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ALTERNATIVE AXIOMATIZATIONS OF ELEMENTARY
PROBABILITY THEORY

WILLIAM K. GOOSENS

1 Outline In this paper I offer some new axiomatizations of elementary
(finite) probability theory. The new axiomatizations have the following
distinctive features. First, both conditional and unconditional probabilities
are simultaneously axiomatized. Second, the axiomatizations are exten-
sions of Kolmogorov probability theory, and have the usual definitions
linking conditional and unconditional probabilities as theorems. Third,
while both probabilities are simultaneously axiomatized, the resultant
axioms are about as simple as the usual axiomatizations of conditional
probability alone. Fourth, the axioms adopted have strong and direct
justifications independently of the interpretation of the probability function
(axiomatization L however is only a permissible extension of intuitions).
The reader who wishes to review the axiomatizations before their rationale
can at this point go to section 5 (the main axiomatization is system KK).

2 What is unsatisfactory about usual axiomatizations? I offer alterna-
tive axiomatizations because I am dissatisfied with the customary ones.
But this dissatisfaction has a special nature. In improving existing
axiomatizations, one might reduce the number of axioms, or simplify them,
or adopt axioms that make proofs easier and more elegant. Although in my
own axiomatizations I am concerned with these factors, none of these
traditional formal motivations is the source of my dissatisfaction. Instead,
I am basically concerned about how the relationship between conditional and
unconditional probabilities is developed (for some related misgivings, see
de Finetti [2], pp. 81-83). There are two probability functions about which
we have intuitions. The basic formal difference is that unconditional
probability is a one-place function, and conditional probability is a two-
place function. As a result, there are two probabilistic concepts that can
be axiomatized, and the two can be axiomatized independently. What makes
a function a one-place probability function, and what makes a function a
two-place probability function, are separate questions, and the correct
answer for each involves a separate characterizing theory.
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However, if one were merely to conjoin the two separate character-
izing theories, the result would not be an adequate theory of probability.
The reason is that no theorem at all would follow from the composite
theory about the relationship between conditional and unconditional proba-
bilities. Yet most axiomatizations of probability theory take only one
probability function as primitive. How can a theory with only one primitive
serve to prove all the truths of probability? The answer is deceptively
simply from a formal viewpoint. One simply defines the other probability
function in terms of the primitive. My first objection to the usual axiom-
atizations is that unconditional and conditional probabilities are joined by
means of definition." What exception can be taken to a definition? On the
level of justification, definition is a conversation stopper. The formal
theory does not itself argue that probabilities are so related, instead the
relationship is decreed. This approach goes hand in hand with taking one
probability as primitive. The opinion is widely held that all probabilities
‘“‘really’’ are conditional, or at least that conditional probabilities are
basic. If this belief translates into axiomatically taking only conditional
probability as primitive, what may well be a justifiable position is then
incorporated into the theory as a dogma. Argument for the fundamentalness
of a concept is then pre-axiomatic or extra-formal. The suggestion seems
to be that fundamentalness is not subject to proof, but is based on some
philosophic intuition.

The universal practice of taking only one probability function as
primitive has then had the consequence that questions about the funda-
mentalness of the different functions and their relationship have been
raised outside of, rather than within, the formal theory of probability.
These considerations indicate shortcomings of the single-primitive-plus-
definition approach to axiomatic probability. A simultaneous axiomatiza-
tion that takes both functions as primitive has the following advantages.
The axiomatization does not presuppose that one function is fundamental, or
that probabilities are related definitionally. The question of whether or not
one primitive is definitionally eliminable then becomes a matter of proof.
The question of whether or not the definitional relationships can be justified
by derivation from more fundamental intuitions is also then brought into
consideration. As we shall see, simultaneous axiomatization sheds light on
both questions. We shall show that there are more fundamental intuitions.
Moreover, while unconditional probability is eliminable in favor of con-
ditional probability, the reverse is simply not true unless conditional
probability is axiomatized in a weak fashion. The problem centers on
conditionalizing factors with 2zero prior probability. Axiomatizations
typically include theorems that hold even if the prior probability is zero,
versus being undefined. (This point follows from the discussion in sections
4|and 5/) This asymmetry provides a neglected formal justification for the
claim that conditional probabilities are more fundamental. Another advan-
tage of simultaneous axiomatization is that the truths of probability are
approached in a manner both natural and unified. Any loss of theoretical
eloquence from excess primitives is more than compensated by on how
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coherent a basis both notions can be developed. Moreover the theory is
then developed in a way that better corresponds to how probability is
applied. In any interpretation, the entities to which probabilities are
attached have some initial probability: calling it the prior, unconditional,
antecedent, or conditional probability given a fixed background, makes no
difference. In application, it is a one-place function. There are also the
probabilities the entities have under new information: these are the
conditional probabilities. It seems to me not to be a direct intuition that
in application the two probabilities are definitionally related. Thus a
definitional relationship ought not be an axiomatic presupposition, but a
consequence of natural assumptions concerning the properties and relations
of the two probabilities.

Another source of my dissatisfaction with customary axiomatizations
concerns the exact content of the ways in which conditional and uncondition-
al probabilities are related. Starting with unconditional probability, the
conditional probability is defined to be a certain ratio of unconditional
probabilities, where the denominator—the probability of the conditionalizing
factor—is not zero. First of all, the restriction to conditionalizing factors
with non-zero probability is not reflected in any direct intuition about
conditional probabilities, but this objection will be postponed until section
4. I have no doubt that the claimed relationship, as far as it goes, is true.
But the definition is not direct and obvious in the way that the axioms are.
By adopting it as a definition it is trivially provable without being corre-
spondingly trivial. More importantly, the definition prematurely closes the
effort to try to find more basic and fundamental relationships between
conditional and unconditional probabilities from which the ratio definition
can be proved.

That the ratio definition is not intuitively fundamental is evidenced by
the widespread effort to justify it by derivation from other intuitions.
Interestingly, most justifications involve a particular interpretation of
probability. If probabilities are relative frequencies, betting ratios, or the
ratio of favorable to total cases, or if probabilities are interpreted as
areas, more or less ingenious and clever justifications of the ratio defini-
tion follow. Such justifications, however, are piecemeal, and at most
justify the definition for this or that application of probability theory. In
this paper I seek a more general and more purely formal basis for the
ratio definition—and therefore a justification not tied to any particular
interpretation of probability.

In axiomatizations where conditional probabilities are taken as prim-
itive, the unconditional probability of A is taken to be the conditional
probability of A on some logical truth. This itself is intuitive and un-
problematic, since a logical truth amounts to no additional information
whatsoever. What is less satisfying is the way in which one then proves the
ratio definition. The widely adopted axiom is

P((A & B)|E) = P(Al(B & E))P(BI|E)

Substituting a logical truth for £ immediately yields the ratio relationship
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as a special case. Misgivings about the fundamentalness of the ratio
relationship then carry over to this axiom. There are various mathe-
matical considerations that have been shown to lead to the ratio definition.
Such approaches, though, usually involve mathematical apparatus that goes
beyond that used in axiomatizing probability—e.g. properties of entropy and
information. What I seek is an approach which is not only more intuitive,
but also capable of replacing the usual definitions in an axiomatic develop-
ment, and therefore does not go beyond the usual apparatus of probability
theory. To the alternative justification I now turn.

3 Probability and the logic of conditionals If the interface between con-
ditional and unconditional probabilities is not to depend on the interpreta-
tion of the probability function, what intuitions are left? The answer is
that we can use the intuition that conditional probabilities are conditionals.
The basic form of inference using conditionals governs how they can be
de-conditionalized, or as we shall say, conditionalized out. From the
conditional ‘‘if A then B’’ one can obtain B by adding A4, i.e. ‘A and if A
then B’ entails ‘“B’’. Notice that this inference shows how the conditional
assertion (‘‘if A then B’’) relates to unconditional assertions (‘‘A’’ and
‘“B’’). Likewise, the key relationship between conditional and unconditional
probabilities concerns how to pass from conditional to unconditional
probability. Where P(A|B) is to represent the probability of A conditional
on B, what does one need to add to generate unconditional probabilities? A
basic form of inference is that P(A) equals P(A|B) if P(B) = 1. But this
relationship can easily be generalized. Where B has prior probability 1,
P(A|B) would be P(A). But where B has prior probability less than 1, ~B
needs to be considered. The probability that A has can be viewed as
deriving from two possible sources: B and ~B. Since B and ~B are
exclusive, the probability that A derives from them will be additive. And
since B and ~B are exhaustive, all of the probability of A will derive from
these sources. Now FP(A|B) gives P(A) if P(B) = 1. But B may be uncertain,
in which case P(A|B) contributes to P(A4) in direct proportion to P(B). Since
the same is true for ~B, we therefore derive

'P(A) = P(A|B)P(B) + P(Al~B)P(~B)

As long as B,, .. ., B, include all of the ways A can be possibly true, and
the B’s are inconsistent with one another, the same intuitions apply. The
obvious generalization is

(*) where A entails the disjunction of By, . . ., B, and (B; & B;j) is inconsis-
tent for i £ j, P(A) = 2, P(A|B;)P(B;).

The summation sign derives from the fact that exclusive cases are
considered. The equality derives from the fact that the B’s form exhaustive
cases of A. The conditional probabilities represent the contribution to P'(A4)
of the factor conditionalized upon, assuming the factor. The multiplication
by the unconditional probability represents the proportion of the conditional
probability that is contributed to P(A). Where B is certain to be false,
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B contributes nothing to P(A), and where B is certain to be true, P(4) =
P(A/B). But B is known only with some probability.

Thesis (*) then is directly intuitive independently of the interpretation
of the probability function. Corresponding, I suggest that (*) is appropriate
to take as axiomatic, and that (*) can be used as a fundamental building
block for joining conditional and unconditional probabilities. Notice too that
(*) does not have the form that would allow it to serve as a definition of
either conditional or unconditional probabilities, and therefore (*) could not
be used to bridge the two probabilities in an axiomatic development that
took only one probability function as primitive. The effort to minimize the
number of primitives in probability theory has therefore tended to obscure
the fundamentalness of (*), forcing the bridge between conditional and
unconditional probabilities to be made using only relationships that could
serve as definitions.

The way in which (*) can be used to derive the usual links is instruc-
tive. Using B and ~B as inconsistent cases, and substituting (4 & B) for A4,
we get

(**) P(A& B) = P((A& B)|B)P(B) + P((A & B)|~B)P(~B)

By arguing that the second term equals 0 and the first reduces to
P(AIB)P(B), we immediately derive the ratio relationship that if P(B) > 0,
then P(A|B) = P(A& B)/P(B). Where T is a logical truth, adding that
P(T) = 1 then gives P(A) = P(A|T) by substitution of T for B in the ratio
definition. The different axiomatizations offered herein take their cue from
how (**) can be simplified. We shall explore how the inference from (**) to
the ratio definition can be axiomatically derived. We then seek axiomatiza-
tions that employ (*) so as to derive the usual links between conditional and
unconditional probabilities, and to result in systems which include the
usual axiomatizations. The answer to this purely mathematical question
constitutes the final section of this paper. One final point, however,
must be developed before the alternative axiomatizations can be fully
appreciated.

4 Some differences between axiomatizations concerning conditional proba-
bilities Whereas the axiomatization of unconditional probability is highly
standardized, there is variation in the properties attributed to conditional
probability. These differences are reflected in the following five theses.
(Note that T2 entails T1, and T5 plus T3 entails T2).

T1 P(AlA)=1

T2 If A entails B, then P(BlA) = 1.

T3 P(BlA) + P(~BlA) = 1.

T4 If (B & E) is inconsistent, then P((Bv E)|A) = P(B|A) + P(E|A)
T5 If A entails ~B, then P(B|A) = 0.

I take the standard version of probability theory to be the Kolmogorov [4]
axiomatization plus the ratio definition of conditional probability. In the
standard version, none of these theses are theorems. The reason is that
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P(B|A) is determined only where P(A) # 0. What is provable is each of the
five under the condition that P(4) # 0. That the theses are true for this
condition I regard as unproblematic. However, are any of the theses true
under less restrictive conditions, i.e. where P(A4) = 0? First there is the
case in which A is a contradiction. Notice that for this case it is impos-
sible to satisfy all of the theses.? Since a contradiction entails everything,
acceptance of T2 forces T3, T4, and T5 to be rejected. The sum of the
probabilities in T3 is 2, not 1. In T4, the left probability is 1, the right 2.
And in T5 P(B|A) is 1, not 0. Moreover, TI and T4 are inconsistent. Like-
wise, acceptance of T5 necessitates the rejection of T1, T2, and T3. An
inconsistent A entails its negation, so by 75 P(A4l4) = 0, not 1 as in T1 and
in T2, and the sum of the probabilities in 73 would be 0, not 1.

Popper [5], p. 357, has clearly seen the perils of inconsistency em-
bedded in T1 through T5 when taking conditional probabilities as primitive.
Popper showed earlier editions of Harold Jeffreys’ Theory of Probability to
be inconsistent on just this point [5], p. 357. Yet similar errors occur in
later axiomatizations. Salmon [9], p. 59, adopts T2 and T4. No less a
careful worker than Renyi [7], p. 70, once adopted TI and a generalized
version of T4.

Second, consider the case where P(A) = 0 even though A is not a
contradiction. Unlike the case of a contradiction, all five theses are
consistent for such A’s. Indeed, all five theses seem eminently reasonable,
and given that they are consistent for such A’s, there seems to be little
reason for not adopting them. Correspondingly, the restriction of these
theses to the case where P(A) # 0 seems artificial. The fact that a
consistent A has prior probability 0 does not seem at all to prevent the
things it entails from having conditional probability 1, and the things whose
negation it entails to have conditional probability 0.

One desirable extension of standard probability theory, then, is to hold
all five theses on the condition that A is consistent. Carnap [1], p. 38,
Renyi [7], p. 38, and Jeffreys [3] all provide consistent axiomatizations
which accept all five theses for consistent conditionalizations, and no more,
as does the main axiomatization we offer. However, in these axiomatiza-
tions unconditional probability is essentially introduced definitionality as
conditional probability on a logical truth. In all of them, the ratio definition
then follows as a special case of an axiom, thus bridging conditional and
unconditional probabilities in the way we wish to avoid.

With respect to the five theses, two other extensions of standard
probability are possible. One is to accept as universally true T1 and T2,
To my knowledge the only consistent axiomatization that has adopted T1
universally is Popper’s [5]. The other alternative is to accept as uni-
versally true T5. To my knowledge, no one has before proposed such a
system. We show how T5 can be combined with the idea in (*) to result in
surprisingly simple extensions of standard probability theory. These last
two extensions are inconsistent with one another. Although I find them
interesting, in so far as both go beyond holding T'I through T5 conditional
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on consistent A’s, I see no philosophical reason to prefer one axiomatiza-
tion over the other. These different extensions do matter, though, as
other axioms can then be weakened or simplified. To the long promised
alternative axiomatizations we now turn.

5 Aliernative axiomatizations We will assume that probability theory is
developed as an adjunct to the propositional calculus, rather than the more
standard set-theoretic framework. We therefore use ‘A’, ‘B’, C’, ‘D’, ‘E’,
and ‘T’ for propositional assertions, and ‘&’ for conjunction, ‘v’ for dis-
junction, and ‘~’ for negation. Logically equivalent assertions are assumed
to have identical probabilities. Standard elementary probability theory, as
based on unconditional probability, consists of the following four asser-
tions, which we call system KU (for Kolmogorov theory of unconditional
probability):

KU

(1) P(A) =0.

(2) P(T) =14 T is a logical truih.

(3) P(AvB)=P(A) + P(B) if (A & B) is inconsistent.
(4) If P(A) > 0, then P(BIA) = P(B & A)/P(A).

There is no standard formulation of probability theory based on conditional
probability. However, let us call any theory based on conditional probabil-
ities a Kolmogorav theory if and only if it is equivalent to KU. To my
knowledge, no one who has proposed axiomatizations of conditional proba-
bility has investigated if the resultant system is equivalent to KU. The
following system KC is provably equivalent to KU.

KC

(5) P(TIT)> 0, wheve T is a logical truth.

If P(BIT) > 0 and T is a logical truth, then (6)-(9):

(6) PAlB)=o0.

(7) if B entails A, then P(AIB) = 1.

(8) P(AIB) + P(~AIB) = 1.

(9) if P((B&A)E)> 0, then P((E & A)|B) = P(A|IB)P(E|(B & A)).
(10) P(A) = P(AIT), where T is a logical truth.

This system is a modified version of von Wright [12], p. 176. We will not
here prove that KU is logically equivalent to KC. The proof itself is easy,
with the exception of the proof of (3) from KC. Here the reader will find
von Wright useful [12] especially pp. 187-188.

A second interesting logical question is how one could axiomatize
exactly those theorems of the Kolmogorov theory that involve only
conditional probabilities. We can likewise answer this formal question. An
assertion involving only conditional probabilities is provable from KU if
and only if it is provable from (5)-(9). In this sense, (5)-(9) provides an
axiomatization of the theory of conditional probability embedded in KU. The
proof this claim is simple. Clearly, the form of (10) makes it a definitional
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extension of (5)-(9), and therefore KC is a conservative extension of (5)-(9)
(see Shoenfield [10], pp. 57-61, for the logic of this claim). Thus, any
assertion formulable in (5)-(9) is provable from (5)-(9) if and only if it is
provable from (5)-(10). But since KU is equivalent to (5)-(10), the theorems
of (5)-(9) are exactly those assertions about only conditional probabilities
provable from KU.

As indicated earlier, my dissatisfaction with the standard axiomatiza-
tions centers on the fundamentalness of the consequents of (4) and (9), and
the restriction of conditional probabilities in the antecedent of (4) and
(6)-(9). First, we offer an alternative axiomatization in which all of the
following can be proved: (*), the customary links between conditional and
unconditional probabilities, standard theories of unconditional probability,
plus all five theses mentioned in the previous section relative to consistent
conditionalizations. We call this system KK.

KK

Al P(BlA) = 0.
A2 Where T is a logical truth and A is consistent, P(T) = P(T|A) = 1.

Wheve A entails (Bv D) and (B & D) is inconsistent, both

A3 If A is consistent, P(E|A) = P((E & B)|A) + P((E & D)|A).
A4 P(A) = P(AIB)P(B) + P(A|D)P(D).

First note that KK allows the second argument of the probability function in
general to have 0 probability, and in the case of A1 and A4, even to be
inconsistent. The first two axioms I call normalizing axioms, because they
represent convenient choices of numbers for extrema. Note, too, that A3
and A4 are respectively equivalent to the following.

Wheve A entails that at least one of By, .. .,B, is true, and (B; & B;) is
inconsistent for i # j, both

Theorem 1 If A is consistent, then 'P(E|A) = 25 P((E & B;)IA).
Theorem 2 P(A) =2, P(A|B;)P(B;).

Although we adopt the binary case as axiomatic, the general case is no less
intuitive. Theorem 2 is (*), discussed in section 3. For A to entail at least
one of B,, . . ., B, amounts to the condition that every way A can be true is
included among the B’s. The Theorems 1 and 2 assert that the probability
of events on A derives from their overlap with the B’s, and that A’s
probability can be derived from the B’s. The summation derives from the
exclusiveness of the B’s, the identity from their inclusiveness of A. As
Theorem 1 claims, where A is true, the B’s include all of the ways A is
true. Whatever probability E then has can then be divided up among the
B’s, and since the B’s are exclusive, by summing over the probability of
E’s overlap with the B’s, we get exactly E’s probability. The outstanding
feature of KK, in my opinion, is that the axioms have a direct and intuitive
rationale.
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As a special case of A4 we have
Theorem 3 P(A) = P(A|B)P(B) + P(A|~B)P(~B).

Where C is a contradiction, both B, ~B and B, ~B, C satisfy the antecedent
of Theorem 2. Hence

Theorem 4 Where C is a contradiction, P(B|C)P(C) = 0.
As an interesting consequence of A3, we have
Theorem 5 If A is consistent and A entails ~B, then P(B|A) = 0.

For suppose A is consistent and A entails ~B. Now ~B is equivalent to
((~B & D)v(~B & ~D)). Hence (~B & D), (~B & ~D) satisfies the antecedent
to Theorem 1. But likewise (~B & D), (~B & ~D), B satisfies the ante-
cedent. Letting E be a logical truth T, the two applications of Theorem 1
then entail Theorem 5.

Where C is a contradiction, putting in C for both A and B in Theorem
3, we obtain P(C) = P(CIC)P(C) + P(CI~C)P(~C). By Theorem 4 the first
term is 0, and by Theorem 5, P(C|~C) = 0, yielding

Theorem 6 Where C is a contradiction, P(C) = 0.
As another basic consequence of A3 we get
Theorem 7 If A is consistent, P(B|A) + P(~B|A) = 1.

Letting a logical truth T be E, we can apply A3 to B, ~B to get P(T|A) =
P(B|A) + P(~B|A), which by A2, is 1. We then also have

Theorem 8 If A is consistent and A entails B, then P((E & B)|A) = P(E|A).

Since A is consistent, by A3 we get P(E|A) = P((E & B)|A) + P((E & ~B)|A).
Since A entails B, A entails ~(E & ~B), so by Theorem 5 P((E & ~B)|A) = 0,
yielding Theorem 8.

Now we are in a position to prove a central theorem.
Theorem 9 P(A & B) = P(A|B)/P(B).

By Theorem 3 P(A &B) = P((A & B)|B)P(B) + P((A & B)|~B)P(~B). At least
one of B, ~B is consistent. We show the theorem for each case. (This
proof can be simplified by noting that B entails (B v C), where C is a con-
tradiction, C then replacing ~B).

Case 1: B is consistent. By Theorem 9 P((A & B)|B) = P(A|B). Either ~B
is consistent or not. If ~B is consistent, by Theorem 5 P((A & B)|~B) = 0.
If ~B is not consistent, by Theorem 6 'P(~B) = 0. In either case the second
factor in P(A & B) is 0, yielding the theorem.

Case 2: ~B is consistent. By Theorem 5 then, P(A & B) = P((A & B)|B)P(B).
Either B is consistent or not. If B is consistent, by Theorem 8 P(4A & B) =
P(A|B)P(B). If B is not consistent, then (A & B) is not consistent. By
Theorem 6, P(A & B) = P(A|B)P(B) = 0.
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As corollaries of Theorem 9 we get
Theorem 10 If P(B)> 0, then P(A|B) = P(A & B)/P(B).
Theorem 11 If P(B) = 0, then P(A & B) = 0.

Applying Theorem 9 to Theorem 3, we get
Theorem 12 P(A) = P(A & B) + P(A & ~B).
Since P(T) = 1 by A2, substitution of T into Theorem 10 yields
Theorem 13 P(A) = P(AIT) if T is a logical truth.

To show that the unconditional probability axioms are satisfied, we
must show (1)-(4). (1) trivially follows from Al and Theorem 13, (2) is a
part of A2, and (4) is Theorem 10. To show (3), we first need to prove

Theorem 14 P(B) + P(~B) = 1.
Theorem 14 follows directly from Theorem 7 and Theorem 13.

Consider, then, that P(Av B) = P(~(~A & ~B)), which by Theorem 14 is
1- P(~A&~B). By Theorem 14, 1 = P(4) + P(~A). By Theorem 12 applied
to ~A, we get 1 = P(A) + P(~A& B) + P(~A & ~B). Hence 1 - P(~A & ~B),
which is P(Av B), equals P(A) + P(~A & B). By Theorem 12 applied to B,
we get P(~A & B) = P(B) - P(A & B). Substituting, we get

Theorem 15 P(AvB) = P(4) + P(B) - P(A & B).
Applying Theorem 6 to Theorem 15 we immediately obtain (3):
Theorem 16 P(AvB) = P(A) + P(B) if (A & B) is inconsistent.

As noted earlier, the axioms of KU entail those of KC. So, trivially
since KK entails KU, KK entails KC. The proofs are all easy, so we here
omit them. They center on Theorems 10 and 13, and involve simple
algebra.

The final theorems we want to show for KK are the five theses in
section 4, qualified for consistent factors. T3 is Theorem 7, and T5 is just
Theorem 5. To show T4, suppose A is consistent. Using Theorem 7 and
A3, the same proof for Theorem 11 can be utilized to show

Theorem 17 If A is consistent and (B & E) is inconsistent, then
P((BvE)|A) = P(BIA) + P(E|A).

T2 is easily shown to follow from Theorems 5 and 7. Suppose A is
consistent and A entails B. Then A entails ~~B. By Theorem 5 then,
P(~B|A) = 0. By Theorem 7 we have P(B|A) = 1. Hence

Theorem 18 If A is consistent and A entails B, then P(BlA) = 1.
As a special case of Theorem 18 we have T1:

Theorem 19 If A is consistent, then P(AlA) = 1.
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This completes my development of system KK, which is a simple,
powerful, and yet intuitive extension of Kolmogorov probability theory.
However, if we either are willing to go beyond theses T1 through T5, for
consistent factors, or else are not concerned with extending Kolmogorov
probability theory, interesting variants of KK are possible. By strengthen-
ing A3, for example, by simply dropping the qualification that A be consis-
tent, we immediately extend KK to accept universally 75: all probabilities
conditional on a contradiction will have to be 0. This augmented system is
simpler and stronger than KK, but goes beyond intuitions in my opinion.

If we keep the dissatisfaction with the way conditional and unconditional
probabilities are linked, weaker axiomatizations are possible which are
still extensions of the standard theory. One can substitute special cases
and consequences of A3 and A4 for them, but the resultant systems are not
simpler. For example, in system L, which universally accepts T5, the
following are provable: part of (*), the usual links, and Kolmogorov
probability theory.

L1 P(A) =0.

L2 1= P(A) + P(~A).

L3 If A entails ~B, then P(B|A) = 0.

L4 If A entails B, then P((E & B)|A) = P(E|A).
L5 P(A) = P(A|B)P(B) + P(A|~B)P(~B).

One can easily show that the theorems needed to prove standard probability
theory for KK hold for L. The key to the weakenings is that in L one can
very simply and directly prove P(A & B) = P(A|B)P(B) and P(C) =0 if C is a
contradiction. Substituting (A & B) for A in L5 and applying L3 and L4
immediately yields the first assertion. Since everything entails the nega-
tion of a contradiction C, substituting C for A in L5 and applying L3
immediately yields the second assertion. The remainder of the Theorems
through 16 follow routinely for L as for KK, showing that L too is an
extension of Kolmogorov probability theory.

Finally, how does KK compare in power to the axiomatizations of
conditional probability that accept theses TI1 through T5 exactly for con-
sistent conditionalizations? The answer is that KK is usually slightly
weaker. For example, consider the following axiom system, which is a
slight modification of Carnap [1], p. 38.

R

R1 P(BlA) = 0.

R2 If A is consistent, then P(A|A) = 1.

R3 If A is consistent, then P(B|A) + P(~B|A) = 1.

R4 If (A & E) is consistent, then P((E & B)|A) = P(E|A)P(B|(A & E)).
R5 P(A) = P(A|T) where T is a logical truth.

It is not too difficult to show that R entails KK, and that KK entails all of R
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but R4. And R4 (the assertion we wish to avoid as axiomatic because the
ratio definition is a special case of it) is nearly provable. If P(A & E) > 0,
then P(A) > 0, and C4 is easily proved using Theorem 10. And if P(E|A) =
0, then P((E & B)|A) = 0, making both sides 0. Thus we can show

Theorem 20 If P(A& E) > 0 or P(E|A) = 0, then P((E & BlA) = P(E|A)x
P(BI(A & E)).

Note that Theorem 20 covers all cases except where P(4) = 0. For if
P(A) # 0 and P(A & E) = 0, since P(A & E) = P(E|A)P(4), we must have
P(E|A) = 0. Note also that putting in a logical truth for A in Theorem 20
yields the ratio definition. How KK could be extended to be equivalent to R,
and whether or not it should be so extended, are questions I do not current-
ly have answers for.

NOTES

1. By definition I do not mean that there is in the theory an assertion labeled ‘‘definition™. I
mean the purely formal point that one probability function is introduced into the theory
via an assertion which has the form of a definition, whether it is called a definition or axiom
or whatever (cf. Suppes [11], chapter 8).

2. In saying that these theses are inconsistent, I assume that P is a function. Reichenbach [6]
universally accepts all five theses, but can do so consistently only because he takes as primitive
not a two-place function but a three-place relation-roughly, “B is probable to degree r where
A is true.” Then the notation “P(B|A) = r” is appropriate only where r is unique. In the one
case where A is inconsistent, B is held to be probable to degree r on A, for all real numbers r
[6], p. 6. Then T shows merely that B is probable to degree 1 on a contradictory C, and 75
that B is probable to degree 0 on C, and 74 that the sum of two degrees of probability on C
is a degree of probability on C. Reichenbach’s move is certainly a permissible and eloquent
way to preserve the universality of these theses. However, accepting universally what he calls
the univocality of probability [6], p. 55—that for 4 and B there is one and only one thing
which is the degree that 4 is probable on B—other assertions must be restricted to at least
consistent conditionalizations. Note that probabilistic entailment can still be a generalization
of logical entailment if 72 is universally accepted.
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