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CERTAIN FORMULAS EQUIVALENT TO THE AXIOM OF CHOICE

BOLESϋAW SOBOCINSKI

In this note it will be shown that each of the following four set-the-

oretical formulas:

21. For any cardinal numbers m and n which are not finite, if tf (m) and

N (n) are the least Hartogs' alephs with respect to m and n respectively, and

such that N (m) = tf (n), then m = n.

33. For any cardinal numbers m and n which are not finite, if tf (m) and

N (rt) are the least Hartogs' alephs with respect to m and rt respectively, and

such that tf (m) > tf (n), then m > n.

E. For αrzy cardinal numbers m #72*2? Tt which are not finite, if H (m) β^ίi

N (rt) <zre ̂ e least Hartogs' alephs with respect to m arcd n respectively, and

m > n, ί̂ ew R(m) > t̂  (n).

2). For any cardinal numbers m, n, tfrcd )o, if m < !jo, n < £>, β?ẑ  /or β/2y
cardinal numbers xand ], if m + t a ^ βwJ n + f = )θ, ί/?ew E= f, ί^en either
m^ nor n> m.

is inferentially equivalent to the axiom of choice.
Concerning these formulas it should be noted: 1) that the formulas 21,

33 and (S are related to the following theorem:

Tl . For any cardinal numbers m and rt which are not finite, if N(m) and

N (n) βre the least Hartogs' alephs with respect to m and n respec-

tively and m< n, then K (m) < N(n).,

which is provable without the aid of the axiom of choice and: 2) that the
formula 2) is a weaker formulation of the law of trichotomy for cardinal num-
bers, since in it the trichotomy is preceded by an antecedent consisting of
three conditions.^

Proof:

(i) The axiom of choice implies 21,. 33, E, and ®. It is easy to determine
that these theorems follow from the axiom of choice. Viz., in order
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to prove formula ?I assume the said axiom and the conditions given
in the antecedent of SI. Since we have the axiom of choice, the car-
dinal numbers m and rt are certain alephs whose respective indices
are, say, the ordinal numbers a and β. Hence, m = ftα and rt = $ o
and due to our assumption that N(m) and N (n) are the least alephs
which are not ^ m and rt respectively we have obviously tf (m) =
N α + 1 and K(n) = Kβ + r But, since K (m) = » ( n ) , » α + 1 =
N β + V w ^^ c ^ g* v e s a t once a + 1 - β + 1. Since oe + 1 and β + 1
are the next ordinal numbers to oe and β respectively, then & = β.
Hence ^ ^ = ^ o and, therefore, in = rt. Thus, formula ?I is proved
with the aid of the axiom of choice. Evidently, using very similar
reasoning, we can prove easily that the axiom of choice implies for-
mulas 35 and S. Since 2 is a weaker formulation of the law of tri-
chotomy for cardinal numbers, formula 2 follows, obviously, from the
axiom of choice.

(ii) Formula SI implies the axiom of choice. It is well known that the fol-

lowing theorem:

T2. // the cardinal number m is not finite, then K (m2) = K (m)

is provable without the aid of the axiom of choice and that the theorem:

T3. // the cardinal number m is not finite, then m = ra2

is inferentially equivalent to the axiom of choice.
Now, assume that m is an arbitrary cardinal number which is not finite.

Hence m2 is also not finite cardinal, and from T2 it follows that K (ra2) =
jtt (m). But, in such a case, due to SI, we have m2 = m; and, therefore, we
obtain theorem T3 which shows that ?I implies the axiom of choice.

(iii) Formula S implies the axiom of choice. Let us assume formula 33 and

consider m as an arbitrary cardinal number which is not finite. More-

over, assume that N (m) is the least Hartogs' aleph with respect to

m. Since ft (m) is Hartogs* aleph with respect to m, then it is not

true that &*(m)̂  m. Therefore, we have:

1. either m < N (m) or m and \b (TΪI) are incomparable

But, the second case is impossible, since the incomparability of m and

tt (m) gives at once that it is not true that m > tf (m). Hence, an application

of this last formula to δ (for: TR = $ (in)) implies that it is not true that

N (m) < tf (N(τiι)). This gives a contradiction, since the least Hartogs'

aleph tf (N(m)) with respect to ft(m) must be greater than tf (m). Therefore,

we have:

m < tt(m) ,

which shows that m is an aleph. Thus, formula 8 implies the axiom of

choice.
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(iv) Formula (S implies the axiom of choice. It is well known, that with-

out the aid of the axiom of choice we can establish that if m is an

arbitrary cardinal number which is not finite, then either m < m2 or

m = m2. But, in virtue of S and T2, the case that m < m2 is excluded,

since an application of this case to S (for: m = m ) implies that

N (m) < tf(m2), which is rejected by T2. Hence, it must be that

m = m , i.e. it shows that K implies theorem T3. Thus, the axiom of

choice follows from formula (£.

(v) Lemmas A and B In order to be able to show that the axiom of choice

is a consequence of formula % the following two lemmas have to be

proved without the aid of the said axiom:

Lemma A. For any cardinal number m and an aleph &1 such that

K1 < m, if m = m2, then the difference m - N1 exists and is equal to m.

Proof: If \bι<< m, then there exists such cardinal number £) that

2. m = tf • + £

Since m = m2, then from 2 follows

3. m = m2 = («• + £ ) 2 = N ' 2 + 2 N ' £ + £ 2 £ K1 ^ = ( « + 2)̂ 0 =

hence 3 says:

4. » f + £>= «^' ^

It is well known that 4 implies:

5. either ^ ι ^ ^ o r ^ > $ f .

But, the first case i s excluded, since if ^ ^ £>, then £ is an aleph,

which gives: N ! = N ' + )θ. Therefore, this case and 2 imply: tf ! = m

which contradicts our assumption. Hence, it must be that )β > H1 But, in

such a case we have at oncer 'p = H'-+ £, which shows that £ = m. Since

the reasoning given above can be applied to any cardinal number q such

that m = fcς' + q, the solution $ - m is unique. Hence, the difference

m — ^ f exists and is equal m. This concluded the proof of lemma A.

Lemma B. For any cardinal number m and an aleph H such that

H1 < 2 m , z'/ m = 2m, ί/ben ί)be difference 2m - ^ ' exzsίs <W zs e^βZ ίo 2 m .

The proof of B follows, obviously, from lemma A and from the fact that

if m-:2m, then 2 m = 2 2 m = ( 2 m ) 2

Concerning lemma A which was proved above it should be noted that

an omission of its condition, viz. that m = m , gives the formula:

®. For any cardinal number m and an aleph ^ ' such that tf f < m, the

difference m - H1 exists.
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which is, obviously an instance (obtainable by substitution) of the follow-

ing theorem:

T4. For any cardinal numbers m and n, if n < m, then the difference

m — n exists.

It is known that theorem T4 is equivalent to the axiom of choice. It

is easy to remark that entirely the same deductions which show that T4 im-

plies the axiom of choice allow us to establish the fact that the said axiom

is a consequence of formula (§. Therefore, Theorem T4, its particular in-

stance, i.e. formula ®, and the axiom of choice are inferentially equivalent.

(Vi) Formula % implies the axiom of choice. Let us assume formula % and

consider m as an arbitrary cardinal number which is not finite. Put

rt = $ om. Hence, the cardinal number n possesses the following

properties provable in an elementary way: α) rt ^ tf0; b) n = n + 2 =

2n; c) 2 n = 2 n + 1 = ( 2 n ) 2 = 2' 2n = 2 n + *; b) 2^ = 22^ + 2 =

2n /2n\2 22
n ( 22

n\2

2 * 22 = \22 ) e) 22 = \22 J .
Since Π is a cardinal number which is not finite we know, that with-

out the aid of the axiom of choice we can associate with n a certain Har-

togs' aleph, viz. ^(n) which possesses the following properties:

2 n

6. N(n) is the least aleph such that N(n) is notζ n and ^ (n) ^ 2 2 .

9 2 n

 o n n

If ^(n) = 2Z , then ^ (n) > 2 2 > 2 n > n = ^ om ^ m. Hence, this
case shows that an arbitrary cardinal number m is an aleph. Assume, there-

2 n 2 n ( 2U\2

fore, the second possibility, i.e. ^ (rt) < 2 2 . Since 2 2 = \ 2 2 / ,

then according to lemma B the difference 2 - ^(rt) exists and is equal

to 2 . On the other hand generally we have 2 < 2 and we know that

9τt 9n on.
2Z = 2Z + 2, i.e. that 2Z '' ^ 0. Therefore, from these two facts and the

theorem which says

T5 For any cardinal number m, if m > No, ί&erc 2 m - m = 2 m .

and which is provable without the aid of the axiom of choice, we are able

92
n

 9n 92
n

to conclude that the difference 2 - 2 exists and is equal to 2
Hence our assumptions and the proved properties of the formulas 2 -

2 n n
N (n) and 2 2 - 2 2 allow us to establish that:
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, 2 n n
7. for any cardinal numbers X and \, if ^(τι) + E= 2 and 2 + \ —

2 n

Hence the conditions of formula § (for: m = tf (n), n = 2^ and £ =

2 ) are fulfilled and, therefore, we have:

8. eiώβr N (n) > 2 2 or 2 2 > tf (n).

The first case shows that the cardinal number m is an aleph, as tf (n) >

9 n n
2 > 2 > n = tf om > m. Thus assume the second case, i.e. that 2Z >

^ (n). Now, since 2 n < 2 2 , 2 2 = ( 2 2 J and 2 n = 2 n 4- 2, i.e. that

2 n ^ No> it is evident that lemma B and theorem T5 establish that the dif-

9 n n 9 n
ferences 2 - N(tt) and 2Z ~ 2 exist and both are equal to 2 Z .

Hence we obtain:

9. /or βray cardinal numbers K and f, if H(n) + x = 2 and 2 + f =

2 2 , ώew X= f.

which together with our assumptions and formula S (for: m = N(n), rt =

2 n and )o = 2 2 ) gives:

10. either X (n) ^ 2 n or 2 n > .«(n).

If the first case is true, then the cardinal number m is an aleph, since

M (n) ^ 2 n > rt = ^ om > m. If the second case is assumed, then since

n < 2 n , 2 n = ( 2 n ) 2 and n ^ ^ 0 , we can use again lemma B and theorem T4

to prove that:

11. for any cardinal numbers x and \, if $ (rt) + t- 2 and n + f = 2 ,

Hence the application of formula 2) (for: m = tf (n) and )o = 2 n ) to the

above conditions shows that:

12. either 8(n)> n or $(n)= n or n> tf (n).

But the last two cases of 12 are excluded, as they contradict the as-

sumed properties of tf (n). Hence we have: ^(n) > n = Nom ^ m, which

means that m is an aleph. Thus, any possible connections between tf(rt)

and m leads to the conclusion that the arbitrary cardinal number m is an

aleph. This shows that formula 2) implies the axiom of choice. Thus, our

proof is completed.
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NOTES

l In [ l ] , Hartogs proved that with any cardinal number m which i s not

finite we can associate an aleph R (m) such that H (m) i s not ^ m.

Later, it was established that if N (m) i s the least such aleph in re-

2 m m2

spect to m, then: 1) tf (m) ^ 22 and in the same time tf (m)"^ 22

2) if m « » α , then »(m) « » α + r C/., e.g., [2], pp. 311 - 312, [3],

pp. 407-409 and [9], pp. 28 - 30. The existence of Hartogs' aleph and

its properties are provable without the aid of the axiom of choice. The

proofs which are given below are established within the general set

theory, i .e. the set theory from which the axiom of choice and all i ts

consequences otherwise unprovable have been removed. It i s well

known that if we base a so defined general set theory on an axiomatic

system in which the notions of the cardinal and ordinal numbers cannot

be defined, we have to introduce these concepts into the system by

means of special axioms.

2. Cf. [2], p. 311, theorem 78.

3. In [7], p. 58, theorem B, I presented another example of a weaker for-

mulation of the law of trichotomy for cardinal numbers which i s equiv-

alent to the axiom of choice.

4. It i s proved by Tarski, cf. [9], p. 30, lemma 6, and [2], p. 311, theorem

77.

5. It i s proved by Tarski, cf. [8], pp. 147 - 151. C/., also, [3], pp. 419 -

421.

6. The difference of two cardinal numbers m and n i s defined as follows:

The difference m - Π exists if and only if there exists one and only one

cardinal number jo such that m = n + jo. Cf. [2], p. 306, position 47,

and [3], p. 158. Lemma A was announced without proof by Tarski in

[2], p. 307, theorem 54.

7. C/., e.g., [3], p. 144, theorem 1.

8. Cf. [8], p. 148, lemme 1.

9. C/., e.g., [3], p. 413, exercise 1.

10. This theorem was announced without proof by Tarski in [2], p. 307,

theorem 56. Sierpirίski gave a proof in [5], p. 125, and [3], p. 416 -

417. It should be noted an observation of Sierpiiίski that for any car-

dinal number which i s not finite the difference (m + tf (m)) - N(m) does

not exist. Cf. [6], p. 8.

11. Cf. note 1.

12. This theorem was announced without proof by Tarski in [9], p. 312, the-

orem 82. Sierpinski published a proof of this theorem in [4] and [3],

pp. 168 - 170.
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