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On the Relationship Between

One-Point Frames and Degrees of

Unsatisfiability of Modal Formulas

FABIO BELLISSIMA

Let L be a normal modal logic and χι the class of the frames on which it
holds: χι determines, in the set ^ of all modal formulas, the subset Y of those
formulas which are true in every frame of χι. From Y_we can obtain the set π Y
of the negation of the formulas of 7, and then Y and π Y; i.e., the complements
of Y and Ί F in ^'.

Up to this point the situation is like that of the Classical Propositional
Calculus, where we have the_sets T of the tautologies, iT (formulas_that are
false under each valuation), T (false under at least one valuation), and Ί Γ (true
under at least one valuation). Moreover, the truth-functionality of the classical
connectives entails that these sets are the only sets of formulas that can be
determined by taking into account the possible truth value of a formula with
respect to the models of a given class, when we analyze the situation only by
means of the words "for all", "there exists", "true", and "false" referred to the
models of the class. In fact we can consider all the models of the Classical
Propositional Calculus to be built on a single frame with a single point: so the
words "for all" and "there exists" can be referred only to the valuations.

In the case of a modal logic the situation is more involved; a formula φ is
true in a class χι of frames if: for each frame A e χι, each valuation V on A,
and each point a of A, (A, V) f= φ[a]. By interchanging "for all" with "there
exists", or commuting the quantifier referring to the valuations with that
referring to the points, or interchanging 1= with t£, we get many different sets
of formulas determined by χι. These sets, which will be called f/-sets (see
Definition 2.1), indicate different degrees of unsatisfiability of a formula with
respect to χι.

The first aim of this paper is to determine necessary and sufficient condi-
tions which a class χι must satisfy in order that some ί/-sets coincide. Through
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this analysis we find that all these conditions concern, roughly speaking, the
behaviour of the two frames>lo= ({a\, φ) andv4j = <ίαi, {(a, a)\) with respect to
the frames of χL.

Now, a problem much present in the literature is that of investigating
which semantical properties of a class of frames are expressible by sets of modal
formulas. On the other side, the properties (expressed in terms of Ao and Aλ)
that we have used in our analysis (see Definition 2.8) seem to be of some
interest in themselves. So the second problem we deal with regards the
possibility of expressing syntactically these semantical properties.

1 Background material The modal language considered in this paper has
an infinite set of propositional letters pOf pu p2, . . ., a propositional constant 1
(the falsum), the connectives Λ and π, and the modal operator D. We write D",
n<ω, instead of D D . . . n times, while v, D, = , and 0 are defined as usual. Let
ψ be a modal formula: we define the modal degree of φ (in symbols dg(φ)) as
follows:

dg(p) = dg(l) = 0, for propositional letters/?
dg(-iφ)=dg(φ)
dg{φ Λ φ) = max\dg{φ\ dg(φ)\
dg(Πψ)=dg(φ)+l.

A normal modal logic is a set of modal formulas that (i) does not contain 1,
(ii) contains all classical tautologies, (iii) contains all the formulas of the form
D(ψ D φ) D (D φ D Dφ), and that is closed under (iv) modus ponens, (v) neces-
sitation, and (vi) the formation of substitution instances. Since in this paper we
only deal with normal modal logics, the words "normal" and "modal" are often
omitted; moreover we identify a logic with each set of its axioms. The names of
logics that aren't new are those of [5].

The semantic structures are frames and models. Frames are ordered
couples (A, R) of a nonempty domain A = \aQ, aί9 . . .! (elements of A are called
points) with a binary relation R on A (frames are denoted by A,B, etc.). Two
frames A and B are isomorphic if they are isomorphic as ordered sets; we shall
identify isomorphic frames. Models are ordered couples (A, V) with.4 a frame
and V a valuation', i.e., a function from the set of propositional letters into the
power-set of A. We write V~\a) to represent the set \p\ a e V(p)\. The well-
known Kripke truth-definition defines the notion {A, V) 1= ψ[a], for a model
(A, V), a e A, φ a modal formula. ThenΛl 1= φ[a] means that for every V on A
{A, V) N ψ[fl]; (A, V) t= φ means that for every a oϊ A {A, V) 1= φ[a}\ and
A 1= φ means that for every a of A A 1= φ[a]. We write Th(A) to represent the
set {φ: A \= ψl, and, if Γ is a set of formulas, we write A t= Γ instead of
Γ C Th(A).

Let (A, R) be a frame and A1 C A. We define A11 A to be the frame (B, R)
in which

B = {a e A: for some a e Af a'R*a\ U A' (where R* is the transitive closure

ofi?)

and

R' = R ΠBXB.
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In such a frame we refer to B as A'. We define a frame to be undecomposable if
there aren't two nonempty subsets A\ A" C A such that A' Π A" = φ and
A1 U A" =_A. B i^ a subframe of 4 , in symbols 2? C >4, if there is A' C A such
that £ = A'/A. A'/(A, V) is the model (A'/A, V) where, for each a e A\
V'~\a) = V~\a). We use, and sometimes without mention, the following

Proposition 1.1 (Generation Theorem) For all a e A' and all formulas φ

A'/(A, V) t= φ[a] iff {A, V) \= φ[a]
A'/A \=ψ[a] iff A tφ[a).

For L a logic, we set χι = \A: A 1= Li. A class χ of frames is axiomatizable
if X = XL for some L. We write, for Γ a set of formulas, χ 1= Γ if, for each A of
χ, -4 f= Γ. L is complete (with respect to χ^) if Z r~ ψ iff χ^t 3 ψ. Since in our
paper we only deal with axiomatizable classes of frames, which are closed under
sub frames and disjoint unions of frames, then we may consider, without loss of
generality, undecomposable frames only.

2 Basic definitions and results

Definition 2.1 We define a U-set of a logic L as a set of formulas of one of
the following two kinds:

(i) {ψ:QA,QV,Qa,(A, V)#φ[a]\
(ii) lφ: QA, Qa, QV, (A, V)#φ[a]\

where Q stands for "for all" or "there exists", A e χι, V is a valuation on A,
a e A, and # stands for 1= or fc£.

Of the 32 sets of formulas we get in this way, only 24 are a priori different
from one another, since two equal consecutive quantifiers commute. Further-
more, we can easily get rid of a number of relations among the £/-sets of a logic
L which are immediate consequences of their respective definitions and do not
depend on L. First, let

Y= fψ: QA, QV> Qa,<Λ, V)#φ[a}\

be a ί/-set of type (i). By reading Q' as "for all" if Q is "there exists" and vice
versa, and #' as ^ if # is 1= and vice versa, we have that

fψ: QA, QV,Qa,U, V) #' φ[a]\ = {φ: nφ e Y\ = Ί J
ίψ: Q'A, Q'V, Q'a,<A, V) #' φ[a]\ = iφ: Φ4Y\ = Y_
{φ.Q'A, Q'VtQ'a,<A, V)#φ[a]\ = {ψ: i ψ I F ! = -\Y.

The same holds if the ί/-set is of type (ii). Four our purpose it is therefore
enough to consider only six t/-sets for each given L, since any other ί/-set will
be related to one of these by some "Boolean" connection like the ones above.
The reason for our choice of the six £/-sets will soon be clear. The definition is
as follows:

Definition 2.2 Let L be a logic. We set:

La = iφ:\/A,\/V,\/a (A, V) t ψ[a]\

(La = iψ:χL fcψ] and La = L iff L is complete)
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Lβ = \φ: MA, 3a, MV {A, V) f= φ[a]\
Ly = {φ:MA,MV,3a (A, V) \= φ[a]\
Lδ = \φ\ 3A, MV, Ma (A, V) 1= ψ[α]l
Lε = \φ: 3A, 3a, MV {A, V) 1= φ[a]\
Lθ = \φ:3A,MV,3a <A, V) \= φ[a]\

(remember that A e χι, V is a valuation on A and α e i ) .

With this choice the following inclusions hold for every L:

LaC LβCLΎCLδ CLεCLθ.

The only nontrivial inclusion is LΎ C Lδ, which will be shown in Corollary 2.7.

Definition 2.3 We set Ao = ({a\, ψ) and Ax = ({a\,{(a, a)l). Let a be a point
of_a_frame A. We define a as strongly terminal if\a}/A = Ao, as weakly terminal
if \ all A - Aί, and as terminal if it is weakly or strongly terminal.

Lemma 2.4 Let B be a frame such that A0(£B, let V be a valuation on Ah

and let V be the valuation on B such that, for all b e B, V'"\b) = V~\a),
where a is the point of A x. Then for all b e B and all formulas φ

(B, V) £φ[b] iff{Ax, V) l=ψ.

Proof: By induction on the construction of φ. If φ - p then the statement
holds by definition of V'. The induction steps for Λ and π are trivial. Let
(Ah V) t= D φ. Since aRa we have (Au V) ί= φ; by hypothesis for each b e B it
holds (B, V) 1= φ[b] and then (B, V1) 1= Ώφ. On the other side let (B, V1) 1=
Ώφ[b}\ iΐomA0£B it follows that there is b1 eB bRb\ Then {B, Vf) 1= φ[b'],

<Ah V) t=ψ, a n d U j , V) l=Dψ.

Corollary 2.5 (from [5]) For every frame A, Th(A) C 77i(y40) or 7%(4) C
Γ/z^j). Then, for every L, Aoe χι or Ax e χχ

Proof: Trivial.

Corollary 2.6 For every Z, Lδ is one of the following sets of formulas:
Th(A0), Th(Λί), or Th(A0) U Th{Ax).

Proof: If Ao e χι and Ax 4 χι then, by Corollary 2.5, for each A e χι, Th(Λ) C
Γ/z(yl0) and then Lδ = Th(A0). Analogously, if Ax e χι and Ao i χι then Lδ =
Γ/zί^j), and, if Ao, Aλ e χL, Lδ = Th(A0) U Th(Ax). By Corollary 2.5 no other
cases are possible.

Corollary 2.7 For every L, LΊ C Lδ.

Proof: If φ e Ly and ̂ o t y l j belongs to χ/,, as Card(A0) [Card(A{)] = 1, we
obtain>40 1= ψ l ^ t= ψ]. Then, from Corollary 2.5, it follows ψ e Lδ.

As we observed in the introduction, almost all the conditions of identity
among La-Lθ are expressible in terms of AQ, Av For the sake of brevity we give
the following

Definition 2.8 Let A be a frame. We write:

Cond0G4) if A0QA
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Conat(A) if AXCA
Cond01(>l) iϊA0CAorAίCA
Cond2(y4) if AQ = A o r A 0 ( £ A .

Let Cond be one among CondQ-Cond2. We say that χι satisfies Cond if, for
each >4 e χι, Cond(A), and we say that Cond is syntactically expressible if there
is a set Γ of formulas such that χL satisfies Cond iff χι t= Γ.

Throughout the paper we shall determine which cases among Cond0-Cond2

are syntactically expressible.

3 Identities among Lδ> Lz, Lθ We show that all the identities among Lδf L ε,
and Lθ depend on Cond2 (Theorem 3.1) and that Cond2 is expressible by the
formula D π D l (Theorem 3.2).

Theorem 3.1 For every L we have:

(a) ifXL satisfies Cond2 then Lδ = Lε = Lθ

(b) ifxi does not satisfy Cond2 then Lδ ΦLεΦ Lθ.

Proof: (a) We have seen that Lδ C Le C Lθ; so we have only to show that
Cond2 implies Lθ C Lδ. Suppose φ e LQ\ this means that there exists a frame
B = (B, R) of χL such that for each V on B there is a 6 e £ CB, K) t= ψ[/>]. If
/? = A o then, since Card(A0) = 1, we have, for each F, <U, F> t= ψ and then
ψ e Lδ. If B Φ AOy from >40 ί i? and Lemma 2.4 we obtain that for each V on
Ax (Ah V) t= ψ. Then, with i4x belonging to χL (Th(B) C ΓΛ(i4i) and £ e χ^)
we have φ e Lδ.

(b) Suppose χι does not satisfy Cond2. First we show Lδ =£ Lε. Let i? be
a frame of χι such that J5 Φ Ao and >40 C B. Then (we assume 2? to be undecom-
posable) there are two points b, b' of B such that b1 is strongly terminal and
bRb1. So 0D1 e L ε. On the other side we have, for each I , 0D1 i Lδ because,
for every A,AΨ OΠl. In fact A \=- OΏl[a], for a point a, implies that there is a
strongly terminal point a which belongs to A, and then A t £ θ D l | V ] . Finally
we show that Lε Φ Lθ, showing that πZ ε Φ ~iLθ. Let us consider the formula
φ = φλv φ2 where

\i/! = -ipADl and φ2 = π D l Λ (ODl 3 0(p Λ Dl)).

For every L, φ e iLe, i.e., for each A and α of >4 there exists V such that
(>4, F> \Pφ[a]. In fact: (i) if a is strongly terminal, α i V(p) implies (A, V) 1=
φx[a]\ (ii) if α is not strongly terminal and there aren't strongly terminal points
a such that aRa, then A \£ ODl[α] and then A ^ φ2[a] (iii) if a is not strongly
terminal and there is a strongly terminal point a such that aRa, a e V(p)
implies (A, V) 1= φ2[a]. Now we show that if χL does not satisfy Cond2 then
φ 4 -iLθ;i.e., there exists A of χL such that for each V there is<z (A, V) \£ φ[a].
Let A e χι, A Φ Ao, Ao C A and let a be a point of A such thatv4 t=ODl[α].
Now let Y be the set of the strongly terminal points of A: for each VonA, if,
for ab of Y, b e V(p)9 then U , F> ^ ψJZ?], and, fromΛ \finΠl[b] it follows
that U , F) ̂  ψ[&], while if, for each b e Y, b φ V(p), then (A, V) # O(p Λ
πDl)[α] and then, from A \ΪΠl[a], we obtain (A, V) \tψ[a].

Theorem 3.2 Cond2 is expressible by the formula D π D l .
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Proof: For each A, Cond2(A) iff A t= D π D l . In fact Ao \= D π D l ; let then
A ΦA0. A0<tA iff A t=πDland, asΛ ΦA0,A t=-|Dliff>4 t=D"iDl.

Corollary 3.3 For every complete L, χι satisfies Condi iff L ^~ D π D l .

Proof: Trivial.

4 Identities among Lβ, Ly, Lδ The identities among Lβy Ly, and Lδ are
related to Cond0, Condi, and Cond0i (Theorems 4.1-4.3). Contrary to Cond2,
we show that these conditions aren't syntactically expressible (Theorem 4.4),
while they become expressible if referred to classes of transitive frames.

Theorem 4.1 For every Ly Lβ = Ly iffxi satisfies Cond01.

Proof: (=>)Let

φ =p DOp .

We have, for every L, φ e Ly; this is obvious by considering φ in the form

~ιp v Dp. By hypothesis Ly - Lβ, then φ e Lβ, but, for every A and a, A t= φ[a]

iff \a\lA ISAQOXA^ _ _

(«=) Let φ e_Ly, A e χι, and a be jrterminal point of A. \a\/A is A 0 o r Aλ

and, since Card(\a\) = 1, φ e Ly implies \a\/A 1= φ, i.e., A )=• φ[a]. Then φ e Lβ.

Theorem 4.2 For every L, Lβ = Lδ iff XL satisfies Cond0 or it satisfies Cond1.

Proof: (=>) By Corollary 2.5 either Ao or Aλ belongs to %/,. Let us suppose
Ao e χι'. we show that χι satisfies Cond0. Obviously D l e Lδ and if, for
reductio, there is a frame A of χι such that Ao ζt A, then >4 t= π D l and
D l ^ Z^. Let us now suppose Ax e χι'. we show that χι satisfies Cond1. Set:

φ = (pD Dp) A π D l .

Since ^4t t= ψ we have φ e Lδ; but, if there is a frame A of χ^ such that At (Z >1
then, for each a of A, either <z is strongly terminal, and in such a case A l£
~ιDl[#], or it is not terminal and then there exists a of A, a Φ a and aRa'; in
such a case if we choose a V such that a e V(p) and α' i V(p), we obtain
<>1, V) \t p D Πp[a], So we have that for every a of A, A \t φ[a] and then

ΦUβ.
(*=) If χι satisfies Cond0 then Aλ 4 XL Therefore, by Corollary 2.6,

Lδ = Th(A0) and then Cond0 implies Lδ = Lβ. Analogously if χι satisfies Condi.

Theorem 4.3 Let L be a logic such that L h Up D DDp. Ly = Lδ iff XL
satisfies CondQ or it satisfies Condv

Proof: (=*) If >40 e χι then the proof is the same of that of Theorem 4.2. Let
A i e χι. We show that Ly = Lδ implies that χL satisfies Condv Suppose, for
reductio, that there is a frame A = (A, R^> of χL such that Ax $ A. If A
contains strongly terminal points, then Aoe χι. In such a case, since Ao I=D1
and Ax (= π D l , D l e Lδ and D l i Ly and then Lδ Φ Lr Suppose A to be
without strongly terminal points; then A is without terminal points. We show
that in such a case the frame B = (B, Rβ), where B = \b0, bx\ and Rβ = B XB,is
ap-morphic image of A.
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Let w.o. be a well ordering on A. We define a function/from A into B as
follows: let a0 be the first point of A (following w.o.) and ao^n, n < ω, a chain
of points such that α 0 ) 0 = a0, αOjrt RA #O,«+I a n d <2o,« ̂  αo,«+i (since A is without
terminal points such a chain exists). We set /(αo,«) = &o if n is even, 6j other-
wise. Let now aa be the first point for which/has not been defined. If there is
a point a1 such that aaRA o! and f(a) have been defined, then set f{aa) =
b0 ifida) i n such a case is not essential); if not, proceed as in the case of a0. It is
easy to see that / is a p-morphism from A to B. In fact /is onto, a R^ci implies
f(a) Rβf(a); moreover L h Dp D DDp implies that RA is transitive and then,
for each a e A, there exist a1, a" such that a RACI , a RAO", f(a) = b0, and
f(a") = bί. Therefore, as χι is closed under p-morphic images, B e χι.

Let us consider now the formula

φ = (p D Dp) Λ (πp D Dπp).

Obviously ylj 1= ψ and then φ e Lδ. But, if we consider the model (B, V), where
V(P) = i^ol w e have that, for each b e B, (B, V) t£ φ[b], and then φ 4 Lr

(<=) Obvious from Theorem 4.2.x

Theorem 4.4 Cond0, Condi, and Cond0ί aren't syntactically expressible.

Proof: First we show the theorem for Cond0. Let us consider the two frames

B = {ω,{(n,n+ l),n<ω\)

B' = < ω , \{n + \,n),n<ω\)

and a formula φ such that dg(φ) = m. Bf 1= ψ implies!?' 1= φ[m + 1] and then
B 1= ψ. So we have Th(B') C Th(B). Let us now suppose that there exists Γ
such that χL t= Γ iff χ L satisfies Corcdo, and consider χ Γ . From Th(Br) C Γ/z(^)
and B i χ Γ it follows 1?' ^ Γ. Let π be a point of B' such that there is a
7 β ΓB' \£y[n]: we have }«!/^' ^ 7 . Let now

Φ=y Ota.

Since [n\ = {«, « - 1, . . . Oj^we have {n\/Bf \= φ. Moreover, A N 1// implies
>40 C A; then χjψ| 1= Γ and \n\/Br e χ{ψj C χ Γ , which contradicts \n}/Br feέ 7.

The proof of the theorem for Cond01 is the same as that for Cond0; and

the proof for Condλ can be obtained from that given by replacing Bf with

B" = <ω, {<0,0>,<w+ l,/i>,w<ω}>and φ with φ' = V Oz'((p D Dp) Λ π D l ) .

Theorem 4.6 Suppose L h Dp D DDp. Γ/ze«

(a) χ L satisfies CondQ iffχL (= D l v 0D1
(b) χι satisfies Cond01 iffχL 1= (p ^ Dp) v O(p D Dp)
(c) χ L satisfies Condι iffχL t= O((p D Dp) Λ π D l ) .

Proof:__S.di) Supposg_>4 e x/, and y4 1̂  D l v ODl[α]. Then, as R is transitive,
Ao (ί \a\/A, while \a\/A e x/,. The converse is trivial.

The proofs for (b) and (c) are similar to that of (a); it is sufficient to
consider that A t= p D Ώp[a] iff a is terminal and A t= (p D Dp) Λ πDl[α] iff
β is weakly terminal.
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Remark: Let Condx be one among Cond0, Cond1, and Cond01. Theorem 4.6
does not imply that the class of the transitive frames satisfying Condx is
axiomatizable. Obviously this class isn't axiomatizable since it is not closed
under subframes. Theorem 4.6 only implies that χι (where L is K4 U \φx\ and
φx the formula of Theorem 4.6 corresponding to Condx) contains every
axiomatizable class of transitive frames satisfying Condx. By contrast, Theorem
4.5 implies that there isn't a maximum class among the axiomatizable classes
which satisfy Condx. On the other side the connection between Cond2 and the
formula D π D l is stronger: in fact \A\ Cond2(A)\ = XΛΊJJDΊGI!. That's why
Cond2(A) iff A f= D π D l , while, for A transitive, Condx(A) iff for each
BCA B ^\jjx.

Corollary 4.7 If L is a complete transitive logic, then

(a) Lβ = Ly iffL h (p D Dp) v O(p D Up)
(b) Lβ = Lδ iffLy = Lδ iffL h D l v ODl or L \~ O(p D Dp) Λ π D l .

Proof: Trivial.

5 Conditions of identity between La and the other U-sets

Theorem 5.1 La = Lδ iff the only (undecomposable) frame ofχι is AQ[AX\.

Proof: La = Lδ iff, for all A, B e χL, Th(A) = Th(B). Via Corollary 2.5, it is
equivalent to say that, for all A e χι, Th(A) = Th(A0) or, for all A e χι,
Th(A) = Th(Axl But Th(A) = Th{A0)[Th(Ax)} iff each point of A is strongly
[weakly] terminal.

Theorem 5.2 La = Ly iff the only (undecomposable) frames of χι are Ao

or A1.

Proof: (=*) As shown in the proof of Theorem 4.1, for each L, p D Dp e Ly,
while A f= p D Up iff each point of A is terminal.

(«=) Trivial.

From Theorem 5.1 it follows that the only complete logics which satisfy
La = Lδ (and then, via Theorem 3.2, La = Lθ) are Qo = K U {Dl} and DZ =
K\(p D Dp) Λ nDJj, while Theorem 5.2 implies that the only complete logics
for which La = LΊ are β 0 , DZ, and Z = K U \p D Dp!. The word "complete" is
essential: in fact (see [7] and [2]) there are logics strictly included inDZ that
have its class of frames. The only result about the identity between La and Lβ

that we have obtained is the following:

Theorem 5.3 If La = Lβ then χL satisfies Cond2.

Proof: It is easy to see that, for each L, D π D l e Lβ. Then the result follows
from Theorem 3.2.

In Example 6.2 we shall show that the converse of Theorem 5.3 is not
true, while in Example 6.3 we shall show that La = Lβ, which via Theorem 5.3
and Theorem 3.1 implies Lδ= Lε = Lθ, does not imply Lβ = LΊ or LΊ = Lδ.

6 Examples We have seen that Qo and DZ are the only complete logics
satisfying all the identities among (/-sets. On the other side, as is obvious
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a priori, K does not satisfy any identity. In fact, from all the theorems above,
we have that a complete logic L does not satisfy any identity among £/-sets iff
L y- D π D l and there is a frame of χL without any terminal point. From that
we can observe that K is not the unique logic having this property: also K4, for
instance, has it.

Example 6.1: An interesting example (see [1], [3], and [4]) is given by the
logic GL (also called K4W, in the notation of [6], or G in [3]). GL is K U
{D(Dp D p ) D D p l . A frame A belongs to XQL iff it is transitive and reverse
well-founded, i.e., without infinite ascending chains. χcι satisfies Cond0, and
therefore GLβ = GLy = GLδ, while from GL 1/ DπDl we obtain GLa Φ GLβ and
GLδ Φ GLε Φ GLΘ. Moreover, via Corollary 2.6, GLδ, and therefore GLβ, is the
logic Qo. It is known that the operator D of GL can be "interpreted", under
suitable conditions, as the predicate Theor of Peano Arithmetic (PA); under
this interpretation Dl, i.e., the axiom of Qo, is the formula which express the
inconsistency of PA; so GLβ - Qo says the formulas "near" to being theorems
are implied by the inconsistency and that πDl, even if it is not a negation of a
theorem, is false in each frame of GL.

Example 6.2: S4Grz i s W U i D ( D ( p D Up) D p) D p\. A frame A of S4 is a
frame of S4Grz iff, for each ascending chain a0R axR a2R . . ., there exists n
such that, for every ri, n" > n, an> = an». Then p D Up e S4Grzβ and p DUp4
S4Grza, while, as χs4Gπ satisfies Cond1 and Cond2, all the identities among the
other ί/-sets are satisfied. This shows that the converse of Theorem 5.3 does
not hold.

Example 6.3: Let us consider the logic S5. Since the relation of each frame of
S5 is an equivalence relation, obviously S5a - S5β, and then S5δ = S5ε = S5Θ.
Moreover, since S5 has frames without terminal points, S5β Φ S5y Φ S5δ. For
the well-known relationship existing between S5 and Classical Propositional
Calculus, we thought that logics satisfying the same identities among ί/-sets
satisfied by S5 were "similar" to it. But we have found a logic very different
from S5 which does it. Consider in fact

L = # U ί θ p D D p . n D i l .

A e xi iff for each a of A there is exactly one point a a R a . χι satisfies Cond2

but it does not satisfy Cond01 and so Lβ Φ LyΦ Lδ = Lz = Lθ. Suppose now
φ 4 La\ there exists a point a of a model (A, V) such that {A, V) \tφ[a]. Let
dg(φ) = n and a0, au . . ., an be the (not necessarily distinct) points of A such
that a0R, axR . . . an. Let now m be a point of the frame B of Theorem 4.4 and
let V' be a valuation on B such that, for each s < n, V'~\m + s) = V~\as); then
we have (B, V') ft φ[m]. In this way we can find, for every b of B, a Fsuch
that<£, V) £ψ[δ] .Then, a s Λ e χ i , φ 4 Lβ and Lβ = La.

NOTE

1. We have used the hypothesis L h op D ππp only to show that Ly- Lδ and Ax e χι
imply that χι satisfies Condx. Without such a hypothesis we can only show that Ly = L§
and A i e χι imply that, for each finite A e χι, Cond^A).
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