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Expressibility in Two-Dimensional

Languages for Presupposition

MERRIE BERGMANN

Formal two-dimensional languages were shown by Herzberger [4] to
provide an interesting philosophical alternative to three-valued languages.1 He
claimed that these languages would probably prove valuable in the investigation
of semantic presupposition, and indeed they have. (See the works cited in [ 1 ].)
In this paper, I characterize the expressive power of certain propositional two-
dimensional languages.

I have discussed in detail the motivation for a two-dimensional analysis of
presupposition in [2], so I will give only a brief intuitive account of that
analysis here.2 Two-dimensional languages are four-valued languages, where
each value assigned to a sentence is the result of two distinct valuations. The
first valuation assigns a truth-value to each atomic sentence; and there are two
truth-values: true and false. The second valuation assigns what I call a security-
value to each atomic sentence. The security-value of a sentence intuitively
registers information relevant to determining presuppositions. In English, the
relevant information includes: whether names and definite descriptions denote,
whether the complements of factive verbs are true, and whether predicates are
sortally appropriate to the terms they combine with. Usually, if any of these
fails for a sentence, that sentence will have a false presupposition. There are
exceptions—for example, 'Santa Claus exists' does not have a false presupposi-
tion, although 'Santa Claus lives at the North Pole' does. With the exception
of certain constructions such as those that make an explicit attribution of
existence, then, a subject-predicate sentence is secure only if the conditions
mentioned above are met.

*Some of the material in this paper was developed in my Ph.D. dissertation, A Presupposi-
tional Theory of Semantic Categories, University of Toronto, 1976.
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On the basis of the assignments to atomic sentences, the two valuations
generate values for complex sentences. Presupposition is defined in terms of
security, rather than in terms of truth-value:

A presupposes B {A ^>> B) iff whenever A is secure B is true.

Thus, 'Santa Claus lives at the North Pole' presupposes both 'Santa Claus
exists' and 'The North Pole exists' since the conditions under which the first
sentence is secure will make the other two sentences true. And, if we have a
policy that makes a disjunction secure iff its disjuncts are both secure, 'Either
Santa Claus lives at the North Pole or two plus three equals five' will inherit
the presuppositions of 'Santa Claus lives at the North Pole' (the disjunction
may have other presuppositions as well). This example brings out an important
point concerning the two-dimensional analysis of presupposition: since presup-
position is defined independently of truth-value, a sentence may be true even
though it has a false presupposition.3 On the other hand, we may choose to
stipulate for certain forms of sentences that their truth entails the truth of their
presuppositions. An example is "internal negation": the internal negation of a
sentence A is defined as true iff A is both false and secure; hence if the internal
negation is true then the presuppositions of A are all true. With these intro-
ductory remarks, I now specify a two-dimensional language for presupposition.

The language L has the following primitive vocabulary (I use expressions
of formal languages as their own names):

Atomic sentences: Plt P2, P3, . . .
Unary connectives: ~~i, T, 7
Binary connective: v
Punctuation: ( , )

Sentences are defined as usual. A valuation V of L assigns to each atomic
sentence A an ordered pair of values {Vt(A)9 VS(A)), where Vt(A) e {1,0! and
VS{A) e U, 0!. A sentence A is true on V if Vt(A) = 1, false if Vt(A) = 0, secure
if VS(A) = 1, and nonsecure if VS(A) = 0. I abbreviate the four values which V
may assign to A by omitting the angle brackets and commas, e.g., '(1, 1)' is
written as '11' . A valuation assigns values to complex sentences in accordance
with the following matrices:

A \iA AvB\U 01 10 00

11 01 11 11 11 10 10
01 11 01 11 01 10 00
10 00 10 10 10 10 10
00 10 00 10 00 10 00

A TA A yA

11 11 11 11
01 01 01 11
10 11 10 01
00 01 00 01
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The truth-conditions for the connectives ~i and v of L are defined as in classical
bivalent logic. Thus sentences of L containing only these connectives that are
logically true on the standard bivalent interpretation are also logically true in
L, where a sentence A is logically true in L iff for every valuation V, Vt(A) = 1.
(The converse also holds.) Nonsecurity is dominant for these connectives: a
compound sentence is nonsecure whenever at least one of its components is.

On the other hand, sentences governed by T and 7 are logically secure-
secure on every valuation. Hence TA is not generally equivalent to A; although
the two sentences always have the same truth-value, they cannot always be
substituted one for the other salva veritate. These two connectives are connec-
tives of "semantic ascent": the sentences TA and yA are intuitively about the
sentence A. The connective T is the truth-connective; TA may be read as: A is
true. The connective 7 is the security-connective; yA may be read as: A is
secure, or, better yet, A has no false presuppositions. For if A is secure, then
by definition every sentence presupposed by A is true.4 Using 7, we may define
internal negation ~:

~A =<//nG4 v -iyA)

This connective has the following matrix:

A \~A

11 01
01 11
10 00
00 00

I shall now discuss the expressive powers of L and of several closely
related languages. First, the definition of two-dimensional operations:

An rc-ary classical operation 6 is any function taking n members of {1, 0!
into {1,0!.

An rc-ary two-dimensional operation 6 is any function taking n members
of {11,01, 10,001 into {11,01, 10,00}.

An rc-ary two-dimensional operation 6 is expressible in a language just in case
there is a sentence B in that language containing exactly n atomic sentences
Au . . ., An such that B has the value d{txs^ . . ., tnsn) when Au . . ., An are
assigned the values t^s^ . . ., tnsn, respectively. In this case, 6 is expressed by B.
I shall also use connectives of L as the names of the operations specified in
their matrices.5

An ft-ary product operation 0 is a two-dimensional operation
d(tlSl, . . ., tnsn) = <i//(7i, • • ., tn\ S(sl9 . . ., sn))

where 1// and 5 are rc-ary classical operations.

Let L{~], vj be the sublanguage of L containing only n and v as connec-
tives. Then

1. Every operation expressible in L\i, v} is a product operation.
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Proof: Straightforward.

However, not every product operation is expressible in Z,h,vi. For
example, the operation Tis not. The reason is simple to see: an «-ary operation
expressible in L\-i,v\ will take n arguments into one of the values 11, 01 iff
each argument is one of the values 11,01. An operation of this sort is a weak
product operation:

An n-ary weak product operation 6 is a product operation
0(fx*!, • • •> tnsn) = <i//(7i, • • ., tn\ minOx, . . ., sn))

where \jj is an ra-ary classical operation and min is the «-ary classical opera-
tion that maps alt. . ., an into 1 iff au . . ., an are all 1.

The expressive power of L{~\,v} is then circumscribed as:

2. All and only weak product operations are expressible in Z,h, vl.

Proof: It is straightforward to show that only weak product operations are
expressible in L h , v i . To show that all weak product operations are expressible,
I introduce the following matrix scheme for an rc-ary two-dimensional
operation:

Row Ax . . . An B

1 t\s\ . . . fob tlSl
2 t\s\ . . . t2

ns
2
n t2s2

An An An
 f*

nAn
 t c M

4 fj Sx . . . tn Sn t^nS^n

The rows to the left of the vertical line represent the different combinations of
values the atomic sentences Ah . . ., An may have. If the matrix represents a
weak product operation 6, then there is some rc-ary classical operation i// such
that the value tfSj in row / is (\p(t[, . . ., tl

n), min(5i, . . ., sl
n)). The task is to show

that for any such \jj, there is a sentence B of L\i, v! that expresses the opera-
tion 6. For each row /, let Bt be the sentence (. . . (A^ v A2*) v . . . v An*),
where Aj* is ~\Aj if tj is 1, and Aj* is Aj otherwise. Then B; is false on row / and
true on all other rows; and Bt is secure on row / iff s{, . . ., sJ

n are all 1. Then the
desired sentence B is (. . . (Bx* v B2*) v . . . v J54«*), where B;* is iBf if t\ is 1
and ~i(Bi v ~iBi) otherwise.6

Although L h , v ) is not functionally complete in the sense that every
two-dimensional operation is expressible, it is truth-functionally complete. A
two-dimensional language is truth-functionally complete iff for each ft-ary
classical operation \jj, there is an rc-ary two-dimensional operation 6 expressible
in that language such that

BitiSu . . ., tnsn) = (Hh, • • ., tn\ S(tu . . ., tn, su . . ., sn))

for some 2«-ary classical operation 5.
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3. L{n, v| is truth-functionally complete.

Proof: Straightforward, as all weak product operations are expressible in
l h , v l .

The expressive power of a two-dimensional language has important
connections with the presupposition relation generated by that language. It
may determine which presuppositions of the components of a complex
sentence can be inherited by the sentence itself, and whether a complex
sentence can have presuppositions not shared by its components. And it may
determine that the presupposition relation is significant for a language only
under certain conditions.

If we take all valuations of L\~\, vj to be admissible, then the presupposi-
tion relation is trivial, for each sentence presupposes all and only those
sentences that are logically true. When all valuations for a language are admis-
sible, I shall say that the ^4-policy has been adopted. Given the ̂ 4-policy, the
feature of Lin, v} that is responsible for the trivialness of presupposition is that
truth-values and security-values are defined independently for all sentences.
This follows from result 2. And if we add the connective T (which does not
express a weak product operation) to Z,H,v!, the expanded language will still
have a trivial presupposition relation if the ^4-policy is adopted. More
generally,

4. Any two-dimensional language in which only product operations are
expressible has a trivial presupposition relation if the A -policy is adopted.

Proof: (i) Let B be a sentence that is logically true. Then, trivially, for every
sentence A, A » B. (ii) Let B be a sentence that is false on some valuation V,
and let A be a sentence that is secure on some valuation V\ Let V" be the
valuation such that for every atomic sentence C, K/'(C) = Vt(C) and V"(C) =
V'S(C). Then V"(A) = 1 and V"(B) = 0; hence A >>£. (iii) Let ,4 be a sentence
that is logically nonsecure. Then trivially, for every sentence B, A » B.

A sentence expressing a product operation may be logically nonsecure, hence
the third clause. In this case the relation is still trivial, for such a sentence
presupposes every sentence.

Given result 4, a language in which only product operations are expressible
will have a significant presupposition relation only if the A -policy is dropped.
Dropping the ^4-policy is tantamount to dropping the independence of the
values assigned to atomic sentences. For example, let us restrict the admissible
valuations to those on which either Px is nonsecure or P2 is true (which we may
choose to do if Px symbolizes 'Santa Claus is jolly' and P2 symbolizes 'Santa
Claus exists'). Then it follows that Px » P2, and no other atomic sentence
presupposes P2. But P2 is not logically true. Whatever policy as to admissible
valuations is adopted, we have:

5. A complex sentence of L\i, v} presupposes all sentences presupposed by at
least one of its components.7

Proof: A straightforward mathematical induction.
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This is the so-called "cumulative hypothesis" regarding the projection of
presuppositions.

However, the full language L has a nontrivial presupposition relation even
when the A -policy is adopted. For yA is not in general logically true, yet

6. In L, each sentence A presupposes yA.

It is the presence of 7, then, that makes the presupposition relation significant
in L with the yl-policy, since sentences containing only the other connectives
express product operations.

The operation 7 is a semi-product operation:

An ft-ary semi-product operation 6 is a two-dimensional operation
0(Mi, • • •> tnsn) = W i , . . ., tn, su . . ., sn), S(su . . ., sn))

where \p is a 2n-zry classical operation and 5 is an n-ary classical operation.

Every product operation is a semi-product operation, but the converse does
not hold. The defined connective ~, like 7, forms sentences expressing
semi-product operations that are not product operations. The general idea
motivating the addition of these operations is that the truth-value of a sen-
tence may be determined, in part, by whether the presuppositions of its
components are true. Such is the case with "internal negation". On the other
hand, the security-value of a sentence expressing a semi-product operation
(registering the status of its presuppositions) does not depend on the truth-
values of its components.

The operations 7 and ~ are not definable in terms of the other
connectives of L. It is also true that

7. The operation Tis not definable in terms of n, v, and 7.

Proof: By mathematical induction on the length of sentences of L with one
atomic component, which do not contain T. A property all such sentences have
is that the operation expressed by each:

i. takes 10 into 11 iff it takes 00 into 11, and
ii. takes 10 into 01 iff it takes 00 into 01.

Clearly, the operation T does not have properties i and ii; hence it is not
definable in terms of the remaining connectives of L.

None of the four primitive operations of L can be defined in terms of the
other three.

L, like Zh,v | , is truth-functionally complete but not functionally com-
plete. The operations ® and ®, for example, are not expressible in L:

A ®A A ®A

11 11 11 00
01 11 01 11
10 11 10 11
00 00 00 00
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It can be verified that every unary operation expressible in L maps 10 into 11
or 01 iff it maps 00 into 11 or 01, and the operations considered here do not
have that property.

The operations ® and <E> are not semi-product operations (and hence not
product operations). The operation expressed by ® is not security-preserving,
but ® and all operations expressible in L are:

An n-ary security-preserving operation 6 is a two-dimensional operation
0(f !$!, . . ., tnsn) = (\jj(tl9 . . ., tn> sl9 . . ., sn), 8(f 1? . . ., tn, su . . ., sn))

where \p is a 2ft-ary classical operation and 5 is a 2^2-ary classical operation
which maps arguments ah . . ., a2n into 1 if an+l, . . ., a2n are all 1.

Since each sentence A of L presupposes yA, and yA is true only if A is secure,
the fact that all operations of L are security-preserving guarantees that a
complex sentence has a false presupposition only if at least one of its com-
ponents has a false presupposition. This seems correct. Many expressions of
English may be responsible for generating semantic presuppositions but no one,
to my knowledge, has suggested that expressions such as 'and', 'or', and the like
are so responsible.8

But we have seen that ® also has a property that those operations
expressible in L do not have. Namely, the operation takes some, but not all,
nonsecure sentences into secure ones. Every operation expressible in L is, as it
were, security-functional; that is, the security-value of a sentence of L is a
function of the security-values of its components. The semi-product two-
dimensional operations are exactly the security-functional ones.

However, not all security-preserving semi-product operations are ex-
pressible in L. Every operation expressible in L is a definitive operation.

An ??-ary definitive operation 6 is a semi-product operation
0(txsl9 . • ., tnsn) = W i , • • ., tnt sl9 . . ., sn)9 5(5!, . . ., sn))

which \jj is a 2n-ary classical operation and 5 is an rc-ary classical operation
which maps arguments al9. . ., an into 0 iff for some i (1 < / < n), at = 0
and 6 maps the sequence of n arguments consisting of l's except in the zth

place into 0.

Every definitive operation is a security-preserving operation, but the converse
does not hold. For example, the security-preserving operation in the scheme

A

11 11
01 01
10 11
00 00

is not definitive. A moment's reflection shows why this operation is not
expressible in L: If A occurs only in the scope of T or y in a sentence of L
which has A as its only atomic component, then that sentence can never be
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nonsecure. If A has an occurrence not in the scope of T or y in a sentence of L,
then that sentence will be nonsecure whenever A is.

The fact that all operations of L are definitive entails that for any sentence
A of L, there is a (possibly empty) subset s(A) of its atomic components such
that A is secure iff all the members of s(A) are secure. So a sentence A of L
has a false presupposition iff some member of s{A) has a false presupposition.
Consequently, we can explain the success of A's presuppositions in terms of
the success of the presuppositions of each of s(A )'s member. Whether or not
the presuppositions of atomic components of A that are not in s(A) are true is
irrelevant to the presupposition success or failure of A. In L, it is easy to see
which atomic components will not be in s(A): exactly those components which
occur only in the scope of T or y in A.

The expressive power of L is limited to definitive operations:

8. All and only definitive operations are expressible in L.

Proof: To prove that all definitive operations are expressible in L, I make use
of the matrix scheme in the proof of result 2. I will characterize the relations
between values in the matrix scheme under the assumption that it represents a
definitive operation 6. For any row i, let N(i) = Ik: sl

k = Oi. Let < be the
following partial ordering:

Row i < row / (abbreviated (/ < / ) iff N(j) C N(j).

So if i < / , row / has security value 0 in at least every column to the left of the
vertical line in which row i has security value 0. Since 6 is a definitive operation,
it follows that for arbitrary row /, S( = 0 iff for some row/ such that/ < / and
N(j) has exactly one member, Sj = 0. (And hence it follows that Sj = 1 if
s\, . . ., sl

n are all 1.)
Now we specify for each row / a sentence ft that has the value 11 on

row i, and 01 on every other row. Let ft be (. . . (Ax* & A2*) & . . . &An*),
where

(B&C)=df-i(-iB\/-)C)

and

( TAj & yAf if tjsj is 11
nTAf& yAj if tjsj is 01

TAf&nyAj if tfslis 10
-iTAj&nyAjif tjsj is 00.

Next we specify for each row / a sentence Rj-.

If ttSi = 11, let Rt be Qt

If tiSt = 01, let Rf be ft- & (TA x & 1TA x).

In these cases, Rj will have value tjSj on row i and value 01 on all other rows.
Let row / be such that Sj = 0. Here the definition of R( is more compli-

cated. Let <!(/) be the collection of rows/ such that/ < /, N(j) has exactly one
member, and Sj = 0. Let n(i) be {A^: s{ = 0 for some row/ e <!(/)}. Because d is
a definitive operation, both 7V(0 and n(i) are nonempty. Moreover, if/ e <!(/)



TWO-DIMENSIONAL LANGUAGES FOR PRESUPPOSITION 467

then every row m such that / < m will also have sm - 0. Let <!!(/) be the collec-
tion of these rows m, i.e., <!!(/) = {row m: there is a/ e <!(/) such that; < ml.
Now define Rj for the remaining cases:

If tiSt = 10, let Rf be ft & (. . . (A 1+ & 42+) & . . . & 4W+), where

^isM/v^4/1^/6^)
7 1TW/ v -)Aj) otherwise.

In this case Rj has value 10 on row /, 00 on all rows; e <!!(/) other than /, and
value 01 on all other rows.

If tiSi = 00, let Rt be ft & (. . . (A to & A2o) & . . . & 4wo), where

AfoislAJSc~lAJifAJ'en(i)
1 \ T(Aj & -lAj) otherwise.

In this case, Rj will have value 00 on row / and on all other rows/ e <!!(/), and
value 01 on all other rows.

Finally, let B be the sentence (. . . CRj v R2) v . . . v R4n). This sentence
has value tjSj on each row /.

Now we prove that only definitive operations are expressible in L. It is
straightforward to prove that only security-preserving operations are express-
ible in L. If a non-definitive operation were expressed by a sentence of L,
then, the matrix for the sentence would fall under one of two cases:

Case a. For some row /, Sj - 0 and for every row / such that / < / and N(j) has
one member, Sj = \.

Case b. For some row /, Sj = 1 and for some row / such that / < i and N(j) has
one member, Sj = 0.

I will consider only Case a, for Case b is handled similarly. By examining the
matrices for the primitive connectives of L, we see that if Sj - 0 for some row /
in the matrix scheme, then for some Aj, sj = 0 and Aj has at least one occur-
rence not within the scope of T or y in B. But then on every row k such that
Sj = 0, Sk - 0 as well. In particular, for the row m such that sf1 - 0 and N(m)
has one member, we will also have sm = 0. But then Case a cannot describe an
operation expressible in L.9

Adding the operation ® to L will generate a language L+® in which every
security-preserving operation is expressible:

9. All and only security-preserving operations are expressible in L+®.

Proof: It is straightforward to prove that only security-preserving operations
are expressible in L+®. The proof that all such operations are expressible
borrows from the proof of 8. For each row i of the matrix of a security-
preserving operation, let Q; be defined as in 8. We now define for each row / a
sentence Rj which is assigned the value tjSj in row /', and 01 in all other rows. If
tjSj is 11 or 01, Rj is defined as in 8.

If ttSj is 10, let Rj be n«n(&- & (. . . ((A1 v -\AX) & (A2 v iA2)) & . . . &
(Anv-\An))
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If tiSt is 00, let Rt be ~ € n ( & v (. . . (04 x & iA x) & 04 2 & ~]A2)) & . . . &

(~ is definable in terms of the primitive connectives of L+®.) In verifying that
these latter sentences have the desired values, note that security-preservation
entails that at least one of Ah . . ., An has security-value 0 on row / if st = 0.

Finally, let B be the sentence (. . . (Rx v R2) v . . . v R^n). This sentence
has value tjSf on each row /.10

And adding the operation <g> to L will generate a language L+® in which every
two-dimensional operation is expressible:

10. L+® is functionally complete.

Proof: Here we borrow again from the proof of 8. For each row i, let Qt be
defined as in 8. We now define for each row / a sentence Rj which is assigned
the value tjSt in row /, and 01 in every other row. If t(Si is 11 or 01, Rf is
defined as in 8.

If tfSt is 10, let Rt be Qt & -|<g>&-
If ttSi is 00, let /^| be~®Qi.

These latter two cases are not borrowed from 9 (even though ® is definable in
Z+®) because in 9 security-preservation guaranteed that ttSi is 10 or 00 only if
for some/, fjs/ = 0. The restriction of security-preservation has been dropped.

Finally, let B be the sentence (. . . (Rx v R2) v . . . v ̂ 4 «) . This sentence
has value tjSj on each row /.

NOTES

1. Despite the common name, two-dimensional languages in the sense of Herzberger should
not be confused with two-dimensional modal languages in the sense of Segerberg [8].

2. My interpretation of the semantics differs from the interpretation in Herzberger [4]; I
discussed this difference in [2].

3. In a trivalent semantics, with the definition

A presupposes B iff whenever A is true or false B is true,

it is impossible for a true sentence to have a false presupposition.

4. The semantics for the connectives of L are discussed more fully in [2].
Insofar as they form sentences that are logically secure, connectives of semantic

ascent bear an affinity to the trivalent Frege-Bochvar horizontal which eliminates
truth-value gaps (truth-value gaps playing the role in the trivalent definition of presup-
position that nonsecurity plays in the two-dimensional definition). See Herzberger [4]
and [6] on the Frege-Bochvar horizontal. The stipulation of logical security for
sentences governed by the connectives T and y is closely related to the view concerning
trivalent or supervaluational semantics, that although a language may be nonbivalent,
our semantic assessments of statements in that language should be bivalent. Cf.
van Fraassen [10], p. 168.

5. The expression f/s/ stands for one of the ordered pairs 11, 01,10, 00, where t( is the first
member of the pair and Sj is the second member.
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The terminology 'classical operation', 'product operation', 'weak product opera-
tion', and 'semi-product operation' is from Herzberger [5]. In those notes, a result
equivalent to my result 1 is stated and a result equivalent to my result 2 is conjectured.
Comments in those notes first suggested to me how the operations expressible could be
circumscribed, and that led to my result 8.

In [4], Herzberger shows that his languages Lx and L2 are truth-functionally
complete; each of his languages contains the operations ~i and V (see my result 3).

6. The language C X K% in Martin [7] is equivalent to L{n, v}, insofar as exactly the weak
product operations are expressible in CX K^.

7. But it need not presuppose only those sentences. E.g., let the admissible valuations
include all and only those which make one of the following two combinations of
assignments to Ph P2, and P3:

ZL h H
11 10 01
10 11 01

Then ( i \ v P2)» P3, but Px p> P3 and P2 £>> P3 .

8. In [3], Grice argued that certain logical connectives in English generate "implicatures",
and implicatures are often taken to be presuppositions. It might be thought that this
refutes the claim just made. But it is common practice now to distinguish between
semantic and pragmatic presuppositions (see Stalnaker [9]), and I would argue that the
implicatures generated by 'and', 'or', 'but', and 'if-then' are pragmatic rather than
semantic.

9. The expressive powers of Lt and L2 in Herzberger [4] are stronger than L{~\, v} but
weaker than L. Semi-product operations which are not product operations are ex-
pressible in both Lx and L2, but some semi-product operations are expressible in neither
language. There are no logically secure sentences in Lu and y but not T is definable
inL2.

10. The language C X Kf in Martin [7] is expressively weaker than L+®, and neither weaker
nor stronger than L. Some operations in C X K]: are not semi-product operations, but
there are no logically secure sentences in C X Kj.
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