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On the Relationship Between
One-Point Frames and Degrees of

Unsatisfiability of Modal Formulas

FABIO BELLISSIMA

Let L be a normal modal logic and x; the class of the frames on which it
holds: x; determines, in the set & of all modal formulas, the subset Y of those
formulas which are true in every frame of x;. From Y we can obtain the set 1Y
of the negation of the formulas of Y, and then Y and 1Y i.e., the complements
of Yand 1Y in 4

Up to this point the situation is like that of the Classical Propositional
Calculus, where we have the sets T of the tautologies, 77T (formulas that are
false under each valuation), T (false under at least one valuation), and AT (true
under at least one valuation). Moreover, the truth-functionality of the classical
connectives entails that these sets are the only sets of formulas that can be
determined by taking into account the possible truth value of a formula with
respect to the models of a given class, when we analyze the situation only by
means of the words “for all”’, “there exists”, “true’’, and “false’ referred to the
models of the class. In fact we can cons1der all the models of the Classical
Propositional Calculus to be built on a single frame with a single point: so the
words “for all” and “‘there exists’ can be referred only to the valuations.

In the case of a modal logic the situation is more involved; a formula { is
true in a class x; of frames if: for each frame A € x;, each valuation ¥ on A,
and each point a of 4, {4, V) E y[a]. By interchanging ““for all” with “there
exists”’, or commuting the quantifier referring to the valuations with that
referring to the points, or interchanging F with F, we get many different sets
of formulas determined by x;. These sets, which will be called U-sets (see
Definition 2.1), indicate different degrees of unsatisfiability of a formula with
respect to x .

The first aim of this paper is to determine necessary and sufficient condi-
tions which a class x; must satisfy in order that some U-sets coincide. Through
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this analysis we find that all these conditions concern, roughly speaking, the
behaviour of the two frames A, = ({a}, $» and A, = {{a}, {a, a)}) with respect to
the frames of x .

Now, a problem much present in the literature is that of investigating
which semantical properties of a class of frames are expressible by sets of modal
formulas. On the other side, the properties (expressed in terms of A, and A4,)
that we have used in our analysis (see Definition 2.8) seem to be of some
interest in themselves. So the second problem we deal with regards the
possibility of expressing syntactically these semantical properties.

1 Background material The modal language considered in this paper has
an infinite set of propositional letters pg, p;, p5, - . ., @ propositional constant L
(the falsum), the connectives A and 1, and the modal operator 0. We write 0",
n < w, instead of O0O. . . n times, while v, D, =, and O are defined as usual. Let
Yy be a modal formula: we define the modal degree of Y (in symbols dg(y)) as
follows:

dg(p) = dg(l) = 0, for propositional letters p
dg(y) =dg(y)

dg(y n ¢) = maxidg(y), dg(o)

dg(Oy) =dg(y) + 1.

A normal modal logic is a set of modal formulas that (i) does not contain 1,
(ii) contains all classical tautologies, (iii) contains all the formulas of the form
O(yY D ¢) D (Oy DOg), and that is closed under (iv) modus ponens, (v) neces-
sitation, and (vi) the formation of substitution instances. Since in this paper we
only deal with normal modal logics, the words “normal’” and “modal” are often
omitted; moreover we identify a logic with each set of its axioms. The names of
logics that aren’t new are those of [5].

The semantic structures are frames and models. Frames are ordered
couples (4, R) of a nonempty domain 4 ={a,, a,, . . .} (elements of A are called
points) with a binary relation R on A (frames are denoted by A4, B, etc.). Two
frames A and B are isomorphic if they are isomorphic as ordered sets; we shall
identify isomorphic frames. Models are ordered couples (4, V) with A a frame
and V a valuation; i.e., a function from the set of propositional letters into the
power-set of A. We write ¥ !(a) to represent the set {p: a € V(p)}. The well-
known Kripke truth-definition defines the notion (4, V) F y[a], for a model
(A, V), ae A, y a modal formula. Then A E y[a] means that for every ¥ on 4
(A, V) E ylal; {4, V) E y means that for every a of A {4, V) F Y[al; and
A E Y means that for every a of A A F y[a]. We write Th(A) to represent the
set {Y: A4 F ¢}, and, if T is a set of formulas, we write A F I' instead of
I' C Th(A). _

Let {4, R) be a frame and A’ C A. We define A'/A to be the frame (B, R)
in which

B={aeA: forsomea € A a’'R*a} U A' (where R* is the transitive closure
of R)
and

R'=RNBXB.
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In such a frame we refer to B as A'. We define a frame to be undecomposable if
there aren’t two nonempty subsets A’, A" C A4 such that 4’ N A" = ¢ and
A'u4d” =_A. B is a subframe of A, in symbols B C A4, if there is A" C 4 such
that B = A'/A. A'/(A, V) is the model (4'/A, V') where, for each a € A’,
V'"Ya) = V"Y(a). We use, and sometimes without mention, the following

Proposition 1.1 (Generation Theorem) Foralla € A' and all formulas

A'/A, V) Eylal iff 4, V) E yla)
A'/A F Yla) iff A E ylal.

For L alogic, we set x; ={A4: A EL}. A class x of frames is axiomatizable
if x = x; for some L. We write, for I' a set of formulas, x E T if, for each 4 of
x, A ET. L is complete (with respect to x) if L I iff x,E ¢. Since in our
paper we only deal with axiomatizable classes of frames, which are closed under
subframes and disjoint unions of frames, then we may consider, without loss of
generality, undecomposable frames only.

2 Basic definitions and results

Definition 2.1 We define a U-sef of a logic L as a set of formulas of one of
the following two kinds:

() {y: QA4, QV, Qa, (A, V) # Ylal}
(i) {y: QA, Qa, QV, (A, V) # Y lal}

where Q stands for “for all” or “there exists”, 4 € xz, V is a valuationon A4,
a e A, and # stands for F or .

Of the 32 sets of formulas we get in this way, only 24 are a priori different
from one another, since two equal consecutive quantifiers commute. Further-
more, we can easily get rid of a number of relations among the U-sets of a logic
L which are immediate consequences of their respective definitions and do not
depend on L. First, let

Y={: 04, QV, Qa, (A, V) # Ylal}

be a U-set of type (i). By reading Q' as “for all” if Q is “there exists” and vice
versa, and #' as W if # is = and vice versa, we have that

{Y: Q4, QV, Qa, {A, V) # Ylal} ={:peYi=Y

{Y: Q'4, Q'V, Q'a, A, M# Ylall=: Y ¢ Y} =Y

W: Q'4, Q'V, Q'a, <A, M # Ylal} ={y: 1y ¢ Yi=Y.
The same holds if the U-set is of type (ii). Four our purpose it is therefore
enough to consider only six U-sets for each given L, since any other U-set will
be related to one of these by some “Boolean’ connection like the ones above.

The reason for our choice of the six U-sets will soon be clear. The definition is
as follows:

Definition 2.2 Let L be a logic. We set:
L,=W:YA,VV,VYa (A, V) F ylal}
Ly ={:xy Eylyand L, = L iff L is complete)
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{Y: VA, Ja, YV A, V) Eylal}
{W: VA, VYV, 3a (A, V) Eylal}
ty:3A4, YV, Va (A, V) E ylal}
ty:3A4,3a, YV A, V) Eylal}
Lo=1y:34, VYV, 3a (A, V) FEylal}

(remember that A € xz, V is a valuation on 4 and a € 4).

Lg
L'Y
Ls
L

With this choice the following inclusions hold for every L:
Lo C LgCLyCLs CLC L.
The only nontrivial inclusion is L, C Lg, which will be shown in Corollary 2.7.

Definition 2.3 We set Ao = (la}, # and A4, = {a},{{a, @)). Let a be a point
oféframe A. We define a as strongly terminal if ta}/A = A,, as weakly terminal
if{a}/A = A, and as terminal if it is weakly or strongly terminal.

Lemma 2.4 Let B be a frame such that Ay < B, let V be a valuation on A,
and let V' be the valuation on B such that, for all b € B, V'"Y(b) = VYa),
where a is the point of A,. Then for all b € B and all formulas

(B, V') EYIbliff(A;, V) E .

Proof: By induction on the construction of . If ¥ = p then the statement
holds by definition of ¥'. The induction steps for A and -1 are trivial. Let
(A, V) EOVY. Since aRa we have{A,, V) F ; by hypothesis for each b € B it
holds (B, V') E y/[b] and then (B, V') E Oy. On the other side let (B, V') E
Oy[b]; from A, ¢ B it follows that there is b’ € B bRb'. Then (B, V') E y[b'],
(A, V) Ey,and (4, V) EOV.

Corollary 2.5 (from [5]) For every frame A, Th(A) C Th(A,) or Th(A) C
Th(A,). Then, for every L, Age x or A, € X1

Proof: Trivial.

Corollary 2.6 For every L, Ls is one of the following sets of formulas:
Th(Ag), Th(A,), or Th(Ay) U Th(A,).

Proof: If Age x and A, ¢ x; then, by Corollary 2.5, for each 4 € x, Th(A) C
Th(A,) and then Ls = Th(A,). Analogously, if A, € x; and Ay ¢ xz then Ls =
Th(A,), and, if Ay, Ay e€x, Ls = Th(A,) U Th(A,). By Corollary 2.5 no other
cases are possible.

Corollary 2.7 Forevery L, L., C Ls.

Proof: 1If Y € L, and Ay[A,] belongs to x;, as Card(A,) [Card(A,)] = 1, we
obtain Ay F Y[A; F y]. Then, from Corollary 2.5, it follows ¢ € Ls.

As we observed in the introduction, almost all the conditions of identity
among L,~Lg are expressible in terms of 4, 4. For the sake of brevity we give
the following

Definition 2.8 Let A be a frame. We write:
Condy4) if A,CA
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Cond,(4) if A, CA
Condgy(A) if A,CAorA,CA
Condy(A) if Ag=A orA,Z A.

Let Cond be one among Condy,—Cond,. We say that x; satisfies Cond if, for
each 4 € x 1, Cond(A), and we say that Cond is syntactically expressible if there
is a set I" of formulas such that x; satisfies Cond iff x; F I

Throughout the paper we shall determine which cases among Conds-Cond,
are syntactically expressible.

3 Identities among Lg, L, Ly We show that all the identities among Ls, L,
and Ly depend on Cond, (Theorem 3.1) and that Cond, is expressible by the
formula 0101 (Theorem 3.2).

Theorem 3.1 For every L we have:

(a) if xy satisfies Cond, then Ls =Ly = Lg
(b) if x;, does not satisfy Cond, then Ls + L # L.

Proof: (a) We have seen that Ly C L, C Lg; so we have only to show that
Cond, implies Ly C Lg. Suppose Y € Lg; this means that there exists a frame
B = (B, R) of x; such that for each ¥ on B there is a b € B (B, V) F y[b].If
B = A, then, since Card(A,) = 1, we have, for each V, (B, V) F ¢ and then
Y € Ls. If B+ A, from Ay € B and Lemma 2.4 we obtain that for each ¥ on
A, (A, V) E ¢. Then, with A, belonging to x; (Th(B) C Th(A,) and B € x1)
we have Y € L.

(b) Suppose x; does not satisfy Cond,. First we show Ls # L.. Let B be
a frame of'x; such that B #* A, and A, C B. Then (we assume B to be undecom-
posable) there are two points b, b’ of B such that b’ is strongly terminal and
bRb'. So ©O1 € Lg. On the other side we have, for each L, 001 ¢ Ls because,
for every A, A #00L. In fact A E00OL[a]), for a point a, implies that there is a
strongly terminal point ¢’ which belongs to A, and then A ¥ ¢0OL1{a']. Finally
we show that L, # L, showing that 7L, # 1L,. Let us consider the formula

¥ =y, v Y, where
Y,;="p A0l and ¢,=10LA00OLD O(pAOL)).

For every L, Y € 1L, i.e., for each A and a of A there exists ¥ such that
(A, V) E ylal. In fact: (i) if a is strongly terminal, a ¢ V(p) implies {4, V) E
Y, lal; (ii) if a is not strongly terminal and there aren’t strongly terminal points
a' such that aRa’, then A ¥ OO0 L[a] and then A F ,[a]l; (iii) if  is not strongly
terminal and there is a strongly terminal point a' such that qRa’, a’' € V(p)
implies {4, V) F y,la]. Now we show that if x; does not satisfy Cond, then
W ¢ 1Lg; i.e., there exists A of x; such that for each V there is a (A4, V) ¥ y[a].
Let A € xz, A #+ Ay, A, C A and let a be a point of A such that A FoOL[a].
Now let Y be the set of the strongly terminal points of A: for each ¥ on A, if,
fora b of Y, b e V(p), then{A, V) ¥ ¢,[b], and, from A ¥ 101[b] it follows
that (A4, V) ¥ y[b], while if, for each b € Y, b ¢ V(p), then (A4, V) FEO(p A
101)[a] and then, from A ¥ Ol[a], we obtain (4, V) £ y[a]l.

Theorem 3.2 Cond, is expressible by the formula 001
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Proof: For each A, Cond,(A) iff A E O0OL In fact A, E O~0L; let then
A+A, AL AiffA F10Oland,as A #A, A FOLiff A FO-0OL

Corollary 3.3 For every complete L, X1, satisfies Cond, iff L F-0-0L
Proof: Trivial.

4 Identities among Lg L., Lg The identities among Lg, L., and L, are
related to Cond,, Cond,, and Condy, (Theorems 4.1-4.3). Contrary to Cond,,
we show that these conditions aren’t syntactically expressible (Theorem 4.4),
while they become expressible if referred to classes of transitive frames.

Theorem 4.1 For every L, Lg = L., iff x satisfies Condy,.
Proof: (=) Let

Yy=pDO0Op .
We have, for every L, ¢ € L,; this is obvious by considering ¢ in the form
-p v Op. By hypothesis L., = Lg, then { € Lg, but, for every A and a, A F y[a]
iff {a}/A is Agor A,.

(<) Let Y € LA,, A € X1, and a be a terminal point of 4. aI/A isAgor A,
and, since Card(fa}) =1, y € L, 1mphesia}/A Fy,ie,A Fylal. Then Y € L.

Theorem 4.2 For every L, Lg = L iff x 1 satisfies Cond or it satisfies Cond,.

Proof: (=) By Corollary 2.5 either A, or A, belongs to xz. Let us suppose
A,y e xz: we show that x; satisfies Cond, Obviously OL € Lg and if, for
reductio, there is a frame A of x; such that A, € A, then A F 10l and
Ol ¢ Lg. Let us now suppose A, € x: we show that x, satisfies Cond . Set:

Y =(pD0Op)a0OL

Since A; F ¢ we have Y € Lg; but, if there is a frame A of x; such that A; ¢ 4
then, for each a of A, either a is strongly terminal, and in such a case A ¥
10L[a], or it is not terminal and then there exists a’ of A4, a’ # a and aRa’; in
such a case if we choose a V such that a € V(p) and 4’ ¢ V(p), we obtain
(A, V) ¥ p D Oplal. So we have that for every a of A, A ¥ y[a] and then
yéLg

(<) If x, satisfies Cond, then A, ¢ xr. Therefore, by Corollary 2.6,
Ls = Th(Ay) and then Cond,implies Lg = Lg. Analogously if x; satisfies Cond.

Theorem 4.3 Let L be a logic such that L = Op D OOp. L,=Lsiff X1
satisfies Cond or it satisfies Cond,.

Proof: (=) If Ay € x then the proof is the same of that of Theorem 4.2. Let
A, e x;. We show that L, = L; implies that x, satisfies Cond,. Suppose, for
reductio, that there is a frame A = (4, Ry of x; such that A, T A. If 4
contains strongly terminal points, then A, € x. In such a case, since A, FOL
and A, F 0L, 0Ol € Ly and Ol ¢ L, and then Ls # L,. Suppose A to be
without strongly terminal points; then A is without terminal points. We show
that in such a case the frame B = (B, Rp), where B = {by, b;} and Rg =B X B, is
a p-morphic image of 4.
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Let w.o. be a well ordering on 4. We define a function f from A into B as
follows: let a, be the first point of 4 (following w.0.) and ag,, n < w, a chain
of points such that ag o = ao, @gn R4 aon+1 and agp # agp+ (since A4 is without
terminal points such a chain exists). We set f(ao ) = by if n is even, b, other-
wise. Let now a, be the first point for which f has not been defined. If there is
a point &' such that a,R4a’ and f(a') have been defined, then set f(a,) =
b, (f(ay) in such a case is not essential); if not, proceed as in the case of a,. It is
easy to see that f is a p-morphism from 4 to B. In fact fis onto, a R4a’ implies
f(a) Rg f(a"); moreover L = 0Op D OOp implies that R, is transitive and then,
for each a € A, there exist a’, a"’ such that a R4a’, a Rqa'"’, f(a') = by, and
f(a'") = b,. Therefore, as x is closed under p-morphic images, B € X.

Let us consider now the formula

Y =(p>0p)Ar(pD>07p).

Obviously A, E ¢ and then € Ls. But, if we consider the model (B, V), where
V(p) = {by}, we have that, for each b € B, (B, V) I y[b], and then Y ¢ L,.
(=) Obvious from Theorem 4.2.!

Theorem 4.4 Cond,, Cond,, and Condy, aren’t syntactically expressible.

Proof: First we show the theorem for Cond,. Let us consider the two frames

B=({w,{nn+1)n<wh
B =(w, {n+1,n),n<wh

and a formula Y such that dg(y) =m. B' E{ impliesB' F y[m + 1] and then
B FE . So we have Th(B') C Th(B). Let us now suppose that there exists I’
such that x; F I'iff x satisfies Cond,, and consider x . From Th(B') C Th(B)
and B ¢ xr it follows B' ¥ T'. Let n be a point of B' such that there is a
vyeT'B' ¥ ~[n]: we have {n}/B' ¥ ~. Let now
v=V ool .
i<n

Since {n} = {n,n—1,...0}, we have {n}/B' = . Moreover, A E  implies
Ay C A; then xqy; F T and {n}/B’ € xgy} C xr, which contradicts {n}/B .

The proof of the theorem for Cond,, is the same as that for Cond,; and
the proof for Cond, can be obtained from that given by replacing B' with
B =(w, 0, 0%, (n+1,n), n<cwh and Y with ¢’ = \</ ol((p D Op) A ~OL).

isn

s

Theorem 4.6 Suppose L '=0p D 0O0p. Then

(a) x satisfies Condyiff x;, FOLv o0l

(b) x, satisfies Condy, iff xi F (p 2 Op) v O(p D Op)
(c) xt satisfies Cond, iff xp F O((p D Qp) A 110L).

Proof._(a) Suppose A € x; and A ¥ Ol v 00Ol[al. Then, as R is transitive,
A, < {a}/A, while {a}/A € xz. The converse is trivial.

The proofs for (b) and (c¢) are similar to that of (a); it is sufficient to
consider that A F p D Opla] iff a is terminal and A E (p D Op) A 10L[a] iff
a is weakly terminal.
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Remark: Let Cond, be one among Cond,, Cond,, and Cond,,. Theorem 4.6
does not imply that the class of the transitive frames satisfying Cond, is
axiomatizable. Obviously this class isn’t axiomatizable since it is not closed
under subframes. Theorem 4.6 only implies that x; (where L is K4 U {{,} and
Y, the formula of Theorem 4.6 corresponding to Cond,) contains every
axiomatizable class of transitive frames satisfying Cond,. By contrast, Theorem
4.5 implies that there isn’t a maximum class among the axiomatizable classes
which satisfy Cond,. On the other side the connection between Cond, and the
formula 001 is stronger: in fact {A: Condy(A)} = Xxujnioy}. That’s why
Cond,(A) iff A F O0Ol, while, for A transitive, Condy(A4) iff for each
BCA BF Yy,

Corollary 4.7 If L is a complete transitive logic, then

(@) Lg=L,iff L =(p 2 0p) v O(p D 0p)
(b) Lg=Lsiff L,=Lsiff L FOLvoOLlor L =O(p DOp)a0OL.

Proof: Trivial.

5 Conditions of identity between L, and the other U-sets

Theorem 5.1 Ly = Lg iff the only (undecomposable) frame of x, is AglA,].

Proof: L, = Lg iff, for all A, B € x;, Th(A) = Th(B). Via Corollary 2.5, it is
equivalent to say that, for all A € xz, Th(A) = Th(Ay) or, for all A € x,
Th(A) = Th(A,). But Th(A) = Th(Ay)[Th(A,)] iff each point of A is strongly
[weakly] terminal.

Theorem 5.2 L, = L., iff the only (undecomposable) frames of x, are A,
orA,.

Proof: (=) As shown in the proof of Theorem 4.1, for each L, p D Op € L,,
while A F p D Op iff each point of A is terminal.
() Trivial.

From Theorem 5.1 it follows that the only complete logics which satisfy
L, = Ls (and then, via Theorem 3.2, L, = Lg) are Qo = K U {01} and DZ =
K{(p D Op) a 0.3, while Theorem 5.2 implies that the only complete logics
for which L, = L., are Qq, DZ, and Z =K U {p D Op}. The word “complete” is
essential: in fact (see [7] and [2]) there are logics strictly included in DZ that
have its class of frames. The only result about the identity between L, and L,
that we have obtained is the following:

Theorem 5.3 If Lo = Lg then X, satisfies Cond,.

Proof: 1t is easy to see that, for each L, 0101 € Lg. Then the result follows
from Theorem 3.2.

In Example 6.2 we shall show that the converse of Theorem 5.3 is not
true, while in Example 6.3 we shall show that L, = Lg, which via Theorem 5.3
and Theorem 3.1 implies L5 = L = Ly, does not imply Lg =L, or L, = Ls.

6 Examples We have seen that Q, and DZ are the only complete logics
satisfying all the identities among U-sets. On the other side, as is obvious
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a priori, K does not satisfy any identity. In fact, from all the theorems above,
we have that a complete logic L does not satisfy any identity among U-sets iff
L H 001 and there is a frame of x; without any terminal point. From that
we can observe that K is not the unique logic having this property: also K4, for
instance, has it.

Example 6.1: An interesting example (see [1], [3], and [4]) is given by the
logic GL (also called K4W, in the notation of [6], or G in [3]). GL is K U
{0(@p D p) D Opl. A frame A belongs to x ¢y iff it is transitive and reverse
well-founded, i.e., without infinite ascending chains. x ¢y satisfies Cond,, and
therefore GLg = GL,, = GLs, while from GL #0101 we obtain GL,# GLg and
GLs # GL. # GLgy. Moreover, via Corollary 2.6, GLs, and therefore GLyg, is the
logic Qq. It is known that the operator O of GL can be “‘interpreted”, under
suitable conditions, as the predicate Theor of Peano Arithmetic (PA); under
this interpretation 01, i.e., the axiom of Q,, is the formula which express the
inconsistency of PA; so GLg = Q, says the formulas “near” to being theorems
are implied by the inconsistency and that 101, even if it is not a negation of a
theorem, is false in each frame of GL.

Example 6.2: S4Grz is S4 U {0(@(p D Op) D p) D p}. A frame A of S4isa
frame of S4Grz iff, for each ascending chain agR a,R a,R . . ., there exists n
such that, for every n', n'' >n, a,» =a,n. Then p D Op € S4Grzg and p D Op¢
S4Grz,, while, as xs46,, satisfies Cond; and Cond,, all the identities among the
other U-sets are satisfied. This shows that the converse of Theorem 5.3 does
not hold.

Example 6.3: Let us consider the logic S5. Since the relation of each frame of
S5 is an equivalence relation, obviously §5, = §54, and then S35 = S5, = §5,.
Moreover, since S5 has frames without terminal points, S5 # S5, # §55. For
the wellknown relationship existing between S5 and Classical Propositional
Calculus, we thought that logics satisfying the same identities among U-sets
satisfied by S5 were ‘“‘similar” to it. But we have found a logic very different
from S5 which does it. Consider in fact

L=KUlop DOp, 1Ol} .

A ey iff for each a of A there is exactly one point a’ a R a’. x, satisfies Cond,
but it does not satisfy Cond,, and so Lg # L, # Ls = Lc = Lg. Suppose now
Y ¢ L, there exists a point a of a model (4, V) such that (4, V) ¥ y[a]. Let
dg(y) = n and ay, a,, . . ., a, be the (not necessarily distinct) points of A such
that ayR, a;R . . . a,. Let now m be a point of the frame B of Theorem 4.4 and
let V' be a valuation on B such that, for eachs <n, V'~ (m +5) = V"Y(a,); then
we have (B, V') ¥ y[m]. In this way we can find, for every b of B, a V such
that(B, V) ¥ y[b]. Then,asBe xy, ¥ ¢ Lgand Lg = L,.

NOTE
1. We have used the hypothesis L - op O oop only to show that L, = Ls and A € Xz

imply that x satisfies Cond,. Without such a hypothesis we can only show that L= Lg
and A, € xy imply that, for each finite A4 € x;, Cond,(A).
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