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THE PRAGMATICS OF MONADIC QUANTIFICATION

ALBERT SWEET

I. Pragmatics of Truth Functions

1. Sentential Interpretations In [2J the truth functional logic of a set S of
sentences was characterized pragmatically with respect to a set U of users
of S, a set T of times of valuation of sentences of S, a set C of conditions of
such valuations, and a set V of pragmatic values. Pragmatic interpreting
functions were defined with domain U x T x C x S and range V, so that these
functions induced a Boolean structure on S In the present paper, pragmatic
interpreting functions are defined whose applicability is more general and
whose structure is more fundamental from a pragmatic point of view than
those of [2].

Let L be the set of all expressions of some language. More precisely,
let L be the set of all concatenates of a set of expressions which may be
regarded as the alphabet of some language. Abstractly, L is any set of
objects generated from a given finite set L, by a binary operation satisfying
the properties of concatenation.

Let C be a set of conditions of valuation of the expressions of L. No
assumptions about the nature or structure of the elements of C are
required in the definition of pragmatic interpreting functions; abstractly, C
is any set. Intuitively, C may be regarded as a set of conditions which may
be conjointly realized as an experimental state, or partial state, of the
world, identifiable by the users of L. On the basis of sets of such
conditions, the expressions of L assume pragmatic values for the users of
L. In being so valued, the expressions of L are "confronted with the
world". The set C may be regarded as the total evidence available to the
users of L, and subsets of C as partial evidence, for valuing the expres-
sions of L. Let •£ be the set of all subsets of C.

Let V = {θ, 1, 2} be the set of pragmatic values which may be assumed
by the expressions of L No further structure on V need be assumed in the
definition of pragmatic interpreting functions; abstractly, V is any three-
membered set. Intuitively, the element 0 may be regarded as the value
assigned to an expression of L under a given set of conditions, when the
expression is rejected under that set of conditions. The value 1 is assigned
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to an expression under a set of conditions when the expression is accepted
under that set of conditions. Finally, the value 2 is assigned to an
expression under a set of conditions when the set of conditions is not
germane to valuing the expression, so that the expression is neither
accepted nor rejected under that set of conditions.

On the basis of the meanings we have assigned to L, C, and V, expres-
sions of L are valued under subsets of C according to empirical conven-
tions, or according to logical (deductive or inductive) conventions as well.
Whatever conventions or rules are employed to decide finally whether to
accept or reject or suspend judgment about an expression e of L under a
set of conditions c of •&, the decision may be expressed as an assignment of
an element v of V to the pair < e, c > of Lx S. Thus we are led to
consider mappings from L x S onto V, which we shall call pragmatic
interpreting functions, since they will be shown to be definable by functions
whose field also includes the set U of users of L and the set T of their
times of valuation of the expressions of L.

Ideally, it should be possible to characterize the syntax and semantics
of L by means of pragmatic interpreting functions from L x (S onto V. We
begin by studying interpreting functions which determine the truth-
functional structure of L; such functions we shall call sentential interpreta-
tions of L. We should expect that a sentential interpretation of L
determines a subset S of L, whose elements may be regarded as sentences.
We shall introduce the concept of a sentential interpretation of L, rela-
tivized to a subset S of L, whose elements we shall subsequently show may
justly be regarded as sentences. Such an interpretation we shall call an
S-interpretation of L. It is convenient to begin by defining the concept of a
quasi-S-interpretation of L

We shall refer to concatenates of expressions of L by juxtaposing the
terms which refer to the concatenated expressions. We shall also employ
symbols autonymously, when the context makes this convenience clear.

Dl. IT is a quasi-S-interpretation of L iff π is a mapping from L x δ onto
V, S is a subset of L, and there are unique expressions ., ~, (, ) in L such
that for all s, sτ in L:

I. If π(s,c) * 2 for some cε£, then sεS.
II. If s, s'εS, then ~{s), (s) (s')εS and the τι-υalues of~{s) and (s) (sτ),

under each cεS, are (partially) determined by the tables:

21 I 0 1 2
0 1 0 0 0 0
1 0 1 0 1 2
2 2 2 0 2 Φ 1

If π(s,c) = 2 = Ή(S',C), then the value of π((s) {s'),c) is only partially deter-
mined by the table for (s) (sτ), as either 0 or 2. This ambiguity may be
diminished by further conditions on π, as in the subsequent definition D2.

From the table for ~s in Dl, the following consequences are
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immediate. We shall often omit parentheses in referring to expressions of
L, when the context makes this simplification unambiguous.

(1.1) ir(s,c) = π(~~s,c).
(1.2) If π(s,c) = π(s\c), then π(~s,c) = π(~s\c).

An analogous substitutivity property for the expression is not derivable,
however, because of the ambiguity of the value of 5 s' when s and sτ are
both valued 2 under c.

In subsequent definitions it is useful to employ the following substitu-
tivity notation. Let e(e') represent an expression of L containing any
number of occurrences of e\

ίe(e") represents ambiguously any expression obtained from
(1.3)<e(e') by substituting e" for any of the occurrences of

(e' in e(ey).

D2. π is an S -interpretation of L iff π is a quasi -^-interpretation of L and

for all eεL; s,s\ s"εS; c ε £ :

I. π(s - ~s,c) =0
II. // π(s ~ s y ) = 0 = ττ(sτ ~s",c), then π(s . ~s",c) = 0.

III. // π(s ~s',c) = 0, then π((s s") ~(sτ -s"),c) = 0.

IV. π(e(s),c) = π(e(~~s),c).
V. π(e(s sτ),c) = π(e(sτ -s),c).

VI. π(e(s «(sτ s")),c) = τr(e((s sτ) srτ)),c).
VII. π(e(s),c) = π(e(s s),c).

In the following consequences of D2, π is an S-interpretation of L.
Roman numerals refer to conditions of D2, unless otherwise indicated.

(1.4) // π(s,c) = 2 = π(s\c), then π{s s\c) = 2 orπ(s ~s\c) = 2.

Proof. On the hypothesis of (1.4), if π(s s τ , c ) * 2, then by Dl, π(s sτ,c) = 0).
Therefore π(~(s s τ),c) = 1. Now suppose π(s ~s τ,c) ^ 2. Then by Dl,
π(s ~s τ,c) = 0. Hence π((s s) . - ( s τ s),c) =' 0, by III. Hence by V,
π((s s) - ~(s . s'),c) = 0. Since π(~ (s s !),c) = 1, ir(s - s,c) = 0, by Dl. Hence
π(s,c) = 0, by VII, against the hypothesis of (1.4). Therefore π(s ~s\c) = 2,
and (1.4) is shown.

(1.5) // ir{s -s',c) = 0, then π(s,c) = π(s s\c).

Proof. We distinguish three cases for π(s,c).
Case 1. π(s,c) = 0 = π(s sτ,c).
Case 2. π(s,c) = 1. Then by hypothesis of (1.5) and Dl, π(~s\c) = 0. Hence
π(sτ,c) = 1 = ir(s 5T,c).

Case 3. π(s,c) = 2. Then by hypothesis of (1.5), either π(~s,c) = 0 or
π(~s\c) = 2. If 7r(~s',c) = 0, then π(s',c)= 1 and •π(s.s\c) = 2. If τr(~s\c) = 2,
then π(s\c) = 2 = Ή(S -S\C). For suppose π(s s\c) Φ 2. Then by (1.4),
π(s ^sτ,c) = 2, against the hypothesis of (1.5). Thus (1.5) is shown.

(1.6) // π(s ~(s s V ) = 0, ίΛew π(s ~s\c) = 0.
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Proof. By I, Dl, V, and VI,
π(sτ ~s\c) = 0 = π((sτ ~s τ) . s,c) = π(s (sτ . ~s f),c) = 7τ((s . s τ) ~s τ ,c).
Thus if π(s . - (s sτ),c) = 0, then by II, π(s . ~s\c) = 0.

(1.7) T/7 π(s ^s f ,c) = 0 = π(sτ ~s,c), ί̂ ew π(s,c) = π(s\c).

Proof. (1.7) follows immediately from (1.5) and V.
If π is an S-interpretation of L, we may define a subset Q of S whose

elements may be referred to as "counter-tantologies", a name which will
be justified in section 2.

(i) If sεS, then s ~ s ε Q .
(ii) If s,s rεQ, then ~(~s . ~ s f ) ε Q .
(iii) If sεQ and s ' εS, then 5. s 'εQ.
(iv) Only by (i)-(iii) may s ε Q .

If 5 is a counter-tantology, ~ s may be referred to as a "tautology".

(1.8) All tautologies are valued always 1; all counter-tautologies are
valued always 0.

Proof. All counter-tantologies established by (i) are valued always 0, by
D2 (I). All counter-tantologies established by (ii) are valued always 0, by
Dl; and this holds also for counter-tantologies established by (iii). Thus
by (iv), (1.8) is shown for counter-tantologies. Hence by Dl, (1.8) is shown
for tantologies also.

2. Booleau Algebras of Expressions If π is an S-interpretation of L, there
is an equivalence relation on S with respect to which S has a Boolean
structure, under the operations of infixing and prefixing ~. L e t s , s τ ε S .

D3. Rπ(s,s<) iff τr{s - s τ ,c) = 0 = π(s τ . ~s,c).

R^is reflexive and symmetric, by D2(I). R^ is transitive by D2(Π). Thus
Rπ is an equivalence relation on S. We may now prove that π induces the
appropriate Boolean structure on S. Roman numerals refer to conditions of
D2, unless otherwise indicated.

Theorem 1. // π is an ^-interpretation of L, then <S, , ~ > is a Booleau
algebra with respect to Rπ.

Proof. S is closed under the operations of infixing and prefixing ~, by
Dl(II). By I, π((s sτ) - (s s'),c) = 0. Hence by V, π((s s f) - (sτ s)c) =
0 = 7r((sτ - s) ~ (s -s'),c).
Thus we have shown (i) Rπ(s s\s' s). In the same way, by VI, one may
show (ii) Rπ(s . ( s ' s"), ( s . s τ ) . s f t ) .

We next show (iii) if Rπ(s,s'), then R^~s, ~s'). By hypothesis,
π(s.~s\c) = 0 = π(s' ~s,c). Thus by IV and V, 7r(~sτ s,c) = 0 =
π(~s- ~~s'9c). From III there follows immediately (iv) if R^(s sτ), then

We next show (v) if Rπ(s ~s τ,sM - 5 Π ) , then Rπ(s,s 5τ). Since
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π((s s !) ~s,c) =0 = π((~s-s) s\c) is true for all s,s'εS, it is sufficient
to show that if π((s ~s f) ~ (s" s"),c) = 0, then π(s - ( s sf),c) = 0. By
hypothesis, π(s ^5T,c) = 0. Hence π((s s) ~ (sτ s),c) = 0, by III. Now by
I and VΠ, π(s ~ (s s),c) = 0. Hence by II and V, τr(s - ~ (s s'),c) = 0.

Finally, we show (vi) if Rw(s,s sf), then Rπ(s . ~s f,s" - s " ) . Since
π((s" . ~s") . ~ (s ~ sf),c) = 0 is true for all s,s\s"εS, it is sufficient to
show that if π(s ~(s sτ),c) = 0, then π(s -sτ,c) = 0 = π((s ~sτ) . ~(s".s"),c).
But this is (1.6). The proof of Theorem 1 is complete.

From Theorem 1 it does not follow that the pair <S,Rπ> is a sentential
calculus, since R̂  may be too large. A sentential calculus for S may be
obtained by considering all possible S-interpretations of L. Let Π be the
set of all S-interpretations of L (relative to the conditions C). Define

(2.1) R = Π R ,
πeU

Theorem 2. < S,R > is a sentential calculus.

Proof. R is the smallest equivalence relation with respect to which
<S^ , ~ > is a Boolean algebra, by Theorem 1 and (2.1). Thus R relates
only pairs of expressions of S which satisfy the conditions (i)-(vi) in the
proof of Theorem 1; hence <S, R> is a sentential calculus.

Let π be an S-interpretation of L. Define

(2.2) S = s{τr(s,c) = 1}.

Then % is a sum ideal, or filter, of the Boolean algebra <S, , ~ >, with
respect to R̂ . For if sεS and t = ~(sτ ~s f), then

(2.3) sε% iffRπ(s,t),

which is an abbreviation of

(2.4) π(s,c) = 1 iff π(s ~ί,c) = 0 = π(t ~s,c), which is obviously true.

£ is the set of expressions which are R^-equivalent to the unit expression t
of the Boolean algebra < S, , ~ >, with respect to R .̂

Theorem 3. <S, S, , ~ > is a consistent Boolean logic, with respect to Rn.

Proof. Sis a sum ideal of S, by (2.3). Moreover, if sε£, then ~sjίz. For
suppose 5, ~sε£. Then Rπ(s,~s), by (2.3). Then π(s s,c) = 0 = π{~s ~s,c).
Then by IV, VII, τr(s,c) = 0 = π(~s,c), against Dl (Π).

The logic < 5, £, , ̂  > is complete if, for each sεS, either sε% or
~sε£. In terms of sentential interpretations π, this is to say that, for each
sεS, π(s,c) Φ 2. For if π(s,c) - 1, then sε£, and conversely; if π(s,c) - 0,
then π{~s,c) = 1, so that ~sεS, and conversely. The logic < S, S, , ̂  > is
complete in the above sense of being categorical, if and only if it is
pragmatically complete in the sense that the set C of conditions is germane
for all sεS.

In terms of the intended meanings of C and V, it is now possible to
assign a meaning to the relation R̂  on S. Let R^(s,sτ). Then by (1.7),
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sε£ iff s τ ε £ . Since < S,%> is a logic, it is natural to regard % as the set of
sentences asserted by π (relative to the set C of conditions). Thus Rπ(s,sτ)
means that 5 and s τ are co-assertible. Theorem 1 then states that if π is
an S-interpretation of L, then < S, , ~ > is a Boolean algebra with respect
to the relation of co-assertibilίty on the expressions of S. This justifies
our considering S to be a set of sentences and calling π a sentential
interpretation. From a purely syntactic point of view, R^ is simply the
relation of (sentential) deductive equivalence on S.

3. Sentential Interpretants In this section a pragmatic foundation for the
theory of sentential interpretations of L is established, by relating such
interpretations to the set U of users of L and the set T of the times of their
valuations of the expressions of L. Let D be the set of all mappings d from
U x T x C onto V such that, for all u,u'ε\J\ t,Pεl\ cε <£,

(3.1) d(u,t9c) = d(u\t',c)ifd(u,t,c)Φ 2 Φd(u\t\c).

An element <u,t,c,υ > of a mapping dzD may be regarded as a disposition
of a user u, at a time t, under a set of conditions c, to perform the
valuation v. Such a disposition we shall call an interpreting disposition.
We wish to assign to each expression of L an appropriate set of interpret-
ing dispositions. (3.1) is a requirement of uniformity on the sets of
interpreting dispositions which may be assigned to expressions of L. If
dεD, then d contains no dispositions to perform distinct valuations under
any set of conditions germane for those valuations. Each dεD is a set of
uniform interpreting dispositions, in the sense of (3.1). Given (3.1), it is
natural to ask whether the assignment of sets of uniform interpreting
dispositions to expressions of L, may determine definite meanings of those
expressions.

The first step in answering this question is to define a mapping from L
to D, such that a Boolean structure is induced on a subset S of L. By
Theorem 1, it is sufficient to find a mapping which determines an
S-interpretation of L. We shall call the range of such a mapping, a system
of S-interpretants of L, following the terminology of Peirce. It is
convenient to begin by defining the concept of a system of quasi-S-
interpretants of L. In the following definitions, g(s) (u,t,c) is the value of
the function dεD which is assigned to S by g, for the argument (u,t,c). The
set of interpreting dispositions which uniformly map all (u,t,c) to 0, we
shall call d0.

D4. g(L) is a system of quasi-S-interpretants iff g is a mapping of L into
D, S is a subset of L, and there are unique expressions , ~, (, ) in L such
that for all s,sr in L:

I. If g{s) (uyt,c) Φ 2 for some uε\J, tεT, cε(S, then sεS.
II. Ifs,s'εS, then ~(s), (s) (s')εS and g(~s) (uyt,c) andg((s) (sτ)) (u,t,c)
are (partially) determined by g(s) (u,t,c) and g(s') (u,t,c), for all (u,t,c)in
the domain of g{s) according to the tables:
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~ I 0 1 2̂
0 1 0 0 0 0
1 0 1 0 1 2
2 2 2 0 2 * 1

Theorem 4. If g(L) is a system of quasi-S-interpretants, then there is a

quasi-S-interpretation of L.

Proof. By hypothesis, g is a mapping from L to D. Define the mapping π
from L x δ onto V such that, for all eε L, cε S,

• Q o\ („ ̂ \ _ $v> ιfs{e) (u,t,c) = vΦ2for some uεϋ, tεT.
(3.2) ne,c) - ^ o t h e r w i s e t

By hypothesis, there is a subset S of L and unique ~ , , (,) in L, such that^

satisfies D4. It is sufficient to show that, for these expressions, and for all

s,sτ in L, π satisfies Dl. Now if π(s,c) Φ 2 for some cε£, then by (3.2),

g{s) (u,t,c)Φ 2 for some uεΌ, tεT, cε'S; so that sεS, by D4 (I). Thus π

satisfies Dl (I).

By D4 (II), if s,s'εS, then ~s,s -s'εS, and it remains to show that π

satisfies the tables of Dl (II). If π(s,c) = 0, then g(s) (uo,to,c) = 0 for fixed

uQε\J, toεT, by (3.2); then by D4 (II), g(~s) (uo,to,c) = 1, and by (3.2) again,

π(~s,c) = 1. The reasoning is the same for τr(s,c) = 1. If π(s,c) = 2, then

for all uε\J, tεT, g(s) (u,t,c) = 2 =g(~s) (u,t,c) = π(-s,c). Thus π satisfies

the tilde table of Dl. The reasoning is the same for the remaining table.

Thus iΐ is a quasi-S-interpretation of L.

D5. g (L) is a system of S-interpr etants iff g{L.) is a system of quasi-S-

interpretants and for all s, sτ, sM εS; eεL; uε[J', tεT) cε£:

I. g(s ~s) = d0

II. Ifg{s ~s f) (u,t,c) = 0 =g(s< -5") (M,*,C), theng(s -s") («,ί,c) = 0.

III. //^s ~s') (M,ί,c) = 0, /Λβw^(s s") - (sτ s")) (w,ί,c) = 0.

IV. g(e(s)) =g(e(~~s))

V. g(e(s.s')) =g(e(s' s))

VI. ^<β(s (s'.s")))=5<β((s.s') .5")))

VII. ^<β(s)) =^(e(s.s))

If g (L) is a system of S-interpretants, then a subset Sg of S is

determined by

(3.3) Zg = s\g(s) (u,t,c) = I/or some wεϋ, ίεT}.

The following theorem establishes a relation between systems of sentential

interpretants g and sentential interpretations π, in virtue of which the

desired Boolean structure is induced on S by g. If π is a sentential inter-

pretation of L, lets,,, be defined by (2.2).

Theorem 5. If g(L) is a system of S-interpretants, then there is an

S-interpretation π of L such that %g- %π.
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Proof. On the hypothesis of Theorem 5, there is a quasi-S-interpretation π
of L, defined by (3.2). π satisfies D2 (I)-(III) by reasoning as in the proof of
Theorem 4, by way of D5 (I)-(III). We have also:

(3.4) g(e) =g(e<) iff g(e) (u,t,c) = g(e') (u,t,c).
(3.5) Ifg(e) =g(e% then τt{e,c) = ττ(e',c).

(3.5) follows from (3.4) and (3.2). For if g(e) (u,t,c) = v Φ 2, for some uεΌ,
tεT, then π(e,c) = v = π(e\c); and otherwise, π(e,c) = 2 = u{e\c). Thus by
D5 (IV)-(VΠ), π satisfies D2 (IV)-(VΠ). Thus π is an S-interpretation of L.
Finally, %g = %πy since by (3.2), g(s) (w,ί,c) = 1 for some uε\J, tεT, if and
only if ττ(s,c) = 1. The proof of Theorem 5 is complete.

II. Pragmatics of Monadic Quantification

4. Monadic Interpretations In this section we shall study pragmatic inter-
preting functions which determine a monadic predicate structure on a
subset of L. Such functions we shall call monadic interpretations of L. We
begin by defining the concept of a quasi-monadic interpretation of L.

Dl. Ή is a quasi-monadic interpretation of L iff π is a quasi-S-interpreta-
tion of L,for some S c L , and there are disjoint subsets M and Ko/L, and
unique expressions 3 and x of L, such that for all Q,a,sεL:

I. IfQεM,thenπ((3x)(Q(x)),c)Φ2forsomecε(ί.

II. If aεK,then π(Q(a),c) Φ 2 for some QεM,cεS.
III. sεS iff s is constructed from Qλ (ίi), . . . , Qk (tk)> where Qlf . . . ,
Q&εM and tl9 . . . , feεK u {x}, by infixing - or prefixing ~ or (3A:), and if
Uε{x} (1 ^i ^k), then Qi is in a part of s of the form (3^ ) (A).
IV. ~, , 3,λτ^M, K.

The following consequences of Dl concern the parsing of L into
syntactic categories by a quasi-monadic interpretation π of L.

(4.1) M is unique.

For suppose there is some Mf t M which satisfies Dl. Then there is some
QεM such that π{(lx) (Q(x)),c) Φ 2 for some c ε S . Then (3x) (QU))εS, by
Dl (I) of Part I. Then by Dl (III), with k = 1, QεM. Therefore M is unique,
and may be defined

M =Q{π((lx) (Q(x)),c) Φ 2, for some cεδ}.

(4.2) K is unique.

For suppose there is some ajίK such that π(Q{a),c) Φ 2 for some cεS, QεM.
Then Q(a)εS. Then by Dl (III) with k = 1, aεK. Therefore K is unique, and
may be defined

K =α{π(Q(α),c) Φ 2, for some QεM, cε(S}.

The algebraic justification of the following parsing results depends
upon theorems to be proved subsequently. Such theorems are indicated as
the corresponding parsing results are stated.
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Dl is so constructed that, intuitively, M is a set of monadic predicates
and x is a variable. We may show that M is representable as the set of
monadic predicates, and that {x} is the set of variables, of a monadic
algebra. For we shall show that there is a subset B of L which is a
monadic Boolean algebra of expressions (Theorem 2). We shall also show
that to each QεM there corresponds Q(x)εB (Theorem 1). Thus M may be
represented as a set of mappings from {x} into B. It is also possible to
show that, from the point of view of polyadic Boolean algebras, B is an
{x}-algebra, with {x} the set of variables. Now a predicate Q of a monadic
algebra B is a mapping from the set of variables into B (The general
condition on substitution of variables in such mappings [Halmos, 173] is
trivial in the monadic case: Q(x) =Q(x).) Thus M is representable as a set
of monadic predicates.

We shall show that (Ίx) is representable as an existential quantifier
(Theorem 2). Thus if QεM, then Q(x) may be regarded as an atomic open
formula, and {lx) (Q(x)) as its quantification.

The set K is representable as a set of individual constants (Theorem 3).
Thus if βεK and QεM, then Q(a) may be regarded as an instance of Q(x).
Let Ao be the set of all atomic open (monadic) formulas of L. Let So be the
set of instances Q(a), for all QεM, aεK. Let B be the set of all expressions
generated from Ao U So by infixing , and prefixing (3x) and ~. Then B may
be regarded as the set of monadic formulas of L (Theorem 2). B is clearly
unique. Let A be the set of expressions generated from Ao by infixing ,
and prefixing {lx) and ~. Then A may be regarded as the set of monadic
formulas without constants of L in the variable ΛΓ (Theorem 2 Corollary 1).
A is clearly unique.

Free and bound variables may be defined in the usual way. If pεB,
then in the formula (Ix) (p), we say thatp is the scope of (3ΛΓ). If x occurs
in p, then we shall say that this occurrence of x is bound if it is in the
scope of some (3x). Otherwise it is free. If x is not free in p, we say that
p is closed; otherwise p is open.

Let S be the subset of L with respect to which the quasi-monadic inter-
pretation π is an S-interpretation. Then by Dl (IV) and the preceding
paragraph, S is a subset of B and may be regarded as the set of syntac-
tically closed formulas of B (Theorem 2 Corollary 2). S is clearly unique.
The above parsing results may be summarized as follows.

Theorem 1. If it is a quasi-monadic interpretation of L, then there are
unique subsets B, A, and S of L, whose elements may be regarded, from the
manner of their construction, as, respectively: monadic formulas, monadic
formulas without constants, and closed monadic formulas.

In the next section we shall show that B, A, and S also have the algebraic
structure which justifies their being regarded as formulas. For this
purpose we must introduce the concept of a monadic interpretation. This
task is facilitated by the following notational simplification.

Since B is a set of formulas which contain x as their only variable, we
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may conveniently refer to such formulas by deleting ally's from the terms
we use for such reference, along with unnecessary parentheses. hetp{x)
be any formula of B containing x. Let p(a) be the formula obtained from
p(x) by replacing each occurrence oί x with#εK. Then we abbreviate, for
example,

(3*)((3*) (#*))) as 3 3/>
(lx)(p(x) •<?(*)) a s 3(p q)
(3ΛΓ) (p{a) q(x)) a s 3 (p(a) q).

It is sufficient to consider at the present time only formulas in the one
variables, since every closed monadic formula is equivalent to a formula
in the one variable x. We shall not study the pragmatics of this equiva-
lence, since the substitution properties of open monadic formulas with
distinct free variables is best studied in the context of the polyadic
predicate calculus.

It is useful to extend the notation "/>(#)" to each pεB. If αεK and pεB,
then p(a) is the formula obtained from p by replacing all free occurrences
of x with a. Thus if x is not free in p, then p(a) - p. This convention
determines, for each αεK, a mapping a\p —• p(a), from B into S, such that:

(4.3) (lp)(a)=p.

(4.4) (p q) (a)=p(a) q(a).

(4.5) (~p)(a)=~(p(a)).

Conditions IV, VII, and X of the following definition employ the substi-
tutivity notation (1.3).

D2. π is a monadic interpretation of L iff π is a quasi-monadic interpreta-
tion of L and for all p, q, rε B; eε L; cε(S:

I. τr(3(/>.~/>),c) = 0.
II. Ifτr(l(p ~q),c) = 0 = π(3 (q - ~r),c), then π(3 (P ~ r),c) = 0.

ΠI. //τr(3(/> ~q),c) = 0, then v(l((p r) . - (q>r)),c) = 0.
IV. If p and q are tantalogically equivalent, then π(e(p),c) = π(e(q),c).
V. Ifτr(lp,c) = 0, then τiHp-q),c) = 0.

VI. Ifπ(l(p-~q),c) = 0, then π(lp,c) = τr(Hp q),c).
VII. π(e(l (p . 3 q))9c) = π(e(l p . 3 q)9c).

VIII. 7r(3(/> ~ lp),c) = 0.
I X . 7/ τr(3(/> ~ ^ ) , c ) = 0 = π(l(q - p ) , c ) , ftβn π(3 P ~lq,c) = 0 =

π(lq -lp,c).
X. ///) zs closed, τr(e(p),c) = π(e(3/>),c).

The theory of monadic interpretations includes the theory of S-
interpretations. For if π is a monadic interpretation of L, then by Dl and
Tl, π is a quasi-interpretation of L, with S the set of closed monadic
formulas of B. Then by D2 (I-IV, X), π is an S-interpretation of L. Then
by Theorem 1 of Part 1, <S, , ~> is a Boolean algebra with respect to R̂ ,
defined as in D3 of Part 1, and all the properties of S which are proved in
Part I are also forthcoming.
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In the following consequences of D2, π is a monadic interpretation of L.
Roman numerals refer to conditions of D2, unless indicated otherwise, in
this and the following section.

(4.6) τr(3 ((/>.?) ~/>),c) = 0.

Proof. By I, IV, V, ττ(3 (H> p) q),c) = 0 = π(3 (~/> (/>. tf)),c) = π(3 (ip-q) .

~P),c).

(4.7) // π(3 (/> ~tf),c) = 0 = τr(3 to ~p),c), then τr(3 />,c) = π(3 #,c).

Proof. By VI, IV, one proves (4.8). In the same way, one proves:

(4.8) // π(3 (p ~q),c) = 0 = τr(3 (q . ~/>),c), Λew π(3 ~/>,c) = π(3 ~<?,c).

5. Monadic Boolean Algebras of Expressions If π is a monadic interpreta-
tion of L, there is an equivalence relation on the set of formulas B, with
respect to which B is a monadic Boolean algebra, under the operations of
infixing and prefixing'- and (3AT).

D3. Eπ(p,q) iff π(3 ip ~q),c) = 0 = π(3 {q ~/>),c), where π is <2 monadic
interpretation of L, ίmd />, # ε B .

E is clearly an equivalence relation on B, by I and II.

Theorem 2. If π is a monadic interpretation of L, and 3 is the mapping
from pεB to (3ΛΓ) (p)εB, then < B, 3, , ~ > is a monadic Boolean algebra
with respect to Eπ.

Proof. B is closed under the operations of infixing and prefixing ~ and
(3*). By I, ir(l((p q) •-(p-q\c) = 0. Hence by IV, π(3 ({p.q) — (q p)),c) =
ττ(3(to />) ^(/>*^))^) = 0. Thus we have shown (i) Eπ(p q, q -p). In the
same way, one may show (ii) Eπ(p -(q-r), (p-q) r).

We next show (iii) if Eπ(p,q), then Eπ(~p, ~q). By hypothesis,
w(3 (/> - -<r),c) = 0 = ττ(l(q ~p),c). Thus by IV, π(3(~/> . - - ^ ) , c ) = 0 =
π(3(~^ ~~P),c). From III there follows immediately (iv) if Eπ(p,q), then
EπiP-r, q-r).

We next show (v) if Eπ(p ~q, r - ~ r ) , then Eπ(p, p -q). By hypothesis,
π(3((/> -^) ~ ( r ~r)),c) = 0. Then by VI, I, V, IV, π(3 (p . ^ ) , c ) =
τr(3 ((/)• -<?) . (r -r)),c) = 0. Then by III, π(3 (ip-p) ~{q -p)),c) = 0. Hence
by IV, 7r(3(£. ~(p-q)),c) = 0. This with (4.6) gives (v).

We next show (vi) if Eπ(P, P -Q), then Eπ(p- ~q9 r ^ r ) . By hypothesis,
π(3 (/>.-(/>•<?)),c) = 0. Then by IV, V, τr(3 (p. ~q),c) = 0 = π(3((/> -^) . - ( r .
- r ) , c ) .

It remains to show π{l((r- ~r) ' ~(p- ~q)),c) = 0, which is true in
general.

By (i)-(vi), < B, , ~ > is a Boolean algebra with respect to Eπ. It
remains to show that 3 is a quantifier. We first show, where p0 is the zero
element of B with respect to Eπ (i.e. Eπ(pQ, q>~q) for some <?εB): (3 1)
Eπ(p0, 3/>0). By hypothesis, τr(3(A,. ~fe ~q))fi) = 0. Then by VI, I, IV, V,
ir(lpo,c) = 7r(3(/>o (q ~q)),c) = 0 = π(3 (p0 -*3/>0),c). We thus have also by
V, VII, iι{lpQΊ~pQ,c) = 0 = 7r(3(3/>o ~h),c). Thus (31) is shown.
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We next show (3 2) Eπ(p,p 3/>). By VΠI, III, τr(3 ((/>•/>) . -(3 /> />)),c) = 0.

Then by IV, π(3(/> ~(P-lp),c) = 0. This with (4.6) gives (3 2).

We next show (33) Eπ(3(p-lq), Ip-lq). This follows directly from I,

V. It remains to show that E^ is a congruence relation with respect to the

operation of prefixing (3#); i.e., (34) if Eπ(p,q), then Eπ(lp, Iq). This

follows directly from IX and X. The proof of Theorem 2 is complete.

The set S of syntactically closed formulas of B is closed under the

operations of infixing and prefixing ~ . We therefore have:

Corollary 1 (Theorem 2). < S, , ~ >is a Boolean subalgebra of < B, , ~ >,

with respect to Eπ.

Let A be the set of monadic formulas without constants of B, as in

Theorem 1. Then A is closed under the operations of infixing . and

prefixing ~ and (3ΛΓ). Therefore we have

Corollary 2 (Theorem 2.) < A, 3, , ~ > is a monadic subalgebra of

< B, 3, , ~ >, with respect to Eπ.

A monadic interpretation of L induces on the operations of forming

instances of formulas, the structure of individual constants.

Theorem 3. The mappings a: p —p(a),for aεK, pεB, are constants of the

monadic algebra < B, 3, , ~ >, with respect to EΉ%

Proof. (i) The mappings a\p -+p(a) are endomorphisms on B, with respect

to E,,, by (4.4), (4.5), I.

(ii) En(3 p(a)9 Ip), by (4.3), I.

(iii) Eπ(l(p(a)),p(a)), by X, I.

The proof of Theorem 3 is complete.

In the remainder of this section, π is a monadic interpretation of L.

Define

(5.1) S = £{ir(3~/>,c) = 0}.

Then % is a sum ideal of the Boolean algebra < B, , ~ >, with respect to

Eπ. For if pε B, and p1 = ~{q - ~q), then

(5.2) pεz iffEΛPyPi),

which is an abbreviation of

(5.3) 7r(3~/>,c) = 0 iffήKP- ~/>i),c) = 0 = ττ(3 (ft • ~/>),c).

(5.3) is established as follows. In general, π(3(/>. ~/>i),c) = 0, by IV, I, V.

In the same way, if π(3~p,c) =0, then π(3(ft ~p),c) = 0. Conversely, if

π(3(/>i ~p),c) = 0, then 7r(3(~/> ~(q . ~q),c) = 0, so that 7τ(3~/>,c) =

τr(3H> (q ~q)),c) = Q.

S is the set of formulas which are Eπ-equivalent to the unit formula ft

of the Boolean algebra < B, , ~ >. If £ is a sum ideal of B such that

(5.4) Ifpε%,thenVp=~l~pε%,
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then we shall say that S is a monadic sum ideal of B. I f < B , 3, , ~ > i s a
monadic Boolean algebra and £ is a monadic sum ideal of B, we shall
employ the solecism of saying that < B, £ > is a monadic logic. (Halmos
defines monadic logics with respect to ideals, instead of sum ideals.) If £
is defined by (5.1), we have:

Theorem 4. < B, £> is a monadic Boolean logic, with respect to Eπ.

Proof. Sis a sum ideal of B, by (2.3). S i s monadic, since if pε%, then
π(3~£,c) = 0 = π(~V/>,c) = π(3~V/>,c), by X, so that V/>ε£.

Corollary 1 (Theorem 4). If π is a monadic interpretation of L, satisfying,
for all cε (5:

(5.5) Ifπ{lp,c) = 0, then τr(j>(ά),c) = 0 for all aεK;

(5.6) If π(p(a),c) = 1 for some aεK, then π(lp,c) = 1,

then < B, £> is consistent.

Proof. It follows from (5.5) and (5.6) that, for all cε£;

(5.7) Ifπ(lp,c) = 0, then π(3~/>,c) = 1.
Now suppose p,~pε%. Then Ejfi,~p). Then π(3 (p . ~~ p),c) = 0 = π(3/>,c).
But by hypothesis that />ε£, π(3~/>,c) = 0. Then by (5.7), π(3/>,c) = 1, against
the supposition that p, ~pεZ. Thus < B, £ > is consistent.

In terms of the intended meanings of C and V, we may now assign a
meaning to the sets determined by a monadic interpretation π of L. pε% if
and only if π{Vp,c) = 1. If p is closed (and in £), then by X, π(p,c) = 1. £ is
the set of formulas whose universal closures are accepted under the total
evidence C, in the interpretation π. Since < B, S> is a monadic logic, it is
natural to regard £ as the set of formulas asserted by π.

We may now assign a meaning to the relation Ê  on B. By (4.8), if
Eπ(p,q), then pεZ if and only if qε%. Thus E^ may be regarded as the
relation of co-assertibility on the formulas of B, relative to the monadic
interpretation π.

Let £0 = £ Π S. Then £0 is the set of closed formulas which are Eπ-
equivalent to the unit closed formula of the Boolean subalgebra <S, , ~ >
of < B, , ~ >. Thus £ is a sum ideal. This proves

Corollary 2 (Theorem 4). <S,Z0> is a Boolean logic with respect to Eπ.

< S, £0 > is consistent if and only if < B, £> is.

We shall define the completeness of < B, £ > as the maximality of £0 in
< S, £0 >. For to require that £ be maximal in < B, £> is to require that,
for all pεB, either π(3/),c) = 0 or π(l~p,c) = 0. If < B, £> is complete in
the sense that £0 is maximal in < S, £0 >, then for each sεS, either sε£ 0 or
~sε£ 0. In terms of the monadic interpretation π, this is to say that, for
each sεS, π(s,c) Φ 2: the set C of conditions of π is germane for all sεS.
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For 7r(s,c) = 1 iff π(3~s,c) = 0 iff sεZ0; and ττ(s,c) = 0 iff π(3~~s,c) = 0 iff
~sε£ 0 We have therefore shown:

(5.8) < B, £> is complete iff C is germane for 5.

An element p of a monadic algebra is defined by Halmos to be closed if
Ip = p. If the monadic interpretation π determines the monadic algebra
< B, £ > with respect to Eπ, and if pεS, then byXof D2, Eπ(p,3p). But the
converse is not true. For example, if pε%, then Έ.π(p, 3/)), even if />£S.
Thus the property of being syntactically closed is included in the property
of being algebraically closed, but not conversely. Moreover, if 3(B) is the
set of algebraically closed formulas of B (i.e. pε 3(B) iff Eπ(p, 3/))), then
£ c 3(B).

The completeness of any monadic logic < A, M > is defined by Halmos
to be the maximality of M Π 3(A) in (3(A), M Π 3(A)). Let < B, £> be a
monadic algebra, as in Theorem 4. Then £ n 3(B) = £, since £ c 3(B), as
we have just seen. Then we may show that the completeness of < B, £ > via

< S, So > is equivalent to the completeness of < B, £ > via < 3(B), £>.

(5.9) < S, £ 0 > zs complete iff < 3 (B), £ > w complete.

The proof from right to left is obvious. Let < 5, £0 > be complete. Let
/>ε3(B). Then Eπ(p,lp). Then π(3(3/>. ~/>),c) = 0 = π(3/> 3~/>,c). Now
π{3p,c) Φ 2 Φ π{3~p,c), by hypothesis and (5.8), recalling that the complete-
ness of < B, £> in (5.8) is defined as the completeness of < S, £0 >.
Therefore either π(3p,c) = 0 or π(l~p,c) = 0. Therefore either ~pε% or
/>ε£. The proof of (5.9) is complete.

6. Monadic Interpretants In this section a pragmatic foundation is estab-
lished for the theory of monadic interpretations of L, by relating such
interpretations to the set U of users of L and set T of the times of their
valuations of the expressions of L. If D is defined as in (3.1), it is natural
to ask whether a function may be defined from L to D, which induces a
monadic Boolean structure on a subset B of L. By Theorem 2, it is
sufficient to find a function from L to D which determines a monadic
interpretation of L. We shall call the range of such a function, a system
of monadic interpretants of L, following the terminology of Peirce. It is
convenient to begin by defining the concept of a system of quasi-monadic
interpretants.

D4. g (L) is a system of quasi-monadic interpretants iff g(L) is a system of
quasi-S-interpretants, for some S c L , and there are disjoint subsets M
and Ko/L, and unique expressions 3 and x in L such that, for all Q, a,, s εL:

I. IfQεYΛ, theng((lx) (Q(x))) (u,t,c) Φ 2 for some uεΌ, tεT, cε£.
II. IfaεK, then g(Q{a)) (u,t,c) Φ 2 for some QεM, uε\J, tεT, cε£.

III. sεS iff s is constructed from Qx (ίx), . . . , Qkih), where Qh . . . ,
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QfeεM, and tly . . . , tkε K U {x}, by infixing or prefixing ~ or(Ί x) , and if
ti€,{x}(l — i — k), then Qι is in a part of s of the form (3 t{) (A).

IV. ~, , 3, x j^M, K.

Theorem 5. If g(L) is a system of quasi-monadic interpretants, then there
is a quasi-monadic interpretation of L.

Proof. By hypothesis, g(L) is a system of quasi-S-interpretants for some
S c L , Then by Theorem 4 of Part I, there is a quasi-S-interpretation π of
L which is defined by

_ ίv, ifg(e) (u,t,c) =vΦ2for some uε\J, tεT.
(6.1) ττ(e,c) = < rt ,,
v ; ' 7 {2, otherwise.
It remains to show that π is a quasi-monadic interpretation of L. Let QεM.
Then by D4 (I), g((lx) (Q(x))) (u,t,c) Φ 2, for some uε\J, tεT, cεδ . Then
τr(Ox) (Q(x)),c) Φ 2, for some cεδ, by (6.1). Thus π satisfies Dl (I). In the
same way, by D4 (II), π is shown to satisfy Dl (II). Dl (ΠI, IV) are identical
to D4 (III, IV). Thus π satisfies the conditions of Dl; the proof of Theorem
5 is complete.

D5. g(L) is a system of monadic interpretants iff g{L) is a system of
quasi-monadic interpretants such that, for all p, q, rεB; cε£; uε\J; tεT:

I. g(l(p-~P))=d0.
II. Ifg{Hp.~q))(u,t,c)=O=g(l(q'~r))(u,t,c), then g(l (p . ~r)) {u,t ,c) = 0.

III. Ifg(l(p. ~q)) (μjtfi) = 0, then g(l{(p r) ~(q .r))) (u,t,c) = 0.
IV. If p and q are tantologically equivalent, then g(e(p)) = g(e(q)).
V. IfgOp) (u,t,c) = 0, then gWp q)) (u,t,c) = 0.

VI. Ifgdip- ~q)){u,t,c) = 0, then g(ip) (u,t,c) =g(3(p q)) (u,t,c).
VII. g(e(l(p 1q))) =g(e(Zp lq)).

VIII. g(l(p.~lp))=do.
IX. Ifg(l(p- ~q)) (u,t,c) = 0 =g(l(q -/>)) (fi,ί,c), theng(ip . ~lq){u,t,c) =

0=g(lq.~lp)<μ,t,c).
X. 7/p zs closed, g(e(p)) =g{e{lp)).

If ^(L) is a system of monadic interpretants, then a subset Sg of B is
determined as follows.

(6.2) %g = p{g(l ~p) iu,t,c) = 0, for some uε\J, tεT}.

The following theorem establishes a relation between the interpreting
functions g and π, in virtue of which the desired monadic structure is
induced on B byg\ If π is a monadic interpretation of L, let S^be defined
by (5.1).

Theorem 6. If g(L) is a system of monadic interpretants, then there is a
monadic interpretation π of L, such that %g = %π.

Proof. By hypothesis, ^(L) is a system of quasi-monadic interpretants
which, by T5, determines a quasi-monadic interpretation π of L, defined
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by (6.1). It remains to show that π is a monadic interpretation of L, and
that %π= Zg. The conditions of D2 correspond to those of D5 in such a way
that, just as in the proofs of Theorems 4 and 5 of Par t i , each condition of
D5 implies the corresponding one of D2, via (6.1). Moreover, %π-Zg. For
by (6.1) g(l~p) (uo,to,c) = 0 iff π(l~p,c) = 0, for fixed z^eU, toεT. Thus by
(5.1) and (6.3), Zπ=Zg.
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