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COMPACTNESS IN ABSTRACTIONS OF POST ALGEBRAS

R. BEAZER

Introduction An algebra (A; F) is said to be equationally compact if the
existence of a simultaneous solution of any finite subset of any set Z of
polynomial equations (with constants) in A implies the existence of a
simultaneous solution of X. An algebra (A; F) is said to be topologically
compact if A is endowed with a compact, Hausdorff topology under which
all the operations in F are continuous. The problem of determining the
equationally compact algebras and the answer to Mycielski’s question (see
[15]), ““Is every equationally compact algebra a retract of a topologically
compact algebra?’’ for a particular class of algebras, is usually a difficult
one. The problem has been solved for semilattices in [11] and [3], for
Boolean algebras in [17], and for Post and Post-like algebras in [2]. In
recent years, several abstractions of Post algebras have been studied. The
purpose of this note is the characterization of the equationally compact
algebras in some of these classes.

Preliminaries A Brvouwevian algebva is an algebra (4; v, A, —), where
(A; v, A) is a lattice and — is a binary operation such that xAy < z if and
only if x<y— z. Every Brouwerian algebra is distributive and has a
greatest element 1. A Heyting algebra is a Brouwerian algebra with a
least element 0. In a Heyting algebra A, the element x — 0 will be
denoted by x* and is the pseudocomplement of x in A. The set S(4) =
{x€ A; x = x**} forms a Boolean algebra; the algebra of closed elements of
A. The set D(A) = {xe A; x* = 0} forms a filter; the filter of dense elements
in A. A bounded, distributive, pseudocomplemented lattice satisfying the
identity x* v x** = 1 is called a Sfone algebra. In any Stone algebra A, S(A)
coincides with the centre C(A) of A. An L-algebra is a Heyting algebra
satisfying the identity (x — y)v(y — x) = 1. Any L-algebra is a Stone
algebra and satisfies the identity xvy = ((x — ) — ) A ((y — %) — x). Con-
sequently, the operation v can be omitted from the set of fundamental
operations. For the connection between L-algebras and logic, the reader is
referred to [13].
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n
A K,-algebra is a Brouwerian algebra satisfying the identity V1 (x; —
1=

%;,) =1, n=>2. The class of all K,-algebras is denoted by K,. An
L.-algebra is a K,-algebra with least element 0. The class of all
L,-algebras is denoted by .,. The classes K,and ., were introduced and
studied in [12].

A P-algebra is an L-algebra whose dual is an L-algebra. Equivalently,
a P-algebra is an L-algebra whose dual is a Stone algebra. For other
characterizations and applications of P-algebras to logic, the reader is
referred to [7] and the references therein. The class of all P-algebras is
denoted by £. A P[”]-algebm is an L,-algebra whose dual is an L-algebra.
The class of all P[”]-algebras will be denoted by P, Such algebras arise
quite naturally. Indeed, it can be shown that the lattice of equational
classes of P-algebras is the chain PN cpllc, . cpllc, . . cp.
Furthermore, P is the class of all P-subalgebras of Post algebras of
order = (see [7]).

A Zukasiewicz algebra of ovder n (n=2) is an algebra (4; v, aA; ~,
Si, ... Sp-1; 1), where (4; v, a; 1) is a distributive lattice with 1 and ~,
Sy, . . ., Sp-1 are unary operations of A satisfying the following conditions:

Ml. ~~x = x,

M2, ~(¥vYy) = ~XA~Y,

M3. s;(xvy) =s;(x)vs;(y),

M4. s;(x)v~s;(x) =1,

M5. s;(s;(x)) = s;(x),

MS6. si("'x) = NS,,_,'(X),

MT. s;(%) vSiy(¥) = 8;,(%), (1<i<n-2),
M8. xvsn-l(x) = sn-l(x);

M9. (xA~s;(X)aS;ia())vy =y, (1<i<n-2).

The class of all Lukasiewicz algebras of order » is denoted by Luk,.
A systematic study and references to previous work on Rukasiewicz
algebras can be found in [4] and [5]. In any Lukasiewicz algebra ~1=0
(the least element) and we have:

xeCA) ifandonly if s;(x) =x (1 <i<n- 1),
Furthermore, if x € C(A) then the complement of x is ~ x.

Some abstractions of Post algebras involving a chain of distinguished
elements are defined below.

A P,-lattice is a bounded, distributive lattice A which is generated by
its centre C(A) and a finite subchain 0 =e,<e;<...<e,,=1, called a
chain-base for A. The ovder of a Pgy-lattice A is the smallest integer »
such that A has a chain-base with » distinct terms. A P,-lattice is a
P,-lattice with a chain base such that e;,;, —e;=e;. A P,-lattice is a
P,-lattice (A; eq, . . ., €,-p such that l!e; exists, where !x is the largest
central element which is <x and called the pseudo-supplement of x in A.
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If A is a lattice whose dual is a Stone algebra then !x exists and equals x++,
where x% is the dual pseudocomplement of x in A.

Post algebras can be defined in various ways. From [9], a Post
algebra is a P,-lattice (4; eo, . . ., €,-1) such that !e,,=0. From [4], a
Post algebra of order » is a Rukasiewicz algebra of order » havingn - 2
elements e, . . ., e,; satisfying

0,i+j<n
si(e)) =
1,i+j=n

Further definitions may be found in [2] and the references therein.

A Stone-lattice of ovder n (n=2) is an L-algebra A in which there
exists a chain 0 = e, <e;<...<e,,;=1 such that e;,, is the smallest
dense element in the interval [e;, 1]. A systematic study of Stone-lattices
of order » was made in [14].

1 Compactness in P[”]-algebras The following results, the proofs of which
are in [12] and [9] respectively are crucial in characterizing the equa-
tionally compact P[”]-algebras.

Lemma 1 If A is a Heyting algebra then Ae L, (n = 2) if and only if C(A4) is
a subalgebrva of A and D(A) € K 1.

Lemma 2 A is a P,-algebra of ovder n if and only if it is a Stone lattice of
ovder n whose dual is a Stone algebra.

Theorem 1 If A ¢ ") then the following ave equivalent:

(1) A is equationally compact.

(ii) A is a direct product of finitely many complete Post algebras of ovder
at most n.

(iii) A is a vetract of a topologically compact algebra in P,

Proof: (i) => (ii). Let A ¢ #" be equationally compact and leteed - {1}.
Then, since A is a Heyting algebra, the interval [e, 1] is a pseudocom-
plemented lattice; ¥ — e being the pseudocomplement of x in [e, 1]. Let D,
denote the dense filter in [e, 1]. The set © of equations

xXne=¢e
x—e=e
{xad=x; deD.}

is easily seen to be finitely solvable and, therefore, by compactness, is
solvable. Clearly, a solution of T is the smallest dense element in [e, 1].
Thus, we can produce an ascending chain E;: 0 =e,<e;, <..., where e;,, is
the smallest dense element in [e;, 1]. Since A€ .£,, we conclude from
Lemma 1 that £ has cardinality at most n. Therefore, A is a Stone lattice
of order at most #n whose dual is a Stone algebra. Equivalently, by
Lemma 2, A is a P,-algebra. According to [8], A must be a direct product
of finitely many Post algebras of order at most ». Finally, A, being
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equationally compact as a lattice, is complete and therefore each factor in
the direct decompositicrm is complete.

(ii) = (iii). Let A = EA,:, where each A; is a complete Post algebra of

order n; <n. Then from [2], there exist cardinals M; and retractions
p;: n % — A; preserving v, a, — and its dual Clearly, the family {p;: 1

i< 'r} induces a retraction Hp, Hn i HA and Hn, iis a topologically

compact algebra in P

discrete topology.
(iii) = (iv). This is well-known (see [17]).

when each chain algebra ; is endowed with the

Prior to characterizing the topologically compact algebras in I’[”], we
recall some definitions.

A subset F of a P-algebra A is said to be a P-filter if it is a lattice
filter closed under !.

If Kis a class of similar algebras then A € K is said to be profinite if it
is an inverse limit of finite algebras in K.

Theorem 2 If A e P! then the Jollowing ave equivalent:

(i) A is topologically compact.

(ii) C(A) is a topologically compact Boolean algebra.

(iii) C(A) is complete and completely distributive.

(iv) A is profinite.

(v) A is complete and completely distributive.

(vi) A is a divect product of finitely many complete and completely
distributive Post algebras of ovder at most n.

Proof: (i) = (ii). Let A be a topologically compact algebra in #!”), Then
C(A) is a topologically compact Boolean algebra; since C(A4) is a Boolean
subalgebra of A and the continuous image of A under the mapping x — x%*%*,
(ii) => (iii). This is proved in [16], Proposition 3.

(iii) = (iv). In any P-algebra A there is a one-to-one correspondence
between the P-congruences & and the P-filters F (see [7]). Under this
correspondence F = {x e A; (x, 1) e } and & = {(x, y) e A®; (x> p)A(y —x) F}.
It is easy to see that a principal (lattice) filter in A is a maximal P-filter if
and only if it is generated by an atom in C(4). Now, following the proof of
Theorem 5.2 in [1], let o be the set of atoms of C(4) and let I = {f,; ae A}
be the set of finite joins of members of /. Then 7 is a sublattice of C(A)
with Vf, = 1. Partially ordering the index set A by requiring the 8 < a in A
if and only if f3 < f, in A insures that A is a down-directed set indexing the
P-congruences &,={(x, »)eA®; (x > y)a(y —x) = f,} in such a way that
®, C &; whenever 8 <a. Consequently, the quotient algebras A, = A/®, and
homomorphisms ¢,5: Ay — Ag defined by ¢,(x],) = [x]; whenever B<a
(where [x], is the congruence class modulo &, containing x) form an inverse

r(a)
system. Now, if f,= 1Y1 @q;, Where ag;eof, and &,; = {(x, y) €A% (x = y) A
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(y — x) > a,,} then, following the proof of Theorem 5.2 in 1], we see that 4,
(@)

can be embedded in 11 A/®,,. The maximality of &, implies that 4/®,,is
1=
a simple algebra in #1". According to [7], a simple P-algebra must be a
n
chain. However, the identity Vl(x,- — %;,) = 1 holds only in those chains of
i= =

cardinality at most n. Consequently, each A, is finite. Clearly, nd)a is the
smallest congruence on A and so the correspondence ¢: A — Lim A, defined
by [¢(x)] (@) = [x],is an embedding of A into a profinite algebra. The proof
that ¢ is surjective can be lifted verbatim from Theorem 5.2 in [1].

(iv) =>(i). Trivial.

(iv)=(v). If A= Lim A, is profinite then A is a complete sublattice of the

complete and completely distributive lattice HAG. Therefore A is com-
pletely distributive,
(v) => (iii). It suffices to show that C(A) is a complete sublattice of A. Let

{bi; i€} € C(A) and b = Aa{b;; i€}, where A, indicates that the meet is
taken in A. Then b** < b;** = b;, for all 7€ I, so that b** < b, Since b** = b,

it follows that b** = be C(A). A dual argument shows that V,{b;;iel}e
C(A4). Thus, C(4) is a complete sublattice of A.
(1) =(vi). I Aepl is topologically compact then it is equationally

compact and therefore A = ].I A;, where each A; is a complete Post algebra
i=
r
of order at most n. From Proposition 4 in [16], C<H A,) is complete and
i=

7 T
completely distributive. Since C(II A,-> = 1—{ C(A;), it follows that each
i= i=
C(4;) is complete and completely distributive. Therefore, by results in [6],
r

each A; is complete and completely distributive and so is H A;.
i=1

(vi) = (v). Trivial,
2 Compactness in Py-lattices The following was proved in [9]:
Lemma 3 Any P;-lattice of ovder n is a Stone lattice of ovder n.

Theorem 3 If (4;eq,..., e, S a Py-lattice then the following ave
equivalent:

(i) A is an equationally compact lattice.

(ii) A is a dirvect product of finitely many complete Post algebras of ovder
at most n.,

(iii) A is a (lattice) vetract of a topologically compact Py-lattice.

Proof: 1t suffices to prove that (i) = (ii). Let A be an equationally compact
P,-lattice. Let a, beA, U={ueA;aru<b} and consider the set T of
equations

bvlaax)=0b
{xau=u;ue U}
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Clearly, = is finitely solvable and, therefore, by compactness, is solvable.
Any solution is the largest x e A satisfying aax <b. Consequently, A is a
Heyting algebra. A dual argument shows that the dual of A is also a Heyting
algebra. According to [8], a P,-lattice which is also a Heyting algebra
must be an L-algebra in which there exists a chain-base 0=f,<...<
f,., =1 such that (4;f,, ..., f, ) is a P,-lattice. Now, since the dual of A
is a Py-lattice and a Heyting algebra, it follows that the dual of A is an
L-algebra. Consequently, A is a P,-lattice; since it is a Stone lattice of
order at most » whose dual is a Stone algebra. Therefore A is a direct
product of finitely many Post algebras of order at most n each of which is
complete; by virtue of the completeness of A.

Corollary 1 A Pg-lattice (A;e,, . .., e,y is topologically compact if and
only if it is a divect product of finitely many complete and completely
distributive Post algebras of ovder at most n.

3 Compactness in Eukasiewicz algebras The proofs of the following re-
sults can be found in [9] and [4] (Theorem 6.1) respectively.

Lemma 4 If A is a bounded, distributive lattice then the dual of A is a
Stone algebra if and only if x exists and (xvy) = Ix vy, for all x, ye A.

Lemma 5 If (A; v, A} ~, S1, « « , Sy 1) e LUk, and beC(A) then ((b; v, a;
=y 81y« « oy Spop; D) e buk,, wheve -x = ~x A b whenever xe (b], and h: A — (b]
defined by h(x) = x A b is a surjective (Eukasiewicz) homomovphism.

Theorem 4 If (A; v, A; ~, $1, Sp; 1) € Luk; then the following ave equivalent:

(i) A is equationally compact.

(ii) A is complete and has a smallest dense element.

(iii) A is the divect product of a complete Boolean algebra and a complete
Post algebra of ovder 3.

(iv) A is a (Fukasiewicz) retract of a topologically compact algebra in
tuk,.

Proof: (i) (ii). Let A etuk; be equationally compact. Clearly, s,(x) is
the largest central element in A which is <x and so s,(x) = !x. It follows
from M3 and Lemma 4 that A is a dual Stone algebra; ~s;(x) being the dual
pseudocomplement x+ of x in A. Similarly, since s,(x) is the smallest
central element in A which is =x and s;(¥Ay) = s;(x)a s;(y) holds in any
Lukasiewicz algebra, A is a Stone algebra; ~s,(x) being the pseudocomple-
ment x* of ¥ in A. Now, the set Z of equations

~8,y(%) = 0
{xaf=x; fen(A)}

is finitely solvable and, therefore, by compactness, is solvable. Any
solution of Z is the smallest dense element in A. A, being equationally
compact as a lattice, is complete.

(ii) = (iii). Let A be complete, d be the smallest dense element in A and
a=d*. Then, by Lemma 5, (a] and (a*] are fukasiewicz algebras of
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order 3 and h;: A — (@], ky: A — (a*] defined by %,(x) = anx, hyl(x) = a*ax
respectively, are surjective (Lukasiewicz) homomorphisms. Clearly, since
@ and a* are complementary, the mapping #: A — (a] x (a*] defined by i(x) =
{hi(x), ho(x)) is a (Rukasiewicz) isomorphism. Now, the pseudocomplement
of be(a] is b°=anb* and so bvd®= (bva)a(bvb*) >a; since bvb*eD(A)
implies that bvb*>d>d* "t =qa. But bvb®<a and so bvb®=q. Hence (a]
is a complete Boolean algebra. Next, the dual pseudocomplement of b € (a*]
is b® =b*aa* and, since A is a dual Stone algebra, 5% = b*Tag*.
Defining e, = daa*e (a*], we see that s,(e) = (dadH)®® = (dadH)ttra* =
(dttadt)aa* = 0aa* = 0. Similarly, s,(e;) = (dra*)*¥*ra* = (d*¥*ra*)rag* =
1aa* = g*. Thus, (a*] is a complete Post algebra of order 3.

(iii) = (iv). Trivial.

(iv) = (i). Well-known.

Corollary 2 If (4; v, a; ~, 8,, Sp; 1) etuk, then it is topologically compact
if and only if it is the dirvect product of a complete and completely
distvibutive Boolean algebva and a complete and completely distributive
Post algebra of ovder 3.

Cignoli [4], calls a lattice filter in a Eukasiewicz algebra A a Stone
filter if it is closed under the unary operation s;. The isomorphism of the
lattice of (kukasiewicz) congruences ® on A with the lattice of Stone filters
F under the correspondence F = {x e A; {x, 1) e &}, ® = {(x, y) e A%, xaf=yaf
for some feF} was established in [4], Theorem 3.10. However, the
coincidence of Stone filters and P-filters in A, coupled with the known
equivalence of XAf=yAaf and (¥ — y)a(y — x) = f in any Heyting algebra,
shows that the above correspondence coincides with its counterpart in pi
(see Theorem 2). Furthermore, the simple algebras in tuk, are finite
(Corollary 5.6, [4]). Bearing these facts in mind, a simple modification of
the proof of Theorem 2 shows that the equivalence of (i) through (v) in the
statement of Theorem 2 holds for any fukasiewicz algebra.
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