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ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL
CALCULUS WITH MANY-VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

From the results presented in my paper [2] it follows that it is possible
to approximate the first-order functional calculus by many valued proposi-
tional calculi; in this paper* we shall describe this approximation.

We shall use the terminology of [2] and in particular:

(I)  individual variables: x,, x,, . . . lor simply ],

(2) apparent individual variables: ap, Ay - - - [or simply al,

(3) finite number of functional variables: f;,..., [,

(4) logical constants: ’ (negation), + (alternative), Il (general quantifier),

(5) Ztomic elxpressions: R, Ry, Ry, . . . ; expressions: E, F, G, E,, Fy,
TR

(6) w(E) —the number of different individual [p (E)~apparent] variables oc-
curring in the expression E,

(7)  {i,} ~the sequence iy, ..., i ; {i, (E }—all different indices of those
and only those individual variables which occur in E,

(8) n(E) = max {w(E) + p(E), max {iw(E)}}’

(9) n(E) = n(E), if E is an alternative of normal forms, 7#(E) = max {n(E),
n(F)}, where F is the simplest alternative of normal forms equivalent
to E, in the opposite case (we choose an arbitrary altemative),

(10) ¢ —maximum of arguments of /1, cee, fc,

(11) E(u/z) —the expression resulting from E by substitution of # for each
occurrence of z in E (with usual conditions),

(12) C(E) —the setofall significant parts of the formula E: H ¢ C(E) 2=,
H = E or there exist F, G, H; such that: (H=F) A(E=F')v {(H = F)
v(H=G)} (E=F+G)v(di){H= H, (xi/a)} A(E = 1laH)),

(13) Skt —the set of all formulas of the form 2a; . . . 3a; lla; , . . . llg;F,
where F is a quantifierless expression containing no free variables,
Ila; is the sign of the universal quantifier binding the variable a 5 and
246 = MaG’y, j=1,...., k.3

* An abstract of this paper appeared in[5].
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FIRST-ORDER FUNCTIONAL CALCULUS 103

(14) S({z’m }) ~the set of all atomic formulas R such that all indices of free
variables occurring in R belong to {i_},

(15) n(E, r) = max {n(EI), e, n(E')},

(16) M, MI’ . . . —functions of all atomic formulas with values I and 0; T,
TI’ . . .—functions on S(I, ..., t), for given ¢, with values 1 and 0
(we shall name such functions “functions of the rank "),

(17) (K) —for each K,

(18) wy, vy, « - - —numbers Oorl.

m

The formal proof E,, . .., E_ of the formula E is defined in the usual
way, but to the proof of given theorems we must also assume that for each
i=1,...,n E,is an alternative of significant parts of the formula E; the
number 7 is named the length of this formal proof. The thesis is the last
element of a formal proof.

Obviously:

L.0. If the length of a formal proof of the formula E is 7n, then the length of
some formal proof of the formula E (x/y) also is n.

L.1. For each formula E we may write an alternative F of formulas G ¢ Skt
such that E is a thesis if and only if F is a thesis, E’ + F is a thesis;
we may also assume that G = 2a, . . . 2a la, H where H is quanti-
fier-free.

m—1

L.1. asserts the existence of Skolem’s nommal form for theses, see [1].

In the following we shall interpret the signs ’ and + as Boolean opera-
tions1 (complemention) and + (addition) respectively; therefore II is inter-
preted as an infinite Boolean multiplication. By this interpretation we have
extended the function M, see (16), on all formulas and therefore we shall use
the symbol M{E} for an arbitrary E.

It is known:

T.1. The formula E is a thesis if and only if for an arbitrary M we have
M{E}=0.

Let M/SI’ C e, St/ be a function on S(1,. .., t) such that for an ar-
bitrary Re S(I, ..., t) we have:

M/sgy o vy st/(R) = M{R(xsl/xl) ... (xst/xt)}.4

L.2. Ifk

1,...,/eq§t,then:

M/sgyonny St//kl’ ceey kq/=M/sk1’ cee, skq/.

The proof is immediately.
In the sequel we shall write {i,}, i instead of igy o, i, 1if 7 is dif-

ferent from iy ooy iy {it}, i instead of 7, . . ., ,, if i = 7, for some j < ¢;
therefore M/{it} — instead of M/il, ce e, it/ and M/{si } — instead of M/sl. ,
t 1

-y S /.

t
We shall also consider a Boolean algebra whose elements are n-tuples
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of numbers 0 and I and operations (complemention) and + (addition);5 this
Boolean algebra determines a many valued propositional calculus.
Let

D  Epeeo,Ep--

be the sequence of all formulas of the considered calculus and let N(E,) = k
—the index of E, k= 1, 2, .. .; let t be a natural number and Q a function
on atomic formulas R € S(1, ..., t) whose values are n-tuples of numbers
0 and I; we shall use the following abbreviation:

“1 N(R)

Q(R) =

Yy N(R)

D.1. gty f, g liph, @ . =.(Gp o yi <A R UREeSALD) > (w; yep)

We explain the meaning of D. 1.:

Ryy.-- Ry oo o, Ry, - all elements of the set S({i, }). The re-
1 0 1 lation g(t, 7, ¢,{i,,}, Q) asserts that
1"_ . the lines j and g are equal; on this
figure:
] S Wi e
. . e o o - e o . w1 k
q . DR qu... . Q(Rk)=
. - . . wn k
n 1 ... Wy ge - - 0

Let Q be the function defined above and V — the function defined in the
following way:

(1) Vit 0, {i,}, R} = Q(R), if R is an atomic formula,

@d) vit, 0, i} Pi=V's, Q, i}, F}, _

(3d) vit, o, ti, ), F+Gl=V i, 0,1, }, F}+ Vi, 0, {i }, G},

(4d) Let k = N(IlaF) and k = N{F(x/u)}; then: Vit, Q, {im}, MaF} =

Wik

DG (wip=1.=.(9 ) {(g<n) A(r<t) aglt,
W, ”1'/&,

i alinh @ avie, 0, 1 ), r, F(x/a)} =

—)(U;- kr = Uqur = 1)})}'
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The meaning of (1d) - (3d) is known; we explain the meaning of (4d):

1 u i F(xl/a)...F(x/a)...F(xl/a)

1 r t

1 0 ...1 v P 7] R 7]
1k, 1k, 1k,

|

qg | «-.....

P ; , >

n 1 .0 Vnk, Unk, * Vnk,

In the left part of this figure is the figure described above and on the
right side we have:

V{t,Q,{l.m},f, F(x/a)}= : ,7=1,.--,t.
;Jnk

r

The definition (4d) asserts that w; , = I if and only if for each g < n, if
the lines j and g are equal on the left side, then on the right side of ones we
have only I (i.e. we have no 0).

D.2. J(Q, £, G) .= . (m (i) - .. (i) {m+ p(G) <) alliy, Gy} C {i, He-
(]) (V{t9 Q, {im}, j, G} = V{ty Q; {im}; G})}-

We note that J (Q, ¢, G) is an invariant relation.

D.3. FeP(t, 0, E).=.(8G) {(G e C(E) AlJ(Q, t, G)» Vit, O, {iy, (pyh
1

Because the values of M are n-tuples, then in the sequel we shall also
write M= M.

D.4. FePlt, E).=.(M){(1<n< 2 )5 (FeP(t, M, EDL.
D.5. FePlE|.=. @0 t>n (F) A (FePlt E
D.6. EeP .=.Ec¢P|E|.

The meaning of D.3. - D.6. is simple; see [2].
We shall prove that P is the class of all true formulas:

D.7. TeMk].=. (dsy) . ... (dsp) {T = M/{sk}}.
M[k] is the set of all functions of the form M/sI, C e, Sk/'

D.8 Q~(Ty .-, T k) .o=.Tyy.. o, T, are different functions of the
rank k, Q is a function defined on S(I, ..., k) whose values are n-
tuples of numbers 0, I and for each Re S(1, ..., k) T].(R) =1.=.

ij(R)=1’j-<-n'
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D.9. Q:M(TI,...,Tn, k) .=. Q~(Ty,en ., Ty, k)andTl,...,T
are all elements of M[£].

It is easy to prove:
L3 IfQ~(Ty ..., T, k), then:

gk, j, g, ., Q) .

ST i =T S}

W

L.4 gk, i, qti }, Q)and Vik, Q,4i }, E}=| . |, then:

w.=1.z.wq=1,]',qgn.

The proof of L.4. is inductive on the length of the formula E.

T.2. If E is an alternative of formulas belonging to Skt, F ¢ C(E), M{E} = 0,

k> n(E), Q=~M(T,, ..., T, k), then:

W I m + p(F) <k, F e SUi,D, MAs; }= Ty/lin) by, ) cw{im},
MIF e, /x;) ... G /x; )b =0and Vik, Q, i} Fl= 1 ,
then w2 0 " - “n

(2) If E is also an alternative of formulas of the form Eal Ce Ear_l
HarG, for some quantifierless G, then for each F ¢ C(E) we have
J(Q, k, F) and therefore E € P.

Proof: —First of all we notice that the proof in general case is anal-
ogous to the proof in the case E ¢ Skt and (2) is a simple conclusion from
(1) (in view of the form of E).

The proof of (1) is inductive on the number of quantifiers occurring in
F and is analogic to the proof of T.2. from [2]; we use here L.3.

T.3. If EHo.o ., E isa formalized proof of the formula E, then for each
k> n(E, r) we have E;e Plk, El,j=1,...,r

Proof: —By using the proof rules given in [2] or [3] it is easy to prove
by induction on j < r that for each & > n(E, 7):

(19 E.e¢ Plk, E|; therefore E ¢ P.
(29 E]. + F € Pk, E] for every F such that C(F) C C(E) and k> n(F).

The proof of (1° and (2°) is analogous to the proof of T.3’. from [2]; we
prove ones simultaneously, see [2); we use L.0., L.2., L.3. and L.4.

T.3. If E is a thesis, then E ¢ P (follows from T.3’.).

L.5. There exists Skolem’s normal form F of the formula E such that F is
an alternative of formulas of the form Eal “e Zam_l lla,G, for some
quantifierless G, 7(E) = 7(F) and if E ¢ P, then F ¢ P.
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To the proof of L.5. we use T.3., the deduction theorem and the usual
Skolem’s method of constructing normal forms.

T.4. The formula E is a thesis if and only if E ¢ P.

T.4. follows from T.1., T.2., T.3., L.1. and L.5.; to the proof of T.4.
in the left-hand side we choose F which satisties L.1. and L.5.; the whole
proof is analogic to the given in [2].

T.4. asserts that P is the class of all true formulas.

If we replace D.3. by:

D.3. FeP(t, Q, E).=.J(Q, ¢t E)>Vit, Q, li, (g} Fi=

then 7T.4. remains true for normal forms.

T.4. proves the possibility of approximation of the first-order functional
calculus by many valued Boolean propositional calculi; in this approximation
the quantifier Il is interpreted as a finite operator, see (4d).

The examples we shall give in [4].

NOTES

1. The expression we define in the usual way; the expression in which an
apparent variable a belong to the scope of two quantifiers Ila is not a
formula; if 2 does not occur in E, then IIgE is not a formula.

2. The dots separate more strongly than parentheses.

3. There are Skolem’s normal forms for theses; alternatives of these formu-
las we also name Skolem’s normal forms.

4. We may here replace the indices I, . .., tbyi;, ..., iw(R)'
5. We use the same denotation, because the operations are analogously to
the given above.

6. The sign C is the inclusion.
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