NECESSITY AND SOME NON-MODAL PROPOSITIONAL CALCULI

BISWAMBHAR PAHI

Sometimes in a non-modal propositional calculus (PC) containing a connective (C) for implication a satisfactory definition of 'it is necessary that p'(Lp)' is available. Thus, in the well-known system E of entailment, Lp may be defined as CCppp, where 'C' denotes the non-truth-functional implication taken as a primitive connective. A non-modal PC may fail to permit an intuitively satisfactory definition of necessity either because it is too weak or because it is too strong. A non-trivial example of the former case is provided in [5], where the authors use the following four-valued model $\mathcal N$ (with starred elements as designated)

C	0	1	2	3
0	3	3	3	3
1	0	2	0	3
*2	0	3	2	3
*3	0	0	0	3

of the pure implicational calculus (PIC) P_I of ticket entailment defined in [1], to show that there is no pure implicational (PI) wff $\alpha(p)$ in the single variable p satisfying the following conditions:

- (1) $C\alpha(p)p$ is a theorem of P_1 ,
- (2) $Cp \alpha(p)$ is not a theorem of P_{I} ,
- (3) if β is a theorem of P_I , then $\alpha(p/\beta)$ is a theorem of P_I ,

and

(4) for any δ , θ , $CC\delta\theta C\alpha(p/\delta)\alpha(p/\theta)$ is a theorem of P_I .

Corresponding to the modal axiom ${\it CLCqrCLqLr}$ consider now the condition

(4*) $C\alpha(p/C\delta\theta)C\alpha(p/\delta)\alpha(p/\theta)$ is a theorem of P₁.

Since transitivity of implication and modus ponens are available in P_I , if $\alpha(p)$ satisfies (4), in view of (1), it will also satisfy (4*). The authors of [5] are entitled to the following:

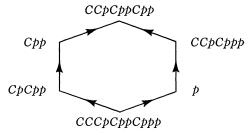
Theorem. There is no PI wff $\alpha(p)$ in a single variable p satisfying conditions (1), (2) and (4*).

Proof. Assume that there is a **PI** wff $\alpha(p)$ satisfying (1), (2) and (4*). Since Cpp is an axiom of P_1 , $\alpha(p)$, in view of (2), contains at least one occurrence of C. Consider now the unary operation in the model N defined by $\alpha(p)$. Since (1) holds and C10 = C20 = C30 = 0, $\alpha(p/0) = 0$. Since $\alpha(p)$ is a **PI** wff and C22 = 2 and C33 = 3, $\alpha(p/2) = 2$ and $\alpha(p/3) = 3$. Since $\alpha(p)$ is different from p and $Cab \neq 1$ for any truth-values a, b in the model N, it follows that $\alpha(p/1) \neq 1$. Since C31 = 0, in view of (1), $\alpha(p/1) \in \{0, 2\}$. Consider now the value of $C\alpha(p/Cqr)$ $C\alpha(p/q)$ $\alpha(p/r)$, for q = 2, r = 1. It reduces to $C\alpha(p/C21)$ $C\alpha(p/2)$ $\alpha(p/1) = C\alpha(p/3)$ C2a = C3C2a, where a = 0 or a = 2. But C3C20 = C30 = 0 and C3C22 = C32 = 0. Thus, $\alpha(p)$ fails to satisfy (4*). This completes the proof.

We make some preliminary remarks concerning Church's system W_I of weak implication (see [3]) and another system containing it, before taking up the problem of the definability of necessity in these systems. Consider the following four-valued (with designated elements starred) model \mathcal{M} of W_I given in [7].

C	0	1	2	3
0	1	1	1	1
*1	0	1	0	0
2	0	1	3	0
*3	0	1	2	3

It is proved by Meyer in [4] that W_I has six mutually non-equivalent wffs in one variable that may be conveniently presented in the following hexagonal graph.



Our choice of wffs in the graph is somewhat different from that of Meyer [4] and is more suitable for our present purpose. Arrows indicate the directions in which provable implications hold in W_I . Of the six wffs in the graph, three are classical tautologies and of these three Cpp and CCpCppCpp are theorems of W_I . It follows that any PI classical tautology in the variable p that is not a theorem of W_I is equivalent to CpCpp in W_I and hence its addition as an axiom to W_I will give a system in which all one-variable PI tautologies are provable.

The following lemma which shows that Sobociński's four-valued model \mathcal{M} , given above, characterizes the class of all one-variable theorems of W_I may have some interest for computational purposes.

NECESSITY 403

Lemma. A PI wff in a single variable is a theorem of Church's system of weak implication if and only if it is valid in the model M.

Proof. Since \mathcal{M} is a model of W_I , the 'only if' part is trivial. Since \mathcal{M} is a model of W_I , there are no more than six mutually non-equivalent wffs in the variable p available in \mathcal{M} . It is now sufficient to show that the six wffs of Meyer's graph are mutually non-equivalent in \mathcal{M} . We note that for any truth-values a, b of the model \mathcal{M} , Cab and Cba are both designated if and only if a = b. Therefore, if $C\alpha\beta$ and $C\beta\alpha$ are both valid in \mathcal{M} , then for any assignment f of truth-values in \mathcal{M} to the variables of α , β , $f(\alpha) = f(\beta)$. But each of the six wffs in Meyer's graph defines a distinct unary operation in \mathcal{M} as the following table shows.

Þ	Срр	СрСрр	ССрСррр	ССрСррСрр	СССрСррСррр
0	1	1	0	1	0
*1	1	1	1	1	1
2	3	0	1	1	0
*3	3	3	3	3	3

Therefore the six wffs are mutually non-equivalent in \mathcal{M} . This completes the proof.

Remark. Consider the model \mathcal{M}^* obtained from \mathcal{M} by deleting the row and the column for 2. \mathcal{M}^* is isomorphic to the implicational part of the three-valued model axiomatized by Sobociński in [6]. Since all classical PI tautologies in a single variable are available in \mathcal{M}^* it follows that for any such wff $\alpha(p)$, $\alpha(p)$ is a theorem of W_I if and only if $\alpha(p/2) = 1$ or $\alpha(p/2) = 3$ holds in \mathcal{M} . Since 2 generates the model \mathcal{M} , it follows that every PI theorem of Sobociński's three-valued logic studied in [6] which is invalid in \mathcal{M} has a substitution instance in one variable that is a non-theorem of W_I .

Consider now the system W_I . Let $\alpha(p)$ be CCCpCppCppp. Then up to equivalence $\alpha(p)$ is the only wff that provably implies p in W_I without being implied by it. By using the table given in the proof of the lemma it is easily verified that $\alpha(p)$ satisfies conditions (1)-(3) with ' P_I ' replaced by ' W_I '. However, it fails to satisfy (4) because $CCqrC\alpha(p/q)$ $\alpha(p/r)$ takes the value 0 in the model $\mathcal M$ of W_I when q and r take respectively the values 3 and 2. It seems that (4*) also fails for the given $\alpha(p)$ in W_I .

Let $\alpha(p)$ be as in the preceding paragraph. This $\alpha(p)$ continues to satisfy conditions (1)-(3) in $\mathcal M$ as in W_I . But $C\alpha(p/Cqr)$ $C\alpha(p/q)$ $\alpha(p/r)$ is valid in the model $\mathcal M$ as can be ascertained by elimination of cases. Thus, $\alpha(p)$ satisfies (4*) in $\mathcal M$. Thus, one can claim that a reasonable definition of necessity is available in the **PIC** defined by $\mathcal M$.

On the other hand, Sobociński's three-valued logic (see [6]) is too strong a system to permit a definition of necessity. It is easily verified that any CN wff $\beta(p)$ which satisfies conditions (1) and (3) in the three-valued logic of Sobociński must define the identity operation in the three-valued model of [6] and hence must fail to satisfy condition (2).

REFERENCES

- [1] Anderson, Alan Ross, "Entailment shorn of modality" (abstract), The Journal of Symbolic Logic, vol. 25 (1960), p. 388.
- [2] Anderson, Alan Ross, "A problem concerning entailment" (abstract), *The Journal of Symbolic Logic*, vol. 27 (1962), p. 382.
- [3] Church, Alonzo, "The weak theory of implication," in Kontrolliertes Denken (1951), pp. 22-37.
- [4] Meyer, Robert K., "R_I—The bounds of finitude," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970), pp. 385-387.
- [5] Parks, R. Zane, and John R. Chidgey, "Necessity and ticket entailment," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 224-226.
- [6] Sobociński, Bolesław, "Axiomatization of a partial system of three-valued calculus of propositions," The Journal of Computing Systems, vol. 1 (1952), pp. 23-55
- [7] Sobociński, Bolesław, "A note concerning the many-valued propositional calculi," Notre Dame Journal of Formal Logic, vol. II (1961), pp. 127-128.

University of Notre Dame Notre Dame, Indiana