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A Property Which Guarantees

Termination in Weak Combinatory

Logic and Subtree Replacement

Systems

ALBERTO PETTOROSSI*

1 Introduction It is well-known that recursive equations may be con-
veniently used for defining functions and specifying their computations. A
particular syntactic system for writing such equations is Weak Combinatory
Logic. Such logical formalism, even if not particularly appealing to computer
scientists because of its syntactical characteristics, could be useful when we
want to consider also untyped functions and would like to avoid the extra
problems due to the presence of variables and their bindings, as in type-free
X-calculus [ 1 ].

Those equations may be considered as production rules for deriving
"simpler" terms from more complex ones, and in that case the crucial problem
of the existence of the "normal form" arises: does there exist the "simplest"
derivable term? Is it unique?

In this paper we study that problem and give the definition of a property
which is sufficient, under some hypotheses, for assuring the existence of such
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normal forms, extending previous known results [2]. Also included is the case
in which a term may be obtained, during the rewriting process, via duplication
of subterms. The result is also applicable to subtree replacement systems and
therefore to all computational processes for which such systems may provide
useful semantical models.

2 Initial definitions and notations In order to avoid ambiguity we first
recall the definition of Weak Combinatory Logic (WCL) [2]. The alphabet is:

/, K, S constants (or basic combinators)
(,) special symbols for building terms
>, =, > binary infixes for building formulas
x, y , . . .,xlt x2, . • . variables.

Terms are defined as follows:

1. a constant or a variable is an atomic term
ii. an applicative combination of two terms ax and a2, denoted by (a1o:2),

is a term.

We generally assume left associativity, so that a ^ . . . an stands for
(. . . ( o ^ ) . . .an).

Combinators are terms without variables.
The reduction axioms and inference rules of WCL are:

\.Ix1>x1 (reduction axiom of / )
2. Kx xx2 > x 1 (reduction axiom of K)
3. Sxxx2x3> x1x3(x2x3) (reduction axiom of S)
4. If <xx > a2 then ax - a2

5. Reflexivity holds for>
6. > is the reflexive transitive closure of >
7. Reflexivity, symmetry, and transitivity hold for =
8. a. If c^ > a2 then aoO^ > a0ot2

b. If ocl > OL2 then <xxa0 > oc2a0.

To simplify some of the following definitions we write the reduction
axioms using variables (e.g., X() instead of generic terms (e.g., cfy). = denotes
syntactical identity. We write a >w j8 for showing that ]3 is obtained from a by n
applications of reduction axioms.

We can introduce in WCL some other constants (or basic combinators)
defining them either in terms of /, K, and S or by giving a reduction axiom.
This is a consequence of the Combinatory Completeness Theorem [2]. For
example we can introduce a constant B by giving either B = S(KS)K or
Bx1x2x3>x1(x2x3).

Let us now introduce some other definitions. A subbase 13 is a nonempty
(possibly infinite) set of basic combinators # = \XU . . ., Xn\. The applicative
closure -ft+ of a subbase 13 is the set of all finite applicative combinations of
basic combinators in 13. As far as notations are concerned,

01/, 13, . . . denote subbases
X, Y, . . ., K, S, . . . denote basic combinators
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x, y, . . . denote variables
a, |3, . . . denote terms
X, 0, ^, . . . denote combinators.

We also use subscripts and superscripts, if necessary. Let us suppose that we
are given a subbase iS and a term a built out of basic combinators in 13 and
variables. The set Sa of sub terms of a is defined as follows:

i. if a is a basic combinator or a variable (atomic subterm) then Sa = \a\
ii. if a = ( o ^ ) then Sa = Sai U Sa2 U \a\.

The set of proper sub terms of a is iSa - la!.
The set Ta of right applied subterms (or branches) of a is defined as

follows:

i. if a is a basic combinator or a variable then Ta = {ce!
ii. if a = ( a ^ ) then Ta = r a i U Sa:2}.

We say that the basic combinator X with reduction axiom Xxl . . . xm >/3 is a
proper combinator iff ]3 is an applicative combination of variables in the set
\xx,. . ., xm\. We also say that X has duplicative effect iff 3*/, I < / < m, such
that x/ occurs in ]3 more than once; X has compositive effect iff a right applied
subterm of j8 is not a variable.

Example I:

i. W such that Wx1x2 > x1x2x2 is a proper combinator with duplicative effect,
ii. B such that Bxxx2X2 > X 1(^2^3) *s a proper combinator with compositive

effect,
iii. Given # = {5, AT! and a = 5(A:5)x2,

5 a = 15, Jf5, K, x29 S(KS), S(KS)x2\ and Ta = {5, J5T5, x2}.

Given a term a we define the corresponding marked term marked (a) as
follows:

marked (a) = marked 1 «a, 0»

where

marked 1 «a, n)) = (OL, n) if a is a basic combinator or a variable
= (marked 1 {(ax, n + 1», marked 1 «cx2, n)))

if a = (cvj^).

Example 2:

i. marked (5XJX2X3) = ((«5, 3>, <x1? 2», <x2, 1», <x3, 0»
ii. marked (x^3(^2X3)) = («x l s 2>, <x3, 1», «x2 , 1>, (x3, 0»).

Therefore a marked term is a term in which all basic combinators and variables
are associated with an integer. If we represent a term as a binary tree according
to its applicative structure, then that integer is the number of "left choices"
one has to make for going from the root of the tree to the considered basic
combinator or variable.
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Example 3: Using a binary tree representation,

.>*^^root

marked (xxx3(x2x 3)) = ^ ^ ^ ^ > .

<*!, 2) <x3) 1> <x2, 1> <x3, 0)

J 77ze nonascending property and the basic theorem

Definition 1 We say that a proper combinator X with reduction axiom
Xx1x2 • • • xm > p has nonascending property (NA property) iff V/, for
1 < / < m, if (x/, p) occurs in markedCXxj . . . xm) and <xz-, g) occurs in
marked(/3) then p > #.

Example 4:

i. X such that Xxlx2x3 > x1x2x2 has NA property, because

marked(Xx1x2x3) = ( («* , 3), {xu 2», <x2, 1», <x3, 0» and
marked(XiX2x2) = (((x1? 2), <x2, 1», <x2, 0».

ii. S such that Sxxx2x3 > XjX3(x2x3) does not have NA property, because

<x3, 0) occurs in marked(5'x1x2x3) and
(x3, 1> occurs in marked (x xx3(x2x3)).

For the usual concepts of "normal form", "redex", and "reductum" in WCL,
see [2].

Theorem 1 (Basic Theorem) Given a proper combinator X with NA
property and without compositive effect V% e \X\+ x has normal form.

In order to prove Theorem 1 we first introduce more definitions and prove
some lemmas.

Definition 2 Given a term a we define the set Ra of terms reachable from
a as follows: Ra = \p\a > 01.

Definition 3 Given a term a and a pair (X, n) (where X is a basic combina-
tor) which occurs in marked (a), n is the copy-number (or c-number) of that
occurrence of X in a. We also say that such an occurrence of X is associated
with the c-number n or, simply, X is with c-number n or X has c-number n.

Definition 4 We say that a combinator x cycles iff x >k X f° r some k > 1.

Remark 1: In proving the following lemmas and Theorem 1 we consider all
reductions to be leftmost outermost. This is a safe strategy for obtaining the
normal form (see [2]).

Remark 2: From now on, unless otherwise stated, we will consider that the
basic proper combinator X has NA property and does not have compositive
effect.
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Remark 3: In what follows we say that "the maximum c-number in x e \X\ + is
ra" or "x has maximum c-number ra" as abbreviations for: "ra is the maximum
integer such that (X, ra> occurs in marked(x)".

Lemma 1 VX e \X \+ Rx is finite.

Proof: Let ra be the maximum c-number in x« Since X has NA property and
does not have compositive effect, V0 e Rx such that x ^ 0, 0 must be an
applicative combination of at most m subterms of x, otherwise at least one X in
0 would have a c-number greater than ra. Since the set of all subterms of x is
finite, Rx is finite.

Lemma 2 / / x e i l l + does not have normal form then there exists x e {X!
such that~x = X<p2 . . • 0W, w/zere V0Z-, /or 2 < / < n, <t>i is in normal form, and x
has no normal form.

Proof: Let £2 be the set of all terms in Ufi + without normal form. Suppose
12 =£ 0. We can order £2 using the "proper subterm" relation. It is a well order-
ing and therefore there exists x e & whose proper subterms have normal form.

Definition 5 A reduction a > t j3 is called a /zead reduction when either a = p
or a = pa2 • • • <*« with ?2 > 2 where p is the reduced redex.

Lemma 3 Gipera Xo 6 i ^ ! + «wc/z //wzf Xo — -^02 • - • 0^ where all $$*$ with
2 < / < 77 <2re m normal form, if Xo > i Xi ^ i • • - > i Xr > i - - * ̂ e ^ ^z: ^ 0̂
Xz > i Xz+i is a head reduction.

Proof: Immediate because X does not have compositive effect.

Definition 6 Given the head reduction a >r p, that is pa2 . . . art > i
p'<x2 . . . an where p is the redex and p' is the contractum, we say that a subterm
oa of a immediately produces the subterm a^ of j3 (or j3 immediately derives
from a) iff ezY/zer 3/ 2 < f < w such that oa = a^ = az- or aa and a^ are subterms
of p and p respectively and both correspond to the same variable X[ of the
reduction axiom applied in the given reduction. If o^o^ immediately produces
o^pof^ we also say that o^p immediately produces o^ (or o*p immediately
derives from o^p) for i - 1,2.

Example 5: In

/ y\(1) / A 2 )

y \ s K >J / v s (f)

s s (3) s s (4)

which is a head reduction, S immediately produces S (because they both
(i) (2)

correspond to a3, writing the reduction as poc2oc3 > x p'a2a.3)\ K immediately
(4)

derives from K (because they both correspond to the variable x2 of the axiom
0)
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Sx1x2x3 > xlx3(x2x3)); and K immediately produces K (because S K immedi-
(5) (6) (5)

ately produces S K since they both correspond to a2).
(6)

Definition 7 Given a sequence of head reductions a = a0 > j . . . >l an = j3,
we say that a subterm oa of a produces a subterm a^ of /3 (or Op derives from
oa) iff there exists a sequence of subterms oaQ of a0, aa i of otu . . ., oan of an

such that Vfc, 1 <k <n, oak_l immediately produces oak.

Example 6: Given a0 = KKK{SSK)KK > l 5 ax = K(SSK)KK >u a2 = SSKK > l 5
(1) (2) (3)

ce3 = SK(KK), then 5 produces S because oa. = S immediately produces
(4) (1) (4) l 0+1)

a . , ^ f o r / - 0 , 1 , 2.

Remark 4: If oa produces 0$ then oa = Op.

Lemma 4 Given Xi, Xi € !^ ! + Xi >k X2 w / ^ A: > 1. Let us suppose that %\
and X2 nave tne sari^e maximum c-number m: (i) A copy of X with c-number m
in Xi produces 0 or 1 copy of X with c-number m in Xv GO A copy of X with
c-number m in x2 can derive only from a copy of X in X\ with c-number m.

Proof: (i) Given Xx1 . . . xm > 0, since X does not have compositive effect, the
branches of j3 are variables, i.e., elements of the set \xu . . ., xm\. Since X has
NA property at most one copy of x/, which has c-number m - i in Xx1 . . . xm,
has the same c-number m ~ i in p. (ii) Obvious, because X has NA property.

Lemma 5 Given x0 € \X\+ if Xo > i Xi > i • • • > i Xk = Xo then Vz, 7, 0 < i,
j < k, the maximum c-number in Xi is equal to the maximum c-number in X/-

Proof: Since X has NA property, the maximum c-number cannot increase. If it
decreases, x cannot cycle.

Lemma 6 Given Xo e ^ ^+ if Xo > i Xi >i • • • > i Xk - Xo then Vz, /, 0 < i,
j < k, the number of copies of X's in Xi with maximum c-number is equal to
the number of copies of X's in %/ with maximum c-number.

Proof: The maximum c-number in Xi ls equal to the maximum c-number in X/
by Lemma 5. Since X has NA property, the number of copies of X's with
maximum c-number in Xi cannot increase in X/ f° r / > i by Lemma 4. If it
decreases then x0 cannot cycle.

Lemma 7 Given X(p1 . . . (f>k>1p where fa e \X\+ with i = 1, . . . , & , z/0/ / z^
maximum c-number mz- m (X0i . . . 0&) / o r z = 1, . . ., k then the maximum
c-number in |3 is at most max(m1, . . ., mk).

Proof: Immediate.

Definition 8 Suppose a > 2 (3. We say that a particular occurrence of a
subterm oa of a is unbroken in the reduction a > j ]3 iff either oa is not a sub-
term of the reduced redex and the reduced redex is not a subterm of oa or oa

is a subterm of the reduced redex and it corresponds to an atomic subterm of
the applied reduction axiom. A subterm oa is broken if a subterm (proper or
not) of it is not unbroken.
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Example 7:

i. In S(KS)x5B > j KSB(x5B), KS is a subterm of the reduced redex and it
corresponds to the variablexx of the reduction axiom Sx1x2x3>i x1x3(x2x3)
we applied. Therefore KS is unbroken.

ii. In S(KSKK) >2 S(SK), KS is a subterm of the reduced redex and it does not
correspond to an atomic subterm of the reduction axiom Kxxx2 > xx

applied, because it corresponds to Kx{. Therefore KS is broken. Also KSK,
KSKK and S(KSKK) are broken because their subterm KS is broken.

Definition 9 Let x = X<§>2 • • • 0m-i0m0m+i . . . 0« be an element of \X\ +

and 2 < m < n. We say that 0m is the rightmost deepest branch (RDB) of % iff
0m is a right applied subterm of x containing an X with c-number which is
maximum in x and 0m+1, . . ., <f>n do not contain an X with maximum c-number
inx-

Example 8: Let us consider X020304 where 02 = 04 = X and 03 = XOf. The
maximum c-number is 3 and 03 is the RDB, because it contains an X with
c-number 3 and 04 does not.

Lemma 8 Let a = 0wi//w+1 . ..found P = X<$>2 . . • 0m-i0m0m+i • • • 0*. ^
0/ e{X! + /or / = 2, . . ., « w/f/z 2 < m < n be in normal form. Let \pm+1, . . ., i/// e
{X!+ vwY/i m <l be in normal form. Let the maximum c-number in a and in j3
be the same and let 0m be the RDB of a and ]3. /« r/ze^e hypotheses: (i) / = ft,

Proof: (i) / = « because the maximum c-number in ce and |3 is the same, (ii) If a
reduction is possible for a either 0m = X or 0m is broken, because 0m + 1 , . . ., t///
are in normal form. If 0m = X the copies of X with c-number equal to the
maximum c-number in ]3 are 0 (because they are just 1 in a) and obviously in
that case a^p. If 0m in a is broken we have that:

1. (j)m in P cannot derive from a subterm of i//w+1 or t//m+2 or . . . or t/// by
Lemma 7, because in 0m in P occurs an X with maximum c-number and
no X with maximum c-number occurs in \pm+1, . . . \pi and NA property
holds

2. 0m in 0 cannot derive from 0m in o: because (j)m in a is broken and X
does not have compositive effect

3. 0m in p cannot be obtained by composition of terms derived from
subterms of i//m+1, . . ., i/// or proper subterms of 0m in a because X does
not have compositive effect.

From 1, 2, and 3, a^P follows.

Definition 10 Among the right applied subterms of a term o: = cqa^ . . . ocn

where ax is an atomic subterm, we define

1. the relation to be at the right hand side o/(ROF) as follows:

Vz, /, 1 < /, / < n, at ROF otj iff / > /

2. the relation to be at the left hand side o/(LOF) as follows:

V/, j 1 < /, / < n, (Xi LOF otj iff / < / .
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Remark 5: In the case that a = ax . . . an and all a/'s are atomic, if <*/ LOF ay-
then oti in mark(ce) has c-number greater than that of otj in mark(a). Analo-
gously if <Xi ROF a;- then at in mark(a) has a c-number less than that of otj in
mark(o:).

Remark 6: If at ROF otj then a, LOF a. If az- ROF ay- then V7 subterms of
a/, V5 subterm of ay, 7 ROF 6. Analogously using LOF instead of ROF and
ROF instead of LOF.

Lemma 9 Consider Xi = X^ . . . 0^} . . . 0<x) e \X\+ with 2<m<n and
X2 = X(j)f . . . 0<2) . . . 0<2) e \X\+ with 2<k<t. Suppose:

l - X l > l X 2
2. maximum c-number in Xi = maximum c-number in Xi
3. 00) = 000 flwd 00) vroduces 0[2)

4. 00) ^^J 0 ^ contain an X with maximum c-number in X\ and X2 respec-
tively.

Under these hypotheses:

(i) n - m = t - k
(ii) no 0 ^ with m < p < « produces any 0 ^ w/Y/z 2 < <7 < /:
(iii) e<2c/z 0^x) w/7/z m < p < n can only produce elements of the set !0p)l/c <

Proof: (i) Immediate.

(ii) Since 0 ^ produces 0[2) and Xi > i X2 by applying the axiom Xx1 . . . xm >
($, if 0 ^ corresponds to the variable xz- in Xxx . . . xm, then 0^2) corresponds
to another occurrence of the same variable X( in ]8. Those two occurrences
of the variable Xf have the same c-number in Xxl . . . xm and ]3 respectively,
because otherwise 0 ^ and 0 ^ could not have a copy of X with maximum
c-number in Xi and X2> respectively. If a 0 ^ with m < p < n produces a
0 ^ for any q = 2, . . ., k, that fact would imply that an Xj, with / > i in
Xxi . . . xm such that x;- ROF X(, where xz- in Xxx . . . xm corresponds to
0O)? would have been the same as an xj< in j3 such that x^ LOF xt, where xt

in /3 corresponds to 0 ^ .
Since the two occurrences of xz-, above mentioned, have the same c-
number in Xxx . . . xm and j3, respectively, X could not have NA property
by Remark 1.

(iii) All 0O)'s with m < p < n are unbroken because Xi > i X2 is a leftmost
outermost reduction and 00) is unbroken. From point ii and hypothesis 3,
point iii follows.

Lemma 10 Let 0/ e \X\+ for i = 2, . . ., n with n > 2 be in normal form. Let
Xo be X(j>2 . . . 0m_!0m0m+1 . . . <f>n where 2<m<n and 0m is the RDB ofxo- if
Xo >i Xi > i • • • > i Xi > I • • • > i Xk = Xofor k > 1 then

(i) 0W which is the RDB of Xk derives from 0m which is the RDB ofxo
(ii) Vz, 0 < / < k, a copy of (pm occurs in Xi and it is the RDB of Xi and <t>m

which is the RDB in Xi produces the (pm which is the RDB ofxi+i
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(iii) Vz, 0 < i < k - 1, 0m which is the RDB ofxi is unbroken in the reduction
Xi > i Xi+i-

Proof: (i) 0W, which is the RDB of Xk, cannot be obtained as composition of
subterms of 02, . . ., <j>n because X does not have compositive effect; it cannot
derive from a subterm of 0m + 1 or . . . or <j>n because in 0m occurs an X with
maximum c-number and no X with maximum c-number occurs in 0m + 1 or . . . or
<t>n (by Lemmas 5 and 7); and it cannot derive from a subterm of 02, . . ., 0m_2

because such a subterm could not have an X with maximum c-number in Xk>
say d, unless it had in \o (which is identical to Xk) an X with a c-number
strictly greater, than d (by Lemma 5). Therefore the copy of 0m which is RDB
of Xk derives from the copy of 0m which is RDB in Xo-

(ii) The derivation of 0m which is the RDB of Xk fr°m 0m which is the
RDB of Xo, since X does not have compositive effect, is obtained by a sequence
of 0m's such that V7, 0 < i < k ~ 1, a copy of 0W in x/+i derives from a copy of
(j)m in Xi and each copy is a right applied subterm of the corresponding com-
binator. In order to prove point ii we have to show that each 0m of the above-
mentioned sequence of 0w 's is the RDB of the corresponding x/- Since we
know (by point i) that 0m in Xk is the RDB of Xk> we have only to prove that:
Vz, 1 < i < k, if 0m which is the RDB of x/ derives from a copy of 0m in x/-i
then that copy of 0m in x/-i is the RDB of x/-i- In fact:

(1) an X with maximum c-number must occur in that copy of 0m in
X/-i because otherwise that copy of 0m would not produce a <pm which is the
RDB of Xi (by Lemma 4); and

(2) no other right applied subterms of x/-i containing an X with maximum
c-number occur in Xi-\ o n the right hand side of the copy of 0m which produces
the RDB of x/, because if any would occur, it would produce in X/ subterms
containing copies of X without maximum c-number by Lemma 9 (point iii)
and therefore, by Lemma 6, Xo could not cycle.

(iii) If <j>m, which is the RDB of Xi f° r some / such that 0 < / < k - 1, is
broken in the reduction Xi > i X/+i t n e n Xi = ^m^m+i • • • ̂ / by Lemma 3 and
no k exists such that Xi >k Xo by Lemma 8.

Lemma 11 Let 0/ e \X\ + for i = 2, . . ., n with n > 2 be in normal form. Let
Xo be X<j)2 - • • 0m-i0m0w+i • • • 0« where m < n and (j)m is the RDB ofxo- Let
Xo >i Xi > i • • • >i Xi > I • • • > i Xk = Xofor k > 1. On these hypotheses:

(i) fc, tf'/w + i, • • ., tyn e \X\* exist such tnat X =X<t>2 - • • 0m-l^m^m + l • • • $n
cycles, and

(ii) \pm, i//m+1, . . ., \pn do not have X's with maximum c-number in x •

(Note that x differs from x also for the subterm 0m which is transformed
into \jjm).

Proof: (i) Let us denote by 0^^ for 2 < / <?? the right applied subterms of Xi
for i = 0, 1, . . ., k. By Lemma 10 0J^p derives from 0 ^ . Now let us prove the
following:

Assertion 1 Each 0 ^ | r . . ., <t>^ may be derived either from 0 ^ or 0 ^ ^

or... or 0^o) as a copy of one of them or from a subterm of 0^o) or... or 0 ^ r
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Proof of Assertion 1: Each 0 ^ with m + 1 < / < n:

1. cannot derive from a proper subterm of 0^+ 1 or . . . or 0^o) because
during the reduction from Xo t o Xk = Xo> 0m *s unbroken (by Lemma 10) and
since we make only leftmost outermost reductions, also (t>^\v . . ., 0^o) are
unbroken

2. cannot derive from a proper subterm of 0 ^ because it would imply
that 3/, 0 < i < k - 1, such that the copy of 0m, which is the RDB of %/ and
derives from 0 ^ by Lemma 10, is broken. In fact in each x/, 0 < / < k, no
other copies of 0m are on the left hand side of the copy which is the RDB of x/,
because otherwise the copy of 0m which is the RDB of x/ could not contain a
copy of X with maximum c-number in \i> Therefore since all reductions from
Xo to Xk are head reductions, subterms of 0 ^ can only be derived by breaking
in X/> f° r some i such that 0 < i < k - 1, a copy of 0m which is the RDB of Xi-
But in that case, by Lemma 10, point iii, Xo could not cycle.

3. cannot be obtained by composition of subterms because X does not
have compositive effect.

From 1, 2, and 3, Assertion 1 follows.

To continue the proof of Lemma 1 l(i), now let us choose:

2. V/, j , m + 1 < / < n and m < / < n, if 0 ^ derives from 0^o) (as a copy of
it) then fa = fa=X

3 . Vz, m + 1 < i < n , i f 0 ^ d e r i v e s f r o m a s u b t e r m o f 0^ o ) o r . . . o r 0 ^
t h e n \pj = <j)j.

With the above choices x = ^02 • • • (Pm-ii/mxlJm+i • • • 4>n cycles because Xo
cycles and the subterm structure of x preserves the same derivation relation-
ships among subterms as they are in Xo-

(ii) Obviously \pm, i//w+1, . . ., \l>n do not have X's with maximum c-number
inx'.

Lemma 12 TVo combinator~x = X<j>2 • - • <Pn exists in \X\+ such that 02 , . . . ,0n

are in normal form and x does not have normal form.

Proof: Since by Lemma 1 R^ is a finite set, we have to prove that x cannot
cycle. The proof is by structural induction on x

Basis: x — X does not cycle.

Induction step: X = 0102- Suppose 0! and 02 are in normal form.

By iteratively applying Lemma 11, if (0!02) cycles then also so does x =
X\p2 • • • 4>k where k > 2 and V/, 2 < i < k, \pi is in normal form and the left-
most X in x has maximum c-number in x« But x cannot cycle by Lemma 6
because at the first leftmost outermost reduction (if a reduction is possible at
all) an X with maximum c-number is deleted. Therefore 0X02 cannot cycle.

Proof of Theorem 1: Immediate from Lemmas 2 and 12.
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Example 9: Given 19 = {X} such that Xx1x2x3x4x5 > xxx2x2x4x4 V% e \X\+ %
has normal form. In fact, X has NA property and it does not have compositive
effect.

Remark 7: If in Definition 1 we had p > q instead of p > q then the proof of
Theorem 1 would have been immediate, using a "well order" argument
(cf. [3]). In fact, at each contraction step the c-number of each copy of X
diminishes.

4 Some consequences of the basic theorem Given a combinator x> m

general more than one redex occurs in it and therefore more than one com-
binator x' exists such that x > i X-

Definition 11 A reduction strategy is a rule which chooses the redex
(or the redexes) to be reduced in a term with more than one redex when a
reduction step must be performed.

Theorem 2 Given a proper combinator X with NA property and without
compositive effect, Vx e \X\+ every reduction strategy applied to x leads to its
normal form.

Proof: By Theorem 1, Vx e \X\+ all subterms of x, which are themselves
elements of \X\+, have normal form.

Theorem 2 can also be extended to subbases with more than one basic
combinator.

Theorem 3 Given a subbase 1@ = \XU . . ., Xn\ such that VX, e 19 Xj has
NA property and doesn 't have compositive effect, Vx e 19+, every reduction
strategy applied to x leads to its normal form.

Proof: In the proofs of lemmas necessary for proving Theorem 1 we use only
the facts that NA property holds and combinators don't have compositive ef-
fect.

Example 10: Given 19 = {Xlf X2\ whereX l x 1 x 2 x 3 ^>x^ 2 x 2 and X2x^2X3X4>
x\X2x2x3, Vx 6 1?+ x has normal form. In fact, X1 and X2 have NA property and
no compositive effect. For instance:

X = Xl(XlX2)(X1XxX2)X2X2Xl >x XtXAX^XJiX^XJX^
>x XAXiXiXJiX^XJX^
>! X1X1X2(X1XlX2)(XlX1X2)X2

>! XiX2X2{XiXiX2)X2

>! X2X2X2X2.

Theorem 3 improves the result in [2], page 180, where termination of a
combinator x e 19* is guaranteed if there are no basic combinators in 19 with
duplicative effect. According to Curry and Feys [2] the results about termina-
tion are as follows:

1. If all combinators in 19 are without duplicative effect then Vx e 19* \ has
normal form.

2. If some combinators in 19 have duplicative effect then it could be the case
that:
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i. Vx e #+ , x has normal form (see Example 11.1)

ii. some x's in # + do not have normal form (see Example 11.2).

Example 11:

1. Let us consider # = \X\ such that Xx{x2 > xxx^
All x € tf+ have normal form because eventually the leftmost outermost
redex will be of the form XXcj) and from that reduction onward the number
of right applied subterms of the subterm where the reduction occurred
diminishes.

2. Let us consider 43 - \W\ such that Wxxx2 >x1x2x2>

WWW has no normal form because it cycles.

As a consequence of our result Case 2 is split into two subcases:

2.1 If all combinators in 43 have NA property and no compositive effect
then Vx e 43* x has normal form.

2.2 If some combinators in 43 do not have NA property or they have
compositive effect then it could be the case that:

i. Vx e 43* x has normal form (see Example 12.1)
ii. some x's in 43* do not have normal form (see Example 12.2).

Example 12:

1. Let us consider any 43 = \X\ where X doesn't have NA property and has no
duplicative effect (e.g., X = C where Cxxx2x3 > xxx2x2). By Curry's result,
any x e \X\+ has normal form.

2. We consider three cases:

2.1 43 = \S\ where S does not have NA property and has compositive effect.
If we denote SSS by 3 then S33(S33) does not have normal form. In
fact, 3xxx2 > JC1X2(6'X1X2) and so = S33(S33)> sx = S33(3(S33)) . . . >
s2 = S33(3(3(S33))) and so on.

2.2 43 = \W\ where W does not have NA property and no compositive
effect. WWW doesn't have normal form.

2.3 43 = \X\ where X is any combinator which has NA property and com-
positive effect.
In general, the problem of determining whether or not termination is
guaranteed for all x e \X\+ when NA property is the only condition on
X is open. In some particular cases that problem has a simple solution.
For example, if Xxxx2x3>x^x^J, then termination is guaranteed for
all x e W " (this is a consequence of Example 10).

5 Conclusions and related work We introduced the NA property for
proving termination of combinators in Weak Combinatory Logic (WCL). The
result is applicable also to term-rewriting systems.

The proof of the main theorem is based on the finiteness of the set of
terms that can be obtained by reduction from a given combinator and on the
absence of cycling reductions (cf. [6]).
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Some other methods have been used by other authors for similar proofs
and we would like to refer to [3] and [4], in which "well ordering" and "value
preserving" techniques were used for proving termination of "context free"
tree rewriting systems. With regard to those methods we notice that: (i) NA
property does not allow the direct application of a "well-ordering" technique
because it defines a nonstrict order between the structure of the redex and the
structure of the contractum; (ii) our termination result is obtained in WCL
whose power of computation is the same as a Turing machine (i.e., a "type 0"
grammar and not a "context free" one). We would like also to relate our study
with Sanchis' result on termination of terms of typed X-calculus [8]. Obviously
WCL terms can be translated into X-calculus, but, in the case of combinators
with NA property, self application is possible and, in general, typed X-calculus
would not be sufficient for such a translation. Therefore our result is outside
the scope of Sanchis'.

In general, for type 0 grammars the termination problem is undecidable,
and our study is an effort in the direction of defining properties for extending
the class of terms in which termination is decidable. It could also have useful
applications in equational logic and in the theory of recursive equations, LISP
and Lucid (as shown in [5]) as well as in type-free languages for tree manipula-
tion (cf. [7]).
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