oo) is given byy,(z) =
d(M)g(L —z) forze W andr € A := W + B(0; r). Since the family{y, }, con-
sists of smooth functions whose real Hessian is uniformly bounded from below,
we deduce that’ is continuous; hencg’ is g-plurisubharmonic.

Apply now Lemma 8 ta)’ + €6, where6 is continuous and strongly plurisub-
harmonic nea#v with somes > 0 sufficiently small. The claim follows, whence
Lemma 9. UJ

Now, to conclude Step 2, také, € D an open set wittV ¢ V;. By Lemma 9
there exists a sequen¢¢,}, C F, (V1) decreasing pointwise @]y, . SinceV
is compact an@|; is continuousy = v, |y (for v large enough) fulfills our
requirements.

Step 3: End of Proof of Theorem 4.

Choose open seflg € U; € W; € X, i € N, such thaf{V;}; is a covering of
X, eachW; embeds holomorphically into some open subset%f, and{W;}; is
locally finite. Selecfp; € C§°(X, R) suchthat-1< p; <1, p; =1onU;, p; =
—10naV;, and suppp;) C W;.

Considers; > 0 to be constants sufficiently small that- ¢; p; € SP,(X) and

3g; < 2infe. (*)
V,

Applying Step 2, there exisi; € F, (U;) with
lpi — @ —eipil < &/2 onV;. 69)
Now, for everyx € X setl(x) :={i € I; V; > x}; then definegp: X — R by

@(x) = sup gi(x), xeX.
iel(x)

By (x) and () we obtain thatp — ¢| < ¢ and every poinkg of X has an open
neighborhoodB c N V; such that

iel(xo)

o|p = max ¢;|g,
wlB iel(xo)wllB

hencep € F,(X). O

4. Proof of Theorem 2

4.1. Some General Considerations

Let g be a nonnegative integer and et X — [0, co) be a continuous function.
Considerd: C,(X) — [0, oo) defined by setting

O(I") :==maxe(x); xe|l'l}, TI'ely(X),
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wherel' = niI'y + - -+ + n Iy for n; € N* and where thd’; are distinct irre-
ducible compact analytic subsets Xfof dimensiong; as usual, we pufl"| :=
uU---UTy, the support of". As in [18], we check easily thab is continuous.

ReEMARK 9. If, moreovery is proper andX is Kéhlerian, then the restriction of
& to every connected component@f(X) is proper. (For Kahlerian metrics on
complex spaces we refer the reader to [17] and [28].)

Lemma 10. Letr be a nonnegative integer such thats (¢ + r)-convex onX \
{¢ = 0}. Thend is r-plurisubharmonic o€, (X) \ {® = 0}.

Proof. We proceed as in [18, pp. 213—-214] and consider (for the sake of clarity)
only the case wher& is smooth. Recall that,(X) is a complex space and that
the incidence set

G ={x,INeX xCy(X); xe|I'l}

is an analytic subset of x C,(X). Denote byr, andm, the natural projections
from G into X andC,(X), respectively. Notice that; is proper.

Now letTy € Cy(X) with &(Ip) > 0. We show thatb is r-plurisubharmonic
on a suitable neighborhoddl of Iy in C,(X). For this we letx be a real number
with 0 < A < ®(Ip) and set

K = [Tol N{p = A}.
Clearly K is a compact subset &f. Takex € K arbitrarily. Then there exists a
local chart(U, =, Q) with U 5 x, @ ¢ C" open, and & Q such that:
(@ t(x) =0;
(b) A" € Q, whereA is the open unit disc ifT;
(€) (A" x A%) N (][] NU) = ¥; and
(d) the restriction ofp to U N t71(A"~7 x {£}) is r-convex for every e A‘.
Let D, = t~Y(A"). Choose an open neighborhotd of I'y in C,(X) such that

() T(TINU) N (A4 x A1) = @ for " € W,, and
(i) T(T|NU)N A" £ @forT e W,.

For everyé € A?, the map
0g 1 (v o malu) A x () Ny (W) - We

is an analytic (branched) covering (of some finite degree), wheieinduced by
mp. It follows that, foré € A?, the function¥: on W, given by

W (T) = max{(g o m1)(y); y €0, (M)}, TeW,
is continuoug here we use the topology 6§ (X) !) and, by Lemmas 6 and ¥; €
P.(W,). Define®,: W, — [0, oo) by setting
@ (') :=sup(W:(I); £ A7}, TeW,.
SinceK is compact, there exist, ..., x,, € K such thatk c Uj”;l D,,. Since

®(Ip) > A andg is less thark on the compact seéip) \ Ui’"zl D,;, there exists
an open neighborhooW of I'y, W C ﬂ’}.’zl W;,, with the following properties:



68 D. BARLET & V. VAJAITU

(&) the infimum of® on W is > A; and
(b) the supremum ap onm(r; (W) \ U/ Dy, is < A.

These imply easily that, oW,
® = max(®,,, ..., Dy,).

Consequently, sincé is continuous and since eadh, is a supremum of a fam-
ily of r-plurisubharmonic functions, it follows thdt € P, (W). 0

This lemma and Remark 9 give the next proposition.

ProrosiTION 2. Let X be a(q + r)-convex space for some nonnegative inte-
gersq andr. Then there is a continuous functieh: C,(X) — [0, co) that is
r-plurisubharmonic.

If, moreover X is Kéhlerian, then we may choodesuch that its restriction to
every connected component@f(X) is proper.

Proof. Take®; as in Lemma 10. Ley € C*(R, R,) be increasing and convex,
so that{y = 0} = (—o0,1]. Thend := x(P,) is as desired. O

4.2. Proof of Theorem 2

The hypotheses of Theorem 2 and Proposition 1 shovei}{at) belongs taSg. On
the other hand, Proposition 2 gives a continueysurisubharmonic functiord
onC,(X) thatis exhaustive on every connected compone@, 0X'). Theorem 2
now follows easily from Theorem 3. O

5. Proof of Theorem 5

Let X be ak-Stein space via the holomorphic map X — P*. We refer the
reader to [7] for definitions and further properties. Becaubas Stein fibers, we
obtain a canonical map,: C,(X) — Cq(IP”‘) that is holomorphic [5, Thm. 6,
p. 109]. By [7] again, there exists a functipn X — [0, co) that is proper and of
classC? such that, for every compact sktC X, there exists a constad > 0
such that

i09¢ + Cx*(w)

is positive definite ork, wherew is the Kéhler form of the Fubini—Study metric
onP*. Consider now the function

Vg : Cy(X) — [0, 00)
given by

W) = [ pr. TeC, 0.
r
wherefg is thed-exact(g, ¢)-form that follows from the equation

(Cxk (@) + i0092) Tt = CL " () + 1009 A B
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Then, using [6], we have thdtk is continuous and strongly plurisubharmonic on
the cycles contained in the interior && ThereforeC,(X) € So.

On the other handy is Kahlerian by [24] and so the volume is constant on con-
nected components 6f, (X). Hence the method of Lemma 10 (with the function
¢ described in this section) produces a continuous function

®:Cy(X) — [0, 00),

whose restriction to every connected component giX) is proper and whose
restriction to the fibers ot, becomes plurisubharmonic.

The conclusion of the theorem now follows immediately by Corollary 3 and Re-
mark 6. O
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