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COMBINATORIAL SYSTEMS WITH AXIOM

C. E. HUGHES and W. E. SINGLETARY

Introduction:* The purpose of this paper is to investigate the general
decision problems associated with a number of combinatorial systems with
axiom. In particular, we shall show the many-one equivalence of the
general halting problem for Turing machines, the general decision problem
for Thue systems with axiom, the general decision problem for semi-Thue
systems with axiom, and the general decision problem for Post normal
systems with axiom. This, combined with a recent result of Overbeek [5],
shows that every recursively enumerable (r.e.) many-one degree (of
unsolvability) is represented by each of these general problems for
systems with axiom. Finally, this latter result is proven to be best
possible in that it does not hold for every r.e. one-one degree.

Historical Background: Semi-Thue systems, Thue systems and Post
normal systems were defined by Post as proper subsets of canonical
forms. Decision problems associated with these systems have been studied
by various authors, e.g., [l], [2], [3], [4], [6], [7], and [8]. In particular,
W. E. Singletary [7] has combined results of his own and those of others in
such a way as to provide an effective proof of the (r.e.) equivalence of the
general decision problems which are of concern to us here. The stronger
results to be proven here were announced in [4] and form part of an
extensive study into the equivalence of general combinatorial decision
problems.

Preliminary Definitions: A semi-Thue system T is a pair (Σ,R) where Σ
is a finite alphabet and R is a finite set of productions of the form a —» β,
for a and β words over Σ. T is said to be a Thue system if a -* β belongs
to R implies β —> a is also in R. For any arbitrary pair of words W, Wr

over Σ, we say that Wr is an immediate successor of W in T, denoted
T(W, W) if W = P a Q, W = P β Q, P and Q are words over Σ, and a — β is
inR.
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A Post normal system N is a pair (Σ,R) where Σ is a finite alphabet
and R is a finite set of productions of the form a —• β, for a and β words
over Σ. For any arbitrary pair of words W, W1 over Σ, we say that W1 is
an immediate successor of W in N, denoted N(W, Wr), if W= aP, W = Pβ,
P is a word over Σ, and a —> β is in R.

Let M be a semi-Thue system, Thue system or Post normal system
and let A be a word over the alphabet of M. Then MΛ shall denote a system
with axiom. For arbitrary words W and W' over the alphabet of Λf, we say
W is derivable from W in Λf, denoted M[W, W], if either W = Wr, M(W, W),
or Wr is derivable from an immediate successor of W. The decision
problem for MA is the problem of determining, for any arbitrary word W
over the alphabet of Λf, whether or not W is derivable from A in M.

A Turing machine Λf is a triple (Σ,Q,S) where Σ = {au . . ., an} is a
finite alphabet; Q = {qly . . ., qm} is a finite set of symbols, called states;
a0, Ί& and -£ are new symbols; and Sis a non-empty set of quadruples of
the form qbDs where q and s are states, 5 is a member of (Σ u {a0}) and
De ({•&, -£,a0} U Σ) and with the property that no two distinct quadruples of
S, qbDs and # fδ fi)V are such that qb = qrb\ We shall call members of
Q x (Σ u {α0}) discriminants. A terminal discriminant is defined to be any
discriminant qa such that there is no quadruple of S with the initial subword
qa. A configuration of Λf is any string of symbols W over (Σ u {flo}

u Q)
such that W contains exactly one occurrence of a member of Q, the leftmost
symbol of W is not a0, the rightmost symbol of W is a member of (Σ u {a0})
and is aΌ only if the symbol occurrence immediately to its left is a member
of Q. We say that Wr is the immediate successor of W = a{γ. . . aikqudjl. . .
ajh, denoted M(W, Wr), if and only if any of the following cases obtain:

(i) quajfyqyβS and W = aiχ . . . aikqvapaJ2 . . . aJh;
(ii) quaj{f^qveS9 h > 1, either k > 0 or j x > 0, and W = ail . . .

aikajιqvah . . . ajh;
(iii) quaj{&qυeS, h > 1, k = 0, ^ = 0 and W = qvaJ2 . . . ajh;
(iv) quaii^qveS, h = 1, either fe > 0 or j x > 0, and PΓf =ajι . . . a/fea7l<^a0;
(v) qudj&qv eS, h - 1, fe = 0, JΊ = 0 and PF' Ξ ̂ α o ;

(vi) qua^-tqv^S, k > 0, either j i > 0 or /* > 1, and P7f Ξ fl/i . . .

(vii) quaiχ-tqv e S, k > 0, Ί = 0, k = 1 and W = ̂ ^ . . . aikmmlqvaik

(viii) quajftqv e S, k = 0, either ii > 0 or h > 1, and P̂ f Ξ qυaQa^ . . . a7̂

(ix) quctj^qveS, k = 0, j x = 0, /z = 1 and PFf = ^ α 0 .

Let Λf be a Turing machine. For arbitrary configuration C of M, we
say C is terminal if and only if there is no C' such that M(C, C') C is said
to be derivable from C, denoted M[C,C], if either C =C, M(C, C) or C is
derivable from an immediate successor of C. C is said to be mortal if
there is a terminal Cf such that M[C} C

f] T n e halting problem for Λf is the
problem of determining for an arbitrary configuration C of Λf whether or
not C is mortal.

Let G and G' be two general decision problems. Then we say that Gis
many-one reducible to Gf if there exists a one-one effective mapping Φ of
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the problems p associated with G into the problems associated with Gr such

that p is of the same many-one degree as Mp) G and Gr are said to be

many-one equivalent if each is many-one reducible to the other. Every r .e.

many-one degree of unsolvability is said to be represented by G' if the

general decision problem for r .e. sets is many-one reducible to G f.

Part 1: In this part we shall show that the general halting problem for

Turing machines, denoted 9ft/H, is many-one reducible to the general

decision problem for Thue systems with axiom, denoted ^ΓΛ.

Let M be an arbitrary Turing machine with alphabet Σ = {a1} . . ., αn},

state set Q = {ql9 . . ., qp} and Turing table Z. Let qH, qr

H, q"H and h be new

symbols. We define a Thue system T with axiom hqHh, denoted ThqHh T will

have alphabet Σ(T) = Σ U {a0} U Q U {qH,qτ

H,qrtH9^} and the productions of T

are as follows where α<—>β means a —> 0 and β —> a are both productions.

1. qidj ^>qυak, whenever q{a^akqv^Z

2. hqjaoh^>hqvaoh, whenever qid0JLqv e Z

3. hqiaoak^>hqvaoaoak9 for all k, 0 ^ k ^ n, whenever qiao£qυeZ

4. hakqiaoh<r-^hqvakh, for all k, 1 ^ k ^ n, whenever qido-£qveZ

5. ajakqiaoh<-^a^qvakh, for all pairs (&, j), 0 ^ k ^ n, 0 ^j ^n, whenever

^α o-£&,eZ

6. hakqiaoaj ^^hqυakaoa,j, for all pairs (β, j), 1 ^ ^ ^ n, 0 ^ j ^ n, whenever

qiao-ίqveZ

7. β«ί%ίr

f αoΛ/<^'αwίf;αΛΛofl7i> f o r a 1 1 triples (k,nι,j), O^k^n, 0<m,^n,
0 < j < ?z, whenever qid0JLqveZ

8. /z^α/ <^hqvaocij, whenever ^ α7 / ^ e Z , with j =£ 0

9. hakqi(ij <^>hqvaka^ for all fe, 1 ^ fe ^ w, whenever qidj<£qveZ, with j * 0

10. OmakqiCij <^>CLmqvakau ^ o r a ^ P a i r s (m,k), 0 — m ^ n, 0 — k ^ n, when-
ever <2Vfl/ -CqvtZ with j * 0

11. hqidoh<-^hqvaoh, whenever qiao-fcqveZ

12. hqiaoak^-^hqvak, for all &, 1 ^ fc ^ w, whenever ^ α o ^ ^ e Z

13. hqiaoaoak<^hqvaoak, for all &, 0 ^ /? ^ ^, whenever qiao-i^qveZ

14. akq{ajh <-> akaj qυaoh, for all &, 0 ^ ^ ^ /z, whenever q{aj^qveZ

15. amqiajaoak<->amajqvaoak9 for all pairs (m,k), 0 ^ m ^ n, 0 ^ k ^ n,

whenever qiaj^qve Z

16. a m q i c i < ] Q < k < ? - J > a m a j ( l v a k i f ° r a l l p a i r s ( m , k ) , 0 — n ι — n , 1 — k — n , w h e n -

every qia^qv^Z

17. hqiajh<r-^>hdjqva0h, whenever qidjJ&qveZ, with j ^ 0

18. hqidjaoak<^>hajqvaoak, for all k, 0 ^ k ^ n, whenever q{aj^qveZ9 with

j * 0

19. hqiaja^^r->ha^qva^ for all &, 1 — k ^ w, whenever qid]J&qveZ with j Φ 0

20. qidj <r->qrΊjdj, whenever 1 — i — p, 0 ^ j — n and ^ β ; is a terminal dis-

criminant

21. q"Hajh<r->qHh, for all j,0 < j <n

22. qnn^]ak <-*#'//#&> f ° r all pairs (j, &), 0 ^ j ^ n, 0 ^ ^ ^ n

23. qΉajak<^qrHak> f o r all pairs (j, £), 0 ^ j ^ w, 0 ^ fe ^ »

24. qr

H^jh^^qHh9 for all j , 1 < j < w

25. djdkqH<^>djqH9 for all pairs (j, &), 0 ^ j < n, 0 ^ k ^ n

26. kdjqH<^->hqH9 for all j , 1 ^ j ^ n
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We shall first show that the decision problem for ThqHh is of the same
many-one degree as the halting problem for M. As an initial step in this
proof, we shall investigate the properties of the semi-Thue system S with
alphabet Σ(T) and productions comprised of the above 26 rule sets of T
without inverses.

Lemma 1. Define a normal word over Σ(T) to be any word of the form hCh
where C contains no h and exactly one occurrence of a symbol from
Q U {#«>#'// 9 #"#}• Let W be an arbitrary normal word. Then Wλ and W2 are
immediate successors of W in S only if W1 = W2 and Wλ is a normal word.
That is, either W is terminal in S or W has an unique immediate successor.
Using this we have, by transitivity, that if Wx and W2 are both derivable

from W via n applications of productions of S, then Wx = W2 and Wx is
normal.

Proof: Let W be an arbitrary normal word. If W is terminal, then the
lemma is trivially true. If W contains a qH, qr

H or q"H, then observation of
production sets 21-26 shows that at most one rule may apply to W and it
can be easily verified that if one of these is applied to a normal word then
the resultant word must be both unique and normal. If W is not terminal
and does not have an occurrence of qH, qτ

H or q"H, then it must have a
subword #*α7 for 1 ̂ i ^ p and 0 ^ j ^ n. Assume W is of this form, then
observation of rule sets 1-20 will verify the lemma.

Lemma 2. Let C and Cf be arbitrary configurations of M, then M(C,Cr) if
and only if S(hCh, hC'ti), and hence, M[C, C] if and only if S[hCh, hC'h\ In
addition, C is mortal in M if and only if S[hCh, hqHh\.

Proof: Observation of the productions of S will show this to be true.

As a second step in the proof, we shall now investigate the properties
of the semi-Thue system 5 whose alphabet is Σ(T) and whose productions
are exactly the inverses of those of S.

Lemma 3. The decision problem for Shqφis of the same many-one degree
as the halting problem for M.

Proof: Let W be an arbitrary word over Σ(T). Then observation of the
productions of S will show that Ί$[hqHh, W] if and only if W is of one of the
following forms:

(i) hXqHh where X is a word over (Σ U {a0}), the initial symbol of which is
not a0.

(ii) hXqΉYh such that X and Fare words over (Σ u {a0}) where the initial
symbol of X is not a0, Y is not the empty word and the final symbol of
Y is not «0.

(iii) hXqn

HYh such that X and Y are words over (Σ u {a0}) where the initial
symbol of X is not a0, Y is not the empty word and the final symbol of
Y is a0 only if Y = a0.

(iv) hCh for C a mortal configuration of M.
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But then the decision problem for ShqHh many-one reduces to the halting
problem for M, since it is decidable if a word is an instance of (i), (ii), or
(iii). Finally, let C be an arbitrary configuration of M. Then, by (iv), C is
seen to be mortal if and only if S[hqHh, hCh], Hence, the lemma is proven.

The following lemma which is essentially due to Post [6] shows that the
decision problem for T/^AIS of the same many-one degree as that for Shqφ.

Lemma 4. For an arbitrary word W over Σ(T), T[hqHh, W] if and only if
S[hqHh, W].

Proof: If S[hqHh, W], then clearly T[hqHh, W\. Suppose T[hqHh, W]. Let
hqHh s wl9 W = WU, and let T(Wl9Wj9 T(W2,W3), . . ., T(Wu_l9Wu) be the
shortest derivation of W in T. Then each Wj9 2 ̂  j; ^ u , is a result of P7..J.
with respect to one of the rules of S or S. If only rules of S were used, we
would be through. Hence, we may assume that for some j , 2 ^j ^u, Wj is
the result of a rule σ of S applied to Wy-i and each of the previous steps
involves rules from S. Now WJ ^1 is not hqHh since none of the rules of 5 is
applicable to hqHh. Hence, Wj-X is the result of applying a rule σ' of Sto
Wj_2. But then PF; _2 is the result of applying the inverse of σ', call it σ', to
WJ- L. This shows that PΓ; _2

 a n c i wj a r e t n e result of applying rules σf, and
σofS, respectively, to Wj-X. Now, since Wj-1 is a normal word, there is
only one word X, such that S(Wj-uX). Hence, W; _2 = Wj and we have that
T(WUW2), . . ., T(W^2,Wj+ι), . . ., T(Wu-l9Wu) is a shorter derivation of
W. But this is a contradiction. Therefore, S[hqHh, W],

Lemma 5. The decision problem for ThqHh is of the same many-one degree
as the halting problem for M.

Proof: Lemmas 3 and 4.

Theorem 1. 2^H is many-one reducible to 3~A.

Proof: Immediate from Lemma 5.

Part 2: In this section we shall complete the necessary steps to show the
many-one equivalence of /&•//, έΓA, JA (the general decision problem for
semi-Thue systems with axiom), and 71/A (the general decision problem for
Post normal systems with axiom).

Lemma 6. ^ΓA is many-one reducible to JA.

Proof: This follows directly from the fact that every Thue system is a
semi-Thue system.

Lemma 7. JA is many-one reducible to 7uA.

Proof: Let S = (Σ,R) be an arbitrary semi-Thue system and let A be a
word over Σ. Define the Post normal system N = (Σ(JV), R(N)) as follows:

Σ(N) = Σ u {h}, where h is a symbol not contained in Σ.
R(N) is comprised of the productions: k-* k, a —> a, for every ae Σ,

and a —> β9 whenever a —» β is a member of R.
The proof may now be completed by showing that the decision problem

for SA is of the same many-one degree as that for N^.
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Let W be an arbitrary word over Σ and let Wf be an arbitrary word
over Σ(N). Observation of i?(AΓ) shows that S[A, W] if and only if N[hA, hW].
Now, clearly N[hA, Wr] only if W contains exactly one occurrence of the
symbol h. Assume Wr is of this form. Then W = W1hW2, for some words
Wx and W2 over Σ, aod N\fιA,W] if and only if S[A, W2WX\.

Lemma 8. 7z/A is many-one reducible to 7/uH.

Proof: This may be shown by a series of reductions. First, observation of
proofs presented by Cudia and Singletary [2] shows that 7i/A is many-one
reducible to the general decision problem for r.e. sets. And finally,
Overbeek [5] has demonstrated that the general decision for r.e. sets is
many-one reducible to 2^.

Theorem 2. 7hyH, J~A, JA and 7i/A are many-one equivalent.

Proof: Follows from Theorem 1 and Lemmas 6, 7, and 8.

Part 3: As a final step we now show that every r.e. many-one degree is
represented by each of JΆ, JA and VPA and further that this result is best
possible with regard to degree representation.

Lemma 9. Every r.e. many-one degree is represented by 9?uH.

Proof: This has been shown by Overbeek [5].

Theorem 3. Every r.e. many-one degree is represented by ^ΓAy JA and

Proof: Immediate from Theorem 2 and Lemma 9.

Lemma 10. No instance of &"A, JA or 7i/A is of the same many-one degree
as an r.e. simple set.

Proof: Let PA be a Thue, semi-Thue or Post normal system with axiom
whose decision problem is unsolvable. Then there must exist a word Wo

over the alphabet of P such that A does not derive Wo and {x\P[X, Wo]} is
infinite. For assume that is not so, then the decision problem for PA is
solvable by the following algorithm: Let W be an arbitrary word over the
alphabet of P. Using the productions of P, generate the set of words which
may derive W until either A is encountered or all members of the set have
been listed. This listing procedure is carried out in the following manner.
At stage 0, list W. At stage n + 1, list all immediate predecessors of words
listed at stage n. That is, all words Wl9 such that P(Wl9 W2) and W2 was
listed at stage n. Clearly, by our assumption, A must eventually be listed
if the set of words which derive W is infinite. Hence, this procedure is
finite and P[A, W] if and only if A is listed.

Now, {x\ P[X, Wo]} is an infinite r.e. set in the complement of the set of
words derivable from A. Thus, any set of the same one-one degree as the
decision problem for PA must be non-simple.

Theorem 4. Not every r.e. one-one degree is represented by 3~A, JA or

KA-

Proof: This is an immediate consequence of Lemma 10.
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