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A Completeness-Proof Method for
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Fragment of the Propositional

Calculus

DIDERIK BATENS

The traditional proof that the classical propositional calculus (PC) is
strongly complete (i.e., if a. t= A, then a h A) is based on the notion of a
maximal consistent set of formulas, and hence on certain properties of strong
(i.e., PC-)negation. In this paper* I present a completeness-proof method which
does not refer to maximal consistent sets, but only to sets which are: (i) non-
trivial (not all formulas are members), (ii) deductively closed (all syntactical
consequences are members), and (iii) implication saturated (for all B, A D B is
a member if A is not a member). If this proof method is applied to logics that
contain strong negation, the sets turn out to be consistent with respect to
strong negation. I shall first apply the proof method to a specific extension of
the implicational fragment of PC, and next show that it also applies to the
implicational fragment itself and to a large number of logics that are extensions
of the implicational fragment. If such a logic is characterized by a semantics,
the articulation of an axiomatic system is straightforward (in view of the proof
method) and vice versa.

The completeness-proof method is especially fit for paraconsistent logics
that are based on material implication (see [1M6]). 1 Paraconsistent logics are
logics according to which at least some inconsistent theories are nontrivial
(some sentences of the language are not derivable from the axioms of the

*I am indebted to the referee and especially to the editor. As a consequence of their
remarks, the presentation of this paper has been essentially improved.
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theory). In view of the traditional conception of the relation between
derivability and implication, a logic is paraconsistent if and only if p D
(~p D q) is not a theorem. On the other hand p \J ~p (or (p D ~p) D ~p if
disjunction is absent) is a theorem of most but not all paraconsistent logics.
Some paraconsistent logics contain a weak negation, which I shall denote by
'~\ as well as strong negation, which I shall denote by '~T; both p v Ί p and
p D (~lp 3 q) are then theorems. In such cases it is preferable to say that the
logic is paraconsistent with respect to one negation (~) and not paraconsistent
with respect to the other (~1). In some logics that are paraconsistent with
respect to ~, strong negation is definable; e.g., if (p &q)D (~(p & q) "D r) is a
theorem, then ~~\p may be defined as ~~(p & p). Strong negation cannot be
defined in terms of weak negation in strictly paraconsistent logics, i.e., logics in
which no formula of the form A D (~A I) B) is a theorem, except in case A
and B share a variable. Notice, incidentally, that ~(p & ~p) is a theorem of
some (even strictly) paraconsistent logics, e.g., of the system S described
below. There are quite intuitive semantic characterizations of several para-
consistent logics based on material implication. The basic idea is that υ(~A) - 1
if υ(A) = 0, but not conversely, whereas, if strong negation is present, v(~]A) = 1
if and only if υ(A) = 0.

I use small Latin letters (p, q, r, . . .) for propositional variables, large
Latin letters (A, B, C, . . .) for formulas, small Greek letters for sets of
formulas, and large Greek letters for sets of sets of formulas. The set of all
formulas is denoted by rSΓ.

Let me now apply the completeness-proof method to a specific para-
consistent logic.2 The axiomatic system is:

Axioms:

1.1 (PDq)D((qDr)D(pDr))
1.2 ((pDq)Dp)Dp

1.3 P^iq^p)
II. 1 (p&q)Dp
11.2 (p&q)Dq
11.3 pD(q^(p&q))
111.1 pD(pyq)
111.2 qD(pyq)
111.3 ( p D r ) D ((q D r) D ((p v q) D r))
IV. 1 pD~~p
IV.2 — p D p

V.I ~ipDq)D(p&~q)
V.2 PD(~qD ~(p D q))
VI. 1 (~pv>-q)D~(p&q)
VI.2 (~p Dr)D ( ( ~ 9 D r) D (~(p & q) D r))
VII.l »ipvq)D(~p&~q)
VII.2 ~p D [rq D ~(p v q))

VIII. 1 pv~p

Rules. Detachment and Uniform Substitution.

The semantics is:
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0. v: ^->{0, 1} 5. υ(~(A D B)) = υ(A & ~B)
1. υ(ADB)=\ iff υ(A) = 0 or υ(B) = 1 6. v(~(A & 5)) = u(-vl v ~B)
2. υ(A & B) = 1 iff ι>04) = u(fi) = 1 7. υ(-(A v 5)) = u(~Λ & ~B)
3. y(i4 v£) = 1 iffuG4)= 1 oτυ(B)= 1 8. Ifυ(A) = O,thenυ(~A) = l.

4 y (—A) = υ(A)

Implication, conjunction, and disjunction behave classically (clauses 1-3),
but negation does not in that both a proposition and its negation may be true
(the converse of clause 8 does not hold). Still, the weak negation of S does
share several properties with the strong negation of the propositional calculus:
(i) either a proposition or its negation is true (clause 8), and (ii) the traditional
"laws of thought" concerning the negation of complex formulas are retained:
the law of double negation (clause 4) and the laws that allow us to drive
negations through implications, conjunctions, and disjunctions (clauses 5-7). It
is provable that this logic is strictly paraconsistent and that it is maximally so in
that any of its extensions is either the propositional calculus or trivial (all
formulas are theorems).

Theorem 1 IfotYΆ, then a 1= A

Proof as for PC

Corollary 1 // h4, then \=A.

In order to prove the converse of Theorem 1,1 shall proceed in two steps.
I first prove that a \~ A if A is a member of all nontrivial, deductively closed,
implication-saturated extensions of a (Lemma 7), and next that A is a member
of each of these extensions of a if a 1= A (Lemma 10). For the first step we
need the following definitions.

Definition a is trivial iff a - £~.
Definition Cn(ά) is the set of all A such that a \~ A.
Definition a is deductively closed iff a = Cn{a).
Definition £4 is the set of all C such that, for some B, C = A D B.
Definition a is implication-saturated iff £4 e α whenever A 4 a.

In other words, if A is not a member of the implication-saturated set α, then
all formulas of the form A D B are members of a.

Definition Γ is the set of all nontrivial, deductively closed, implication-
saturated sets of formulas.

In other words, any member of Γ contains all of its own consequences; it
contains, for all B, A D B whenever it does not contain A, and it does not
contain all formulas. In the following completeness proof the members of Γ
play the same role as maximal consistent sets play in the traditional complete-
ness proof for PC, and ξA functions with respect to members of Γ exactly as
~~ΛA functions with respect to maximal consistent sets. The members of Γ are
maximally nontrivial in that, for any 7 e Γ, Cn(y U {̂ 4}) is trivial if A 4 y. With
respect to systems containing both strong negation and material implication
(e.g., da Costa's systems Cn(\ < n < ω); see [4], p. 500) it is provable for any
7 e Γ, that ~ΛA e 7 iff £4 e 7, and hence that Γ is identical with the set of all sets
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that are maximally consistent with respect to strong negation (but some of
which are inconsistent with respect to weak negation).

Definition Γα is the set of all 7 e Γ such that a C 7.

That is, the set of all members of Γ that are extensions of a.
The proofs of Lemmas 1 and 2 are obvious and left to the reader.

Lemma 1 Bu...,Bn)rA iffBh . . ., 5 M , Bi+U ...,Bn\- (£, D A).
Lemma 2 IfBh . . ., Bn \~A, then Bh . . ., Bn, (A D C) h C
Lemma 3 IfaUβ \~A and, for any B eβ, ((BDA)DA)ey, then aUy \-A.

Proof: Suppose a U β h A and, for any B e β, ((B D A) D A) e 7. There is a
finite number of formulas Cu . . ., Cn e a (n > 0) and a finite number of for-
mulas Du . . ., Dm e β (m > 0) such that Cu . . ., Cn> Du . . ., Dm \~A. Hence,
by Lemma 1, Cu . . ., Cw, Z)2, . . ., Dm h (Z>j DA). Consequently, by Lemma 2,
Cj, . . ., CΛ, Z)2, . . ., D m , ((D1 ~D A)D A) \~A. Applying the same reasoning to
the other A we obtain Cu . . ., Cn, ((D1DA)DA), . . ., ((Dm DA)DA)hA.
Consequently, a U 7 r~ A.

Lemma 4 If a. U £4 h^4, /Tzerc α h A

Proo/: Suppose α U ξA \~ A and let β be the set containing ((B D A) D A) for
all B e %A. Hence α U β \~ A by Lemma 3. As all members of β are theorems of
the form ((04 DQDA)DA), Cn(a Uβ) = Cn(a). Hence OLYΆ.

Corollary 2 IfaψA, then Cn(a U ξA) is not trivial.

Lemma 5 IfCn(a) is not trivial, then Γα is not empty.

Proof: Let the formulas be given in some determinate order Ah A2, . . •• Let
7 0 = a; let yn = yn_x U {An} if yn.x \~An, and let 7^ = yn.x U ̂  if T/1-1 ^' An-
Let 7 be the set of all formulas which are in any set of the series 7 0 , yu . . . . In
view of Corollary 2 it is obvious that 7 e Γ α if Cn(a) is not trivial.

Lemma 6 Any 7 e Γ has the following properties:

1. A e 7 iffy \~ A 6. ^^A e 7 iff A e 7
2. For some 4̂, >1 4 7 7. ~G4 ~D B)ey iff A e 7 απd ~i? e 7
3. 04 D B) e 7 Ϊ / M iyorBey 8. ~04 &B)eyiff~Aeyor~Bey
4. 04 & 5) e 7 tfjf Λ e 7 and Bey 9. ~(A vB)eyiff~Aey and -Bey
5. ( ^ v ^ ) e γ iff A eyorBey 10. If A 4 7, then -A e 7.

Proof: I only prove items 5 and 10. Proofs of the others are either obvious or
analogous to the proof of 5 or 10. For 5, we clearly have {A v B) e 7 if A e 7 or
Bey (from 1 and Axioms III. 1-2). To prove the converse, suppose that
(A v B) e 7, A 4 7 and B 4 Ί As 7 is implication-saturated, {A D A) e 7 and
(B D A) e 7. But then A e y by 1 and Axiom III.3, which contradicts the sup-
position. For 10, notice that (A v —A) e 7 (from property 1 and Axiom VIII. 1)
and hence, by property 5, that A e 7 or —A e 7.

Lemma 7 a\~ A iff for all 7 e ΓQ, A e 7.

Proof: One direction is obvious. For the other, suppose a \h A. Hence
Cn(θί U £4) is not trivial (by Corollary 2) and consequently Γ α U ^ ^ 0 (by
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Lemma 5). But for any 7 e Γ α U ^ we have γ e Γ α (by the definition of Γα) and
A $Ί (by properties 2 and 3 of Lemma 6). Hence, for some 7 e Γα, A 4 7.

Now we come to the second step which consists in linking semantic
derivability with the members of Γ. To this end I define, for each valuation
function, the set of formulas to which it assigns the value 1.

Definition δ^ is the set of all A such that υ(A) = 1.
Definition Δ is the set of all nontrivial δυ.
Definition Δα is the set of all 7 e Δ such that a C 7.

These definitions enable us to express any statement about valuation functions
as statements about members of Δ, as in Lemma 8.

Lemma 8 at1 A iff, for all 7 e Δα, A e 7.

Proof: Valuation functions that assign the value 1 to all formulas, a fortiori
assign the value 1 to A. Hence, the (standard) definition of a. \=A is equivalent
to *v(A) = 1 for any valuation function υ such that δυ is not trivial and υ(B) = 1
for all B e a\ This in turn is equivalent to 'for all 7 e Δα, A e y\

Lemma 9 Ify has properties 2-10 from Lemma 6, then 7 e Δ.

The proof is obvious and left to the reader.

Corollary 3 ΓQ C Δ α .

Lemma 10 Ifat=A, then, for all 7 e Γα, A e 7.

Proof: Suppose a 1= A. Hence, for all 7 e Δα, A e 7 (from Lemma 8). But then,
for all 7 e Γα, A e 7 (by Corollary 3).

Theorem 2 Ifa\=A, then α h A

Proof: Immediate in view of Lemma 7 and Lemma 10.

Corollary 4 // \=A, then h i

In the remaining part of this paper I discuss the applicability of the proof
method to other propositional logics, and its use for turning semantic systems
into axiomatic systems and vice versa. In order to clarify the matter, I mention
some results which are easily provable but were not needed for the complete-
ness proof:

7 e Γ iff 7 has properties 1-10 from Lemma 6.
7 e Δ iff 7 has properties 1-10 from Lemma 6.
Γa = Δα.
a \~ A iff a t= A iff, for all 7 e Γa, A e 7.
\-A iff \=A iff, for all 7 e Γ, A e 7.

This means that we are able to characterize a logic completely in terms of
properties of the nontrivial, deductively closed, implication-saturated sets of
formulas. Hence, we may expect that there are a number of logics for which it
should be easy to turn an axiomatic characterization into a characterization in
terms of properties of the members of Γ, and to turn the latter into a semantic
characterization, and the other way around. I shall prove two theorems in this
connection.
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Let us first consider the implicational fragment of PC Its axiomatic
characterization, which I shall call IA, consists of Axioms 1.1-3 and of the two
rules; its semantic characterization, IS, consists of the semantic clauses 0 and 1.
In order to adapt the preceding proof to IA and IS, simply restrict the
properties in Lemma 6 to 1-3, and drop from the proofs of Theorem 1 and
Lemmas 6 and 9 all references to other axioms, semantic clauses, and properties
of the 7 e Γ.

Let IS+ be the result of adding to IS a number of clauses of the following
form:

(o) If v(Ax) = . . . = υ(An) = 1 and υ{Bλ) = . . . = v(Bm) = 0, then υ(C) = k,

where k is either 0 or 1 and 0 < n, m (if n = m = 0, the clause reduces to
<v(C) = k). The following definition will further the readability of the proof of
Theorem 3.

D e f i n i t i o n X = d f ( ( ( . . . ( ( B . D B 2 ) D B 2 ) D . . . ) D B m ) D B m ) .

The first three dots denote left parentheses only; Bx occurs only once in X, all
other B( twice.

Theorem 3 For any 76*+, there is an effective procedure to articulate an
axiomatic system IA+ (an extension of IA) such that the preceding proof
method applies to IA+ and 7S+.

Proof: We start from IS, IA, and properties 1-3 from Lemma 6. For any
further semantic clause (of the form (°)) contained in IS+, we proceed as
follows, according as A: is 0 or 1 and m is or is not equal to 0.

Case I. k = 1 and m > 0. Add to the properties in Lemma 6:

liAγey, . ..9Aney,Bι4y,.. ., Bm 4 y, then C e yf

and add as an axiom to IA:

AιD(A2D...(AnD((XDC)DC)).. .).

The adaptation of the proofs of Theorem 1 and Lemma 9 is obvious. To the
proof of Lemma 6 we add the following:

Suppose that A x e y, . . ., An e y, Bx 4 7, . . ., Bm 4 y. From BX4 7 follows
(Bi D B2) e 7 by property 3. From (B1 D B2) e y and B2 4 7 follows, again
by property 3, ((Bx D B2) DB2)4y and hence (((Bι D B2) D B2) D B3) e y.
Proceeding in the same way for B3, . . ., Bm we finally arrive at X 4 7 and
hence (X D C) e y. But A u . . ., An, (X D C) h C (from the axiom). Hence
Ceγ.

Case 2. k = 1 and m = 0. Add to the properties in Lemma 6:

lϊAιeyi.. .,An ey, thenCe7,

and add as an axiom to IA:

A1D(A2D.,.(AnDC)...).

The adaptation of the proofs of Theorem 1 and Lemmas 6 and 9 is obvious.
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Case 3. k = 0 and m > 0. Add to the properties in Lemma 6:

If A! e 7, . . ., An e y, Bx 4 7, . . ., Bm 4 y, then C 4 7,

and add as an axiom to L4:

4 1 D ( i 4 2 D . . . ( i 4 π D ( C D J Γ ) ) . . . ) .

The adaptation of the proof of Theorem 1 and Lemma 9 is obvious. Add to
the proof of Lemma 6:

Suppose A ι e 7, . . ., An e y, Bι 4 y, . . ., Bm 4 y. It follows from the axiom
that Al9 . . ., An h (CD X). Hence (C D X) e y. But X ^ y (proof as in
Case 1). Hence C 4 7 (by property 3).

Case 4. k = 0 and m = 0. Add to the properties in Lemma 6:

I f ^ ! β 7 , . . .,ΛΛ e 7 , then C^ %

and add as an axiom to I A:

AxD(A2D...(AnD(CDD))...)

where D is a variable that occurs neither in C nor in any A(. Again, the
adaptation of the proofs of Theorem 1 and Lemma 9 is obvious. Add to the
proof of Lemma 6:

Suppose A! e 7, . . ., An e 7 and consider any E such that E 4 7 (there is
such a formula by property 2). ^ D (A2 D . . . (̂ 4rt D (C D £ ) ) •) is a
theorem of IA+ (from the axiom by Uniform Substitution), and hence
A!,..., An h ( C D £ ) . Consequently, (C D E) e 7. From this and E 4 7
follows C ^ 7 (by property 3).

This completes the proof.

Let us now turn to the opposite case in which an axiomatic system is
given. Let L4+ be any axiomatic system arrived at by adding axioms to IA
(these axioms may contain any propositional connectives and any nonlogical
constants). For the proof of Theorem 4 we need one further definition.
Consider any one-to-one relation between variables and metavariables.

Definition \A is the result of replacing each occurrence of each variable by
an occurrence of the corresponding metavariable.

Theorem 4 For any IA+, there is an effective procedure to articulate a
semantics IS+ such that the completeness-proof method applies to IA+ and
IS+.

Proof: We start again from IA, IS, and properties 1-3 from Lemma 6. For any
further Axiom A, add to the properties in Lemma 6:

Uey

and add as a semantic clause to IS:

v(U)= 1.
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The adaptation of the proofs of Theorem 1, Lemma 6, and Lemma 9 is obvious.
By way of an example, consider Schiitte's system Φv, which consists of

the two rules and of the following Axioms: 1.1-2, II. 1-3, III. 1-3, IV. 1-2, V.l-3,
VI. 1-3, VII. 1-3, and VIII. 1, together with:

1.3' -X Dp
IV.3' ~x.

The application of the present method leads immediately to the result that
the semantics of this system consists of clauses 0-8 together with 6v(x) = 0'.
(Given properties 1-10 from Lemma 6, 'x^ 7' indeed turns out to be equivalent
to the conjunction of ' ~ A e 7' and '(A. D A) e 7'. Schiitte's Φr is exactly as Φv

except for having VIII.2 instead of VIII. 1 as an axiom:

VIII.2 (p&-p)Dq.

Applying the present completeness-proof method, we readily find that the
semantics of this system consists of clauses 0-7, together with 'If υ(A) = 1, then
υ(yA) = 0' and ςu(~x) = Γ. In the same way, the proof method applies to all
systems presented in [ 1 ]-[6], except for Cω.

The proof method applies to still other kinds of logics. I mention only
one point in this connection. Any deduction rule of the form

If h4 1 ? . . ., h4n,then h5

corresponds to a semantic clause:

If, for all υ\ υ'(A 0 = . . . = υ'(An) = 1, then ϋ(B) = 1,

and to the following property of the 7 e Γ:

If, for all δ e Γ, AΎ e δ, . . ., An e δ, then Bey.

The adaptation of the proofs of Theorem 1 and Lemmas 6 and 9 is obvious.
As a final comment I mention that a semantics arrived at in the way

described in the proof of Theorem 4 will not always be very "natural". On
the other hand, the characterization of a logic by means of a set of properties
of the nontrivial, deductively closed, implication-saturated sets (i.e., of the
7 e Γ) will make it quite easy to find a more natural two-valued semantics, if
there is one. In this connection I refer to what I said about Φ .̂ Consider also
da Costa's and Alves's semantics for da Costa's calculi Cn(0 < n < ω), which
were devised independently of the present completeness-proof method (see
[5]). These semantic systems contain the clause

If v(Bin)) = v(A DB) = υ(A D ~B) = 1, then v(A) = 0,

which seems quite unnatural (and is unnatural in the sense that, as will become
clear immediately, the value assigned to A is wholly irrelevant to the value
assigned to B^). The application of the present proof method reveals
immediately that the preceding clause may be replaced by the more natural

v(A(n)) = 1 iff v(A) = 0 or υ(rΆ) = 0 (i.e., iff υ(A) Φ υ(^A)).

It also reveals that the axiom scheme
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BM D ((A DB)D ((A D ~B) D -A))

may be replaced by

(A &~A)D(A(n) DB).

This reformulation too is clearer.

NOTES

1. Other paraconsistent logics are based on some relevant implication (see [7]), on
intuitionist implication, e.g., da Costa's Cω (see [4]), or on some many-valued
implication, e.g., Kleene's three-valued logic.

2. This paraconsistent logic is Schϋtte's Φυ(see [8], p. 74) restricted to formulas that do
not contain the constant X (which may be regarded within this system as the conjunction
of all formulas).
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