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REPAIRING PROOFS OF ARROW'S GENERAL IMPOSSIBILITY
THEOREM AND ENLARGING THE SCOPE OF THE THEOREM

R. ROUTLEY

The standard and textbook proofs of Arrow's general impossibility
theorem are, like the original proofs, invalid. That is the first main claim
argued in what follows. In the course of setting out crucial details of a
logically adequate proof, however, the usual conditions on the theorem are
liberalised, and the extent to which certain other conditions can be general-
ised or discarded is investigated (for an exact statement see the concluding
summary).

The importance of a logically adequate proof is in no way diminished
because, as it fortunately turns out, the theorem is correct under the
intended (if often inadequately formulated) conditions. But that makes it
easy to say that it is trivial to fuss over quantificational details of the
standard proofs (proof failure comes ultimately in every case from quanti-
ficational errors, omission of necessary quantifiers or mistaken orderings
of quantifiers, both major sources of invalidity in logic and mathematics)
for every economist knows what is meant by the theorem, that it is essen-
tially correct and its proof intuitively clear, and that a rigorous proof can
be produced. The claim is false, as will emerge, even of the economic
textbook writers. The textbooks have failed to produce what it is essential
to have, especially in the case of a theorem with such far-reaching conse-
quences (even if it is after all only an exercise in second-order quanti-
ficational logic), namely a correct and rigorous proof. The history of
mathematics is replete with cases where what everyone was thought to
know proved false, or where what was intuitively clear turned out to be
mistaken or correct only under restrictive conditions.

The troubles with proofs of Arrow's theorem arise from the misuse
of conditions required for the impossibility result. Neither the original
proofs of Arrow's theorem as to the impossibility of a reasonable social
welfare function (set out in [l], pp. 51-59 and pp. 97-100), nor most of the
many copies and variations in the literature clarify the central role of the
controversial Principle I (the principle of independence of irrelevant
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alternatives) in the proof of the theorem. Though Arrow does appeal to the
condition in claiming ([l], p. 98) that his notions of decisiveness are well-
defined, as Sen remarks ([8], p. 42),

Arrow's proof is somewhat opaque, particularly since the use of the crucial condition I
(i.e. his Condition 3) is never clarified; in fact this condition is never even mentioned
in the proof.1

And Sen's own proof ([8], p. 42-46), while it does appeal to Condition I at
one of the requisite points, does so in an informal way only, thereby
enabling a step not licensed by the stated formal conditions.

In order to see why proofs of the theorem fail it is instructive to
examine a typical case—Case 1 of the dominance lemma—where proofs
break down. Proof of Arrow's theorem can be conveniently split into two
lemmas, a dominance lemma (lemma 3*a of Sen [8], according to which
if some individual is almost decisive then he is a dictator) and a voting
paradox lemma. (The structure of the argument is elaborated below.)
Both arguments make repeated use of Condition I, but the main neglected
or confused use of I occurs in the dominance lemma.

Consider the argument ([l], pp. 98-99; [8], p. 43) that in a three-
alternative case (with alternative set K = {x,y,z}) where individual J is
almost decisive for x against y, then J is decisive for x against z, i.e.,
in symbols:

xDjy -DXDJZ (1)

where xDjZ =df xPjZ ΏxPz, xD3y =df xPjy & (i e F) (i ΦJ ^yP{χ) D. χPyy

and F is the class of factors or individuals.2 The argument for (1) should
go as follows: Suppose that xΌ3y and further that xP3z. It suffices to show
that xPz, for then (1) follows by two applications of the deduction theorem
(see, e.g., Mendelson [4]). The argument Arrow and Sen in fact use
assumes more: it is supposed not just that xDjy, but thatxPjy, yPjZ, and
yPiX and yP\Z for i e F - {j}. Given these assumptions it is easily shown,
using the Pareto condition and transitivity of P, that xPz. It is then
claimed that xPz holds whenever xPjZ "regardless of the order ings of
other individuals" ([l], p. 98), whence it is concluded xPjz D xPz. Sen ([8],
p. 43) does point out that the argument requires the use of Condition I, but
proceeds to use the surprising inference

xPjy & yPjZ & (i e F - {j}) (yP,* & yPtz) D. xPz_ _ _ _ _

instead of the independence Condition I that is cited as a premiss. Con-
dition I is indeed quite different.

The independence condition at issue is effectively as follows ([1], p. 27,
[8], p. 41):

Condition I. Let Rl9 . . . , Rn and R\, . . . , Rn be two sets of individual
orderings and R and R1 corresponding social orderings, and let S be any
subset of the set K of alternatives. Then,
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(*, y e S) (i e F) (xfyy = xR\y) D (ΛΓ e S) (y e SjxΛy = fcy e S)*f lV

Since C{S, R) =df {x € S: (3; eS)##:y}, the condition given is simply

(x, y € S) (i e F) (xRiy ^xR)y) D. C(S, Λ) = C(S, i?1).

In case environment S is a two-element set, Condition I can be put in
the more satisfactory form:

IR. (x, y e S) (i e F) (xR{y = xR\y) Ώ(x,y e S) (xRy = xRιy)

or, equivalently,

IP. (AT, y e S) {i e F) (xP{y = xPfo) D {x, y e S) (xPy s ^ p ^ ) ,

where, for each i, xPiy =df ~yRi%, and xPy =df ~yRx (c/., [l], p. 14).
I follows from IR immediately, whatever set S, by quantifier distribution.
For the converse it is convenient to apply the following result (lemma 2
of [1]):

Lemma Where S = {x,y}, xPy =. x -Λz{z e C(S,R)), i.e., xPy iff x is the
sole element of C(S, R).

Proof: as in [1], p. 15.

Lemma Where S is a two-element set, IR is deductively equivalent to L

Proof: It remains to show given I that IP is derivable. Suppose S = {x, y}
and that (x,y e S) (i e F) {xP{y = xPj y). Then C(S, R) = C(S, R1). It is
enough to prove that xPy = xPιy, for then IP will follow by quantifier
generalisation and distribution (or by generalisation and the deduction
theorem). But

xPy =. x = Λz(z e C(S, R))
=. x = 1z(z € C(S,R1))
= xPιy, upon applying the previous lemma.

More generally, IR is deductively equivalent to the following strength-
ened form of I, namely

IS. (x, y e S) (i e F) (xRiy ^ xR\y) D. (S1 c S) .C(S\ R) = C(S\ R1).

IS follows given IR simply by restriction principles and quantifier distri-
bution. For the converse, the proof of the lemma is copied, and an appro-
priate two-element set S1 = {x, y}, which IS supplies, is selected. In no
details which follow, however, will I be required for more than two-element
sets. Accordingly, the directly applicable principle IP can be used.

Consider now how Principle IP—or I—might be applied in Case 1 to the
two-element set S = {x, z} c K. The assumption of further premisses xPjy,
yPjZ, and so on, can be avoided simply by defining a new ordering P\ which
agrees with P{ on S, and this is plainly what IP invites one to do. To begin
again, then, on Case 1, suppose xP3y. Let P\, for i e F, be a new ordering
on K which agrees with P.{ on S and for which xP)y, yP)z and, for every
i e F - {j}, yP]x and yP\z. That there is such an ordering to be considered
is assured by the following condition (Arrow's Condition l f, [1], p. 96,
though his Condition 1 suffices for the case in question):
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Condition U. The domain of the social welfare function includes all con-
sistent [admissible] sets of individual orderings ([8], p. 41).

A quantificational model, with a three-element domain K = {x, y, z},
guarantees the consistency of the orderings P) for i e F; and then U
guarantees a corresponding social ordering, P1 on K.

Now, it would seem, the original argument with P, and P can be
reapplied with p\ and P1, whence it follows that xPxz. However, P) agrees
with P{ for i e F on S, i.e., {xxz e S) (i e F) (xPiZ =xP}z), whence, by IP,
(ΛΓ, Z e S) (xPz = xPγz). Hence as xPλz, xPz.

There is just one major hitch to this argument. The argument is
premissed on the assumption that xDjy, but for the new argument using
Pij to succeed the premiss xDJy is required. Since xP)y & (i Φ J)yPfx,
this further premiss requires precisely that xPλy. Unfortunately for
standard proofs of Arrow's theorem, nothing guarantees that xPλy. For
the proof to go through it has to be assumed that xPιy (or that xD)y)\ and
this requires an assumption, not covered by condition U/ which concerns
only individual rankings3, as to the admitted class of social rankings. So
the argument, as it stands, fails.

It is not difficult to see what has gone wrong. The hypothesis is that
xDj,y has to extend to other rankings on K for the argument to work; but U,
as a requirement on individual rankings only, cannot assure us that it does.

It is one thing to show that a given class of arguments breaks down,
namely familiar arguments for a lemma in Arrow's theorem; it is quite
another, however, to show that no repair can be effected without amending
the lemma. The further thesis that the given assumptions are insufficient
for the proof of the lemma can however be established by the method of
counter-model.

It is easy to show, by a counter-model, that the assumed lemma itself
cannot succeed. Observe that the argument for the dominance lemma in no
way depends on the—undesirable—requirement of strong transitivity, i.e.,
for x, y, z in K,

xPy & ~zPy D. xPzy

but only the more reasonable transitivity condition4:

xPy & yPz D. XPZ, for x, y} z in K.

If the given proofs of the lemma could succeed, they would also succeed for
a weakened lemma with a social welfare function differing from Arrow's
only in substituting transitivity for strong transitivity. But they cannot,
as is now shown.

Consider the pure Pareto social welfare ranking determined for each
set of individual rankings P, / as follows: for x, y in K

xPyiii (i e F)xPjy. (PP)

It has first to be shown that PP does indeed provide a ranking which satis-

fies principles P, I, U, and D.5 P is evidently a function defined on

{Pi- i e F}.
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#d transitivity. Suppose xPy and yPz. Then (i e F) {xPiy) & (i e F) (yPiZ),
so (i e F) (xPiy & yP{Z), whence by transitivity of Ph (i e F) (xP{z), that is,
xPz.

ad asymmetry. Suppose xPy and also, for a reductio, yPx. Then (i e F)
{xP^y & yPix), which is impossible since P, is asymmetric.

Thus P is indeed a strict partial ordering. It may not however be
strongly transitive. For suppose ~xPjZ and ~xP^y with J Φ Ky F = {Ky j}
and xPjy and xP&y. (Then, by strong transitivity on Pκ and PJf xP^z and
zPjy.) By PP, Λ:P3? and ~xPy but ~Λ:P2, whereas by strong transitivity
xPz.6

ad P. Immediate.

ad I. Suppose (x, y e S c K) (i e F) {xP{y = xlήy) - (i). Suppose further that
for some w, z in S, ~(wPz = wP1z), say wPz and ~wPιz. Then, by PP, for
some i e F, ~wP\z, but wPiZ> contradicting (i).

ad U. P is always defined for every admissible ordering.

ad D.7 Consider an arbitrary Jand let xPjy, and consider a ranking where
~xPκy. Then ~xPy, by PP. So J i s not a dictator.

Reconsider Case 1 where PP determines the overall ordering, and
suppose that F = {</, ϋf}, that xPjZ, xljy, and yPjZ, and that /Γ is indifferent
between AT, y, z, i.e., Λ:/K3;, 3>/K£, and xlκz, where as usual xUy iff ~xP{y &
~yPiX. Then ΛΓDJ^, since ^Λ P J ^ , Λ:PJ^, but, by PP, ~xPy. That is, xDjy &
Λ:DJ3;, contradicting (1). Hence the weakened " l e m m a " is invalid.

The key to a repair to the proof can be guessed from what is required
to show that J is a dictator, and may be located in the original defective
Arrow proof ([l], p. 52 in particular). The trouble lies in the definitions of
decisive and almost decisive, which should have been defined, like dictator-
ship, not with respect to a single ranking but with respect to the set of all
admissible rankings; thus, for J e F and x, y e K:

xDjy iff, for every set of admissible rankings such that xP3y then xPyy

i.e., in the notation of [6], iff (p) (xPjy 3 xPy). Similarly,

xDjy iff (p) (xPjy & (i e F - {j}) (yP4x) D. xPy).8

Formal precision may be had through the following definitions:

1. A decision structure (d.s.) is a system C = (K,F) where K and F
are non-null sets (of alternatives, and factors or individuals, respectively).
C is usual if if has more than two elements.

2. A ranking p on a d.s. C is a function which assigns for each factor
i in F, a two-place relation P f = p\i)9 called a factor ranking, on K x K,
which is a strict partial ordering, i.e., for i in F, P{ is transitive and
asymmetric on K.

3. A general ranking method (GRM) on a d.s. C is a function which
assigns for each ranking p on C an overall ranking P on K x K which is
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strongly transitive and asymmetric. A GRM would provide a universal
social welfare function.

4. An (Arrow) rational GRM on a d.s. is a GRM which satisfies the
following conditions:

P (Pareto): (p) (x, y e K). (i e F)xPiy D. xPy.
IP (Independence): (pi) (p1) (S c K). (*, y e S) (ί e F) {xPty = xPly) z>

(AT, 3; e S) (*P;y = Λ P ^ ) .

M (Multiple -value or non-dictator ship): (i e F) ~ (p) (x, y eK),xPiy =>
#P3>.

Factor J in F is dominant (dictator) in S QK iff (p) (pc, y e S)xPjy D ΛΓP^;
and J" is dominant iff J is dominant in K. According to M no factor is
dominant.

Impossibility Theorem There is no rational GRM on any usual decision
structure.

The critical corrections to standard "proofs" of the theorems concern the
following definitions. Where V c F and x, y e K,

xDvy =df (pί) (i e V)xP{y D. xPy9

*Dvy =df (pD . ((i e V)xPiy & (f / 7)yP/Λr) 3 Λ Py.

7 is almost decisive iff (in K) (Par, 3; e K)xDvy, i.e., iff for some alterna-
tives x and 3;, 7 is almost decisive for x against y. For J e F, D/ =<// D ĵ
and DJI -df Dμ,}. Alternatively, these further definitions can be avoided by
use of Quine's set theory ML of [5] as logic.

Dominance Lemma Given that there is a GRM satisfying P and IP on a
usual d.s. C = (K,F), if some J in F is almost decisive then J is dominant.

What has to be shown is of the form

(p)A(p)D(p)3(pι),

not—as the standard "proofs" assume—of the stronger erroneous form

A(Pί) DB(pi).

It is enough to show, however, how to repair standard proofs.

Proof. Suppose J is almost decisive. Then for some elements, say x and y
in if, xDjy. Since C is usual it contains at least one other element; let z be
an arbitrarily chosen element of K distinct from x and y:

Central case. J is dominant in Kr = {#, y, 2} c K.

This is proved by exhaustion of cases, i.e., for every pair (u, v) c K\ uDjV.
Since uDjU, it can be assumed that u Φ v\ so there are six cases:

Case 1: ad xDjZ. Suppose yet again, but now for an arbitrarily chosen
ranking p in C, that #PJ3>. Let S = {x9 2}, and let p f be another ranking
which agrees with p on S, i.e., (w, v e S) (i e F) (uP{v =uPjv), and such, that
χPj,y> yPjz and, for every i e F - {J}, 3>P/* and yPjz. By P, yPrz, and now
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since xDjy instantiating at p f, xP'y. Hence, by transitivity of P\ xP'z.
Then as before by IP, xPz. That is, for arbitrarily chosen p,xPjZ z*xPz,
so xDjZ, as required. Hence too, eliminating the hypothesis xDjy, xDjy D
xDjZ.

Case 2: ad zDjy. Suppose for an arbitrary ranking p in C, that zP3y: to
show zPy. Let p' be another ranking which agrees with p in S = {z,y}, for
which zPjx and xPjy and, for every i e F - {</}, zPjx and yP x. A three-
element relational model shows that p' is admissible. Since zPjx, by
transitivity, zPrx by P. Since xΌ3y and also xPjy and yP x for i e F - {j},
xP'y. Hence, by transitivity, zPτx. Thus by IP, zPx, as in Case 1. Hence
too, eliminating the main hypothesis, xT>3y D zDjy.

The remaining cases 3-6 now follow by symmetry or permutations on
the first two cases (see, e.g., Sen [8]).

General case. uDjV for arbitrary u and v in K. If u = v the result is
immediate, and if {u, v} - {x, y\ the central case establishes the result. If
one of u and v coincides with one of x and y, say x = u but v Φy, then the
central case with Kr = {x,y,v} establishes the result. Otherwise where
neither u nor υ coincides with x or y, apply the central case to Kr = {x,y,u},
whence xDjU. But then xDjU, so the central case can be reapplied with
K" = {ΛΓ, U, V} to yield uDjV.

Corollary A Given that there is a rational GRM on a usual d.s. {K, F), no
factor in F is almost decisive.

The independence condition IP also plays a critical role in the next
lemma. A minimal [almost] decisive set (M[A]D set) is a non-null [almost]
decisive set with no non-null proper subset which is [almost] decisive.

Voting Paradox Lemma Given that there is a GRM satisfying IP in a usual
d.s. C = (K,F), then there are rankings on C for which any MAD set is a
singleton.

Proof: Let V be any MAD set, let x and y be elements of K such that V is
almost decisive for x against y, and let z be an arbitrarily chosen element
of K, ensured by usualness, distinct from x and 3;.

If V contains only one factor the lemma is proved, so suppose V con-
tains more than one factor. Define the following sets:

Vi -df &(i € U), i.e., Vι is an arbitrarily selected factor in V. In fact,
Vi can be defined as any proper subset of V; it does not have to be
a singleton.

v2 =df v - vx
V3 =df F - V. V3 may be null.

Consider next—one ranking suffices for the lemma—the following
(voting paradox) factor rankings on C for the given distinct elements x, y, z
oίK:
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for every,;' e VΊf xPjy and yPjZ
for every j e V2, zPjX and xP^y
for every j e F3, yPjZ and zPjX.

A quantificational model establishes the admissibility of this ranking
p on C. The ranking p determines several overall rankings:

ad xPy. For every i in V, i.e., in Vx U V2, xP{y, and for every j not in V,
i.e., in V3, yPjX, by factor transitivity. Hence since V is almost decisive
for x against y, xPy, upon using the definition of almost decisive and
instantiating to p.

ad ~ zPy. Suppose on the contrary zPy. Then V2 is an almost decisive set.
For suppose for arbitrary ranking p', (i e V^zP\y & (i i V2)yP\z. It has to
be shown that zP'y. Firstly

zP{y iff zPjy. (a)

Suppose zPjy. Then i e V2. For suppose i i V2. Then since (i e V2) zP{y &
(ί 4 V2)yPiz> yP{Z whence by asymmetry ~ zP{y. Since i e V2, zP/y.
Suppose conversely zP\y. Then i e V2. For suppose otherwise i i V2.
Then yP\z, whence ~ zP y. Since i € V2, zP{y. Similarly,

yPiZ iff yP\z. (b)

Apply principle IP to set S = {y, z}. Then, since (a) and (b) hold,

zPy iff zP'y.

Hence zP!y is required, and V2 is almost decisive. But since V2 is not null
and V2 c V, V2 is smaller than the minimal almost decisive set, which is
impossible.

ad xPz. From xPy and ~zPy by strong transitivity. This is the only point
in the proof of Arrow's theorem where strong transitivity is required; and
its use, as shown below, is essential.

ad Vλ is almost decisive for x against z. The argument is similar to that
showing that V2 is almost decisive. Suppose for arbitrary ranking pr,
(i e V^xPl z & (i i Vx) zP x; to show xP'z. Since xPz, the desired result will
follow by IP if it can be shown for every u, v e S = {x, z} —and every ί e F,

uP{v iff uPjv.

Since P{ and P\ are irreflexive, only two cases require further argument,
and the following case is typical:

zP{x iff zPjx. (c)

But by hypothesis for i e Vl9 xP\z and xPiZ and, for it Vl9 xP/x and zPiZ,
whence (c) follows.

Since Vι is non-null and VΊ c V, the assumption that V is minimal is
contradicted. Hence V cannot contain more than one factor.

Note that the argument showing that Vλ and V2 are almost decisive
breaks down if one attempts to substitute decisive for almost decisive



REPAIRING PROOFS 887

sets. With decisive sets, equivalences, such as (c) required for the
application of IP, are no longer ensured. A slightly simpler proof of the
Lemma, and of the Impossibility Theorem, does however result if almost
decisive sets are replaced by exactly decisive sets, where V is exactly
decisive for x against y, in symbols xEvy, iff (i) (i e V =. xPiy).

Corollary B Given that there is a GRM satisfying IP and P on a usual d.s.
{K,F), then there is a factor in F which is almost decisive.

Proof: Consider set F. It is non-null, and by Condition P it is decisive,
and so almost decisive. Where F is finite, by exhaustive elimination some
non-null subset M of F is a MAD set. (For, in brief, if Fj c F is not
minimal then some non-null subset F / / + 1 of Fj is also almost decisive.
Since F is finite the sequence of non-null almost decisive sets Fλ(= F),
F2, . . . , Fk must terminate in some set M = Fk.)

Where F is not finite a more complicated argument using the axiom of
choice can be appealed to. Zorn's lemma, which follows from the axiom of
choice, is applied in the following form:

(d) Any non-null partially ordered set in which every chain (i.e., every
totally-ordered subset) has a lower bound has a minimal element (c/.,
Mendelson [4], p. 198), to show, firstly,

(e) For any ordered pair (x,y) of distinct alternatives x, y e K, there
is a non-null MAD set VζXty> for x as against y (i.e., V<χ,y> is an almost
decisive set for x as against y but no non-null subset V^^ is almost
decisive for x as againsty).

Consider the class D of all sets of factors which are almost decisive
for x against y. D is non-null. For, by Condition P, the class F of all
factors is almost decisive for x against y. Further, D is partially-ordered
by set inclusion. Let C be an arbitrary chain in D. Then C is bounded
below by its intersection Πc. It is immediate, from the definition of inter-
section that for every element C, e C, Π c c Cf . It remains to show that
Πc e D. Suppose then for every i e Πc, xPiy, and every j jί Πc, yPjX. It
suffices to show xPy. Since i e Πc implies i e C& for each C& e C, for every
element Q, of the chain xPiy for every i e C&. (In short, the conditions for
the application of Zorn's lemma (c) are met in the case of sets decisive for
x against y.) The axiom of choice ensures the well-ordering of the
elements of F not in Πc, i.e., in X = F - Πc, under some relation R. Let j
be the first element in the well-ordering not dealt with, i.e., lacking the
property P of being dealt with. Since j i Πc there is some J e C, with J
included in every H e C induced by elements F ; . dealt with, such that j { J.
Then for every i not in Πc but in Fj. U {j}, yPiX, since for every i ( JyyP{x.
Let Z be the element of C which results when every j in X is dealt with.
The complete induction principle (see, e.g., [4], p. 10) is applied to show
that every member of X is eventually dealt with, and hence that there is
such a set Z in C. For consider an arbitrary j e X and suppose that every
z e Jf which fl-precedes j is dealt with, i.e., has property P. Then, by the
preceding argument, j is dealt with. Hence, by the induction principle,
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every u in X is dealt with, guaranteeing Z. Hence, since i i Z iff i e Πc, for
i e Z, xPiy, and for i i Z, yPiX, and so, as Z e C, #P;y. Thus Πc e Zλ

Accordingly the conditions for Zorn's lemma are satisfied. Hence, by
(d), D has a minimal element V^^y, and so (e) is established. Now (e) is
used, in turn, to prove

(f) Where K' - {x,y,z} is an arbitrary triple in K, there is a non-null
minimal almost decisive set M on K1 (i.e., there is no non-null proper sub-
set M1 of M which is almost decisive with respect to distinct elements
of Kr).

Consider the class E consisting of every MAD set V^UtVyiov u against v
for each pair of distinct elements u and v of Kr. By (e), E is non-null and
contains only non-null members. Consider next the subset Ef of E consist-
ing of those elements of E which contain no other element of E as a proper
subset. Since E is non-null, E' is non-null. Let M be an arbitrarily chosen
element of E\ i.e., M = ξx(x e E'). M Φ Λ, since Λ ( E.

It suffices to show that M is a MAD set on K'. To show this, it has to
be shown that no non-null subset N of M is almost decisive on K*. Suppose,
on the contrary, that for u, v e K\ a set N c M is almost decisive with
respect to (w, v). Then some subset Mr of M is a MAD set with respect to
(u, v), i.e., Mr e E and M' c M, which is impossible by choice of M.

Finally apply the voting paradox lemma with M the chosen MAD set on
K1 = {x, y,z} c K. Then, by the lemma, M is a singleton, and so there is a
factor fe, where M = {k}, which is almost decisive.

Proof of the generalised impossibility theorem: Suppose there were a
rational GRM on some usual d.s. (K,F). By corollary B there would be a
factor in F which is almost decisive, but by corollary A no factor is almost
decisive, which is impossible.

The main argument of course merely rectifies Arrow's important
argument. The generalised theorem does however establish the following
points beyond those claimed originally by Arrow: namely, that the im-
possibility of a general ranking or assessment method is not escaped by
admitting an infinite population or infinite set of factors (a matter which
becomes more important when factors rather than individuals are con-
sidered, but could happen if all future voters over an infinite time horizon
were counted in as individuals); nor can it be escaped by allowing infinitely
many alternatives, nor by admitting individual or factor rankings that are
not strongly transitive, nor by abandoning the functionality requirement,
that the overall or social ranking is a function of the factor or individual
ranking, in favour of the assumption that the overall ranking is only more
loosely related to factor rankings.9
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NOTES

1. Similarly alternative proofs; compare [3], p. 339 commenting on [9]:

Care must be taken with Welden's paper for it appears as if Arrow's theorem is proved
without using the condition of the independence of irrelevant alternatives, when in
fact it is used in the proof.

Note that Sen's final claim, while true of the second Arrow proof, does not hold of the original
argument (see, e.g., [1], p. 53).

2. The definitions are those of [1] and [8], and other notions and assumptions are as explained
in [ 1 ] or [8]. The logical notion is standard and may be found, e.g., in [4],

It is important for my case that the standard definitions are those formalised above: that
they are is a matter of inspection; see the italicised definitions in Arrow [1], p. 98, and the
copies, e.g., in [8], p. 42, [3], p. 339, [2), p. 62, and [6], p. 24.

3. This is explicit in Sen ([8], p. 41) and in the original text of Arrow ([1 ], p. 24). It is not quite
so evident in the amended condition I1 ([1], p. 96). To see that the same restriction is im-
posed, however, it suffices to combine the statements of I1 with the definition of admissible
(given on p. 24), which applies to individual orderings.

4. Contrary to popular assumption, strong transitivity is only required in Arrow's theorem (in the
voting paradox lemma) for social preference rankings, not for individual rankings.

5. The labelling of these principles is that of Sen [8].

6. Hence too, PP rankings furnish a simple countermodel to proposed versions of Arrow's
theorem which do not require strong transitivity of the overall ranking. Strong transitivity is
required only once in the proof of the impossibility theorem (in showing that xPz in the
voting paradox lemma), but without it the theorem fails. This is significant, since strong
transitivity is a suspect condition; it is a condition which should be practically as controversial
as the critical Condition I-though it has gained little discussion in the literature. It is com-
monly assumed that abandoning strong transitivity means abandoning individual transitivity
of indifference and therewith the economic theory built upon indifference curves. This is not
so. Transitivity of indifference can be maintained while the unconvincing connectivity
principle xPtf & yI(Z D. xPjZ and the implausible strong transitivity principle xPtf & ~zPfy D.
xPμ are abandoned.

An extension of PP, designed to recover strong transitivity, provides in turn a simple
ςountermodel to the theorem without Condition I (alternatively it shows the independence of
I from the other requirements, and that I is essential). Let Pc be the strongly transitive and
asymmetric closure of P where P is determined by principle PP. Then Pc, which furnishes a
GRM, meets all requirements for the theorem except I, and it is plain why Pc does not satisfy
I—because alternatives outside a given environment S may determine overall rankings in S
through the closure conditions. Of course the independence of I is well-known (cf. [1], pp.
109ff.), not to say notorious.

7. For condition D it is not enough to require simply that there is no i in F such that
(x,y e K)xPιy D xPy. For then non-dictatorial recipes such as the method of majority decision
would, in some cases, be dictatorial. Consider, e.g., th& individual who always votes with the
majority. As is common a problem generated by the use material implication can be avoided
by judicious use of quantifiers, as follows: There is no i e F, for every set of admissible
individual rankings, such that if (x,y e K)xPjy then xPy.
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8. The mistake made in the standard arguments is rather like that of logic students who state
Leibnitz's identity principle as

χ = y= fίχ)=Aχ),

without the appropriate universal quantifier, for every / on the right-hand side.

9. For elaboration of this point, and also an examination of ways of enforcing Arrow rationality
requirements, see [7].
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