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Semantical Analysis of Superrelevant
Predicate Logics with Quantification

MIROStAW SZATKOWSKI

As is well-known, the definition of the Kripke-type semantics for the rele-
vant propositional logics was given by Routley and Meyer in [9], but the defi-
nition of the algebraic semantics of these logics was given by Dunn in [2]. The
Kripke-type semantics (called the relevant RPg-spaces) and the algebraic seman-
tics (which we call the simple CR -matrices) for relevant propositional logics
were also defined by Maksimova ([5]). It can be easily proved that Routley and
Meyer's semantics are equivalent to relevant RPg-spaces, and that Dunn's seman-
tics are equivalent to simple CR-matrices. In [5], Maksimova showed that there
exists a close relationship between relevant RPg-spaces and simple CR-matrices.
An essential aspect of this relationship is that for any relevant RPg-space there
exists the respective simple CR-matrix, the contents of which are identical with
the contents of the relevant RPg-space; and with any simple GR-matrix it is
possible to correlate the respective relevant RPg-space. However the contents
of that relevant RPg-space need not be identical with the contents of the initial
matrix, though in the case of finite matrices the identity of contents holds.

In this paper we pick up the subject of semantics for quantified relevant
logics, which is an important and underdeveloped one. Some basic problems and
solutions in this field were noted by Routley in [8]. We introduce here two types
of semantics which we call respectively general relevant RPg-spaces (g.r. RPg-
spaces) and structurally general relevant RPg-spaces (s.g.r. RPg-spaces). In gen-
eral, by a g.r. RPg-space we mean any triple <S, F,2l> such that S is a relevant
RPg-space, Fis a nonempty set, and 21 is a nondegenerate (F,S)-simple CRQ-
matrix, and by an s.g.r. RPg-space we mean any triple <S0, F,Si> such that So

and Si are relevant RPg-spaces and Fis a nonempty set. We state that though
the contents of any g.r. RPg-space as well as the contents of any s.g.r. RPg-
space determine some superrelevant predicate logic, i.e. a predicate logic con-
taining the relevant predicate logic RQ; for the superrelevant predicate logics
they are incomplete.
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The g.r. RPg-spaces are a generalization of the Kripke-type structures
(S, F>, where S is a relevant RPg-space and Fis a nonempty set (cf. the rele-
vant quantificational model structures defined in [9]), and of the algebraic struc-
tures <2ί, F>, where 2t is an tn-simple C^g-matrix and Fis a nonempty set (the
structures of the type <2ί, F> amounting to De Morgan monoid-valued models
of RQ and its supersystems, cf. [1]), in the following sense: (1) If <S, F,2ί> is a
g.r. RPg-space such that 21 is a two-element Boole algebra, then <S, F,3t> and
<S, F> determine the same superrelevant predicate logic; and (2) if <S, F,2l> is
a g.r. RPg-space such that S is a one-element relevant RPg-space, then <5, F,2ί>
and <2I, F> determine the same superrelevant predicate logic. Having introduced
g.r. RPg-spaces and knowing the relationship between relevant RPg-spaces and
simple CR-matrices, it would be natural to introduce s.g.r. RPg-spaces too.
However every s.g.r. RPg-space (Sθ9V,Si) could be replaced by the direct
product <SΌ x Si, F x F> because contents of these structures are the same;
thus it is not essentially a new kind of structures. In the case of g.r. RPg-spaces
the similar trick cannot be used. The direct product of m-simple C^ρ-matrices
does not have to be an m-simple CRQ-matήx.

Our reason for introducing the g.r. RPg-spaces is the fact that, thanks to
these structures it is possible to characterize a wider class of the superrelevant
predicate logics, in comparison to structures of the type <S, F> and structures
of the type <2l, F>. However the s.g.r. RPg-spaces are useful to get many solu-
tions characterizing the g.r. RPg-spaces.

The paper is divided into three parts. In the first part we introduce the defi-
nitions of the general relevant RPg-space and the structurally general relevant
RPg-space, and we also state theorems on the contents of these structures. In
the second part we give proofs of the incompleteness of these semantics for
superrelevant predicate logics.1 Finally, in the third part we state some relations
between the g.r. RPg-spaces and the s.g.r. RPg-spaces.

1 Given the symbols: p^n\ q^n\ r{n\ . . . of fl-ary predicate variables, n G
ω, and the countably infinite set {x,y,z,... ,Λro,^o>^θj . . ) of individual vari-
ables we define in the standard way the set ^47" of atomic formulas. By FOR we
denote the set of all formulas built up by means of connectives: Λ, V, -•, -ι, V,
3 (conjunction, disjunction, relevant implication, negation, universal quantifier,
and existential quantifier, respectively) and atomic formulas. The symbol Var(a)
denotes the set of all free variables occurring in a. When Var(a) c [χl9... 9χn}9

we shall write a(xί9... ,xn). The symbol a(Xj/xj) is used to denote the result
of simultaneous substitution of Xj for every free occurrence of xt in α, with nor-
mal restrictions.

Let CRQ\ 2FOR ~ 2FOR be the consequence operation defined as follows:
for all X c FOR and a G FOR, a G CRQ{X) iff a is provable from X by
means of some instances of axiom schemas of system relevant implication with
quantification RQ (see [9]) together with the rule of modus ponens, the rule of
adjunction, and the rule of generalization. In the case when Cx and C 2 are con-
sequence operations in FOR and Cx (X) c C2(X) for all X c FOR, we shall
write C{< C2.

We say that α, β G FOR are similar (in symbols a — β) if one of them can
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be obtained by changing some bound variables in the other one (for the formal
definition of similarity see [7]). By a substitution in FOR we shall understand
any function A: FOR •-» FOR, which is a homomorphism with respect to Λ, V,
-•, -i, VΛΓ!, VJC2, . . . ,3-Xά, 3X2> and which satisfies the following conditions
(cf. [4]):

(i) Var{h(ct)) c Var(a), for all a E FOR
(ii) for every a E AT and for every ij E ω, there is some ]8 E FOZ? of a

special form (see [6]) such that A(α) ~ β and A («(#//*/)) ~ β(Xi/xj).

For a given X c FOi? by the symbol So (X) we shall denote the closure of X
under all substitutions in FOR. Each subset X c FOi? such that i?Q c j r and
X — CRQ(Sb(X)) will be called a superrelevant predicate logic.

By a relevant RPg-space we shall mean by Maksimova [5] (cf. also [9]) any
quadruple S = <S,i?,P,g>, where 5 is a nonempty set, R is a ternary relation on
S, P c 5, g: s »-> 5 is a mapping, and which satisfies the following conditions
for any a9 ax 9b,bx, c, cγ E 5:

RPgl There exists d E P such that Rdaa
RPg2 There exists d EP such that Rada
RPg3 If #! <5 a and /ta&c, then Rdγbc, where "# <5 6" means "there exists

d E P such that # Λ J * "
RPg4 If bx <5 Z? and i?αZ?c, then Rabxc
RPg5 If c <5 ci and jRαδc, then Rabcλ

RPg6 If 7?̂ Z?c, then Rabd and î rfftc for some de S
RPg7 If 7?αZ7c and Rede, then itaΛ/! and /Jftrf^ for some dx E 5
RPg8 If î αftc and .Rcί/e, then Raddx and i?ί/χ δe for some dx G S

RPg9 g^(fl)) = a
RPglO If Λα6c, then Rag{c)g(b)
RPgll Rag(a)a.

Let 31 = <4>^) be a matrix, such that A = <^4,Λ,V,->,-I> is an algebra
similar to FOR{^,->,-,} (= a set of formulas whose all connectives belong to
{Λ,V,-»,-I}) and <V4,Λ,V> is a distributive lattice in which D is a filter having the
property: a Λ b = a iff a -+ b E D for all a,b E A; and moreover, the follow-
ing conditions are satisfied for all a, b, c E A:

( l )0-*6< (6->c)-* (0->c)
(2)tf < (a-^b)-^b
(3) α-> (a-> b) < #-•&
(4) (# -> Z?) Λ (α -> c) < α -^ (ft Λ c)
( 5 ) ( β -• c ) Λ (Z? -• c ) < ( a w b ) - + c

( 6 ) α -+ -i b < b -+ ~ιa

(7) -i-iflr = α,

where "cr < 6" means "a = a Λ b".
In this case, we say that 21 = <4>^) is a simple C^-matrix (cf. [5]). A sim-

ple Ctf-matrix 2ί = <̂ 4,-D> will be called m-simple C^g-matrix, if for each set Γ,
2 < f < m, it satisfies:
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(8) The algebra A is m-complete; i.e., there exists /\ at and \J at for

any subset [at\t E T] c A
(9) The filter D is m-complete; i.e., {at\t E T} £ D implies /\ at,

(10) lϊ \/ ate D, then ar, e D for some ί E Γ

(11) Λ ( α - > & , ) £ * - » Λ * /

(12) h(at->b)^\/ at-+b

(13) f\{avbt)<av /\bt

t<ΞT tGT

(14) /\atΛ /\ bt< f\ (atΛbt).
tGT tGT ίGT

By a general relevant RPg-space we mean a triple (S, F,2ί> satisfying the
following conditions:

(i) S is a relevant RPg-space
(ii) V is a nonempty set

(iii) 21 is a nondegenerate κ(F,S)-simple C#g-matrix, where κ(F,S) is the

smallest cardinal number both greater than Kand \{b,c) E S2\Rabc]
for any a E S,

By an interpretation function in the g.r. RPg-space <5, K,2I> we shall un-
derstand any function / such that:

(1) For each 0-ary predicate variablep(0) and each a E S, J(p(0\a) EA;
and if a <s 6, then J(p(0\a) < J(p(0\b)

(2) For each π-ary predicate variable (n > 1) and each α E 5, J(p(n\a) is a
function from F Λ to ^4; and if a <sb, then J(p{n\a)(a0,. . . ,tf«_i) <
J(p(n\b)(a0,. . . ,σΛ-i) for any α 0 , . . . ,απ_i E K

A general relevant RPg-model (g.r. RPg-model) is a quadruple <S, K,2l,/>,
where <S, F,2ί) is a g.r. RPg-space and / is an interpretation function in
(S, F,2I>. By an assignment for the g.r. RPg-space <5, F,2l> we shall understand
any function a from the set of all individual variables to the set V. The defini-
tion of the value-function v for the g.r. RPg-model (S, F,Sί,/> is inductively
given in this way that for any assignment a for (S, F,2ί> and for each a E S:

®v(p<0\a)=J(p<°\a)
(ii) v(p{n)x0.. .*Λ_i,S,α) = J(pin)

9a)(S(x0). ..ά(xn-X)), n > 1
(iii) v(a Λ β,a,a) = υ(a,a,a) Λ v(β,a9a)
(iv) y(α v β9ά9a) = v(a,a,a) v v(β,a,a)
(v) v(a~+β,a,a) = /\ (υ(a,a,b) -> ι;(j3,α,c)|6,c E S and i^α^c)

(vi) y(-iof,5,α) = -it;(of,5,^(flr))

(vii) v(Vxa,a,a) = /\ ( ^ ( Q : , ^ ' , ^ ) ! ^ 7 is an assignment that agrees with <7
except on #)

(viii) t;(3xα,d,α) = V(i;(a,^ / , i7) |a / i san assignment that agrees with a
except on x).

We say that a E FOR is satisfied in the g.r. RPg-model <S, F,H,/>, if
there exists an assignment 5 for <5, F,2I> such that v(a,a,a) E £> for any a E
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P. If for every assignment a for <S, F,2l> the formula a is satisfied in the
<S, F,2ί,/>, we say that a is true in <S, F,2ί,/>. And the formula a is true in
g.r. RPg-space <S, F,3l>, if α is true in every g.r. RPg-model <S, F,2l,/>. The
set of all formulas true in the g.r. RPg-model <S, F,2l,/> (in the g.r. RPg-space
<S, F,2l»-the contents of <S, F,2l,/> (the contents of <S, F,2l»-will be
denoted by E(S, F,§I,/)(£(S, F,2l)).

Theorem 1.1 For every g.r. RPgspace {S9V9%)9 E{S9 F,2ί) is a superrele-
υant predicate logic.

Proof: Considering each axiom of RQ separately we get that it is true in any g.r.
RPg-model and that the rules of RQ preserve truth.

By a structurally general relevant RPg-space we mean any triple
<S0, V,Sι), which satisfies the following conditions:

(i) So = <So,/?o>Λ>»£o> a n d S\ = <SuRuPugγ) are relevant RPg-spaces
(ii) Fis a nonempty set.

A function /is said to be an interpretation function in the s.g.r. RPg-space
(SQ9 V,Sγ)9 if for each a E So and for each w E Si:

(1) For any 0-ary predicate variable p ( 0 ) , J(p(O)

9a9w) E {11,0} and if
a <50 b9 w < § 1 u and /(p ( 0 ) ,α, w) = 11, then J(p®\b,u) = 11

(2) For any «-ary (Λ > 1) predicate variablep{n\ J(p(n\a,w) c F77; and
if α <50Z? and w < ^ «, then J(p{n\a, w) c J(p<n\b,u).

A structurally general relevant RPg-model (s.g.r. RPg-model) is a quadruple
<§o, ̂ 5i>^>> w r ιere <S0, F,Si> is an s.g.r. RPg-space and /is an interpretation
function in <50, F,5i>. Any function a from the set of all individual variables
to the set Fis called an assignment for the s.g.r. RPg-space <50, V9Sχ). The
definition of the value-function v for the s.g.r. RPg-model (S0,VySuJ) is
inductively given in this way that for any assignment a for <S0, F,Si>, for each
a E So and for each w E Si:

(i) y(/?(0),tf,w) = II iff J(p{0\a,w) = U
(ii) ι;Q?(/2)x0 .xΛ-i,δ,α,w) = 11 iff J(p{n\a9w)a(x0).. .δ(xΛ_i), w> 1

(iii) f(α Λ β,a9a9w) — 11 iff v(a,ά,a, w) — II and v(β,a,a, w) = 11
(iv) t;(α v β9a9a9 w) = 11 iff v(a,a,a9 w) = II or υ(β,ά,a, w) = 11
(v) y(α -> j8,δ,ύf, w) = II iff for each b,c E So and for each w,z E Sχi if

Roabc and i^! wwz and v(a9a,b,u) = II, then v(β9a,c,z) = U
(vi) f(-iα,δ,α,w) = II iff t;(α,δ,go(ff)>^i(w)) = Φ

(vii) v(Vxa9a9a9 w) = 11 iff for every assignment a' which agrees with a
except on x9 v(a9a\a9 w) = II

(viii) v(3xa9a9a9 w) = 11 iff for some assignment a' which agrees with a
except on x9 v(a9a'9a9w) = U.

We say that a E FOR is satisfied in the s.g.r. RPg-model <S0, V9Sl9J)9 if
there exists an assignment a for {SQ9V9S\) such that υ(a9ά9a9w) = 11 for each
αGPo a n d for each w E Si. If for every assignment a for <S0, F,Si,/> the for-
mula a is satisfied in the <S0, F,SΊ,/>, we say that a is true in <S0, F,SΊ,/>.
And the formula a is true in the s.g.r. RPg-space <S0, K,Si>, if a is true in
every s.g.r. RPg-model <S0, V9Sχ9J). The set of all formulas true in the s.g.r.
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RPg-model <S0, V,SUJ) (in the s.g.r. RPg-space <50, K,SΊ»—the contents of
(So, V,SΪ9jy (the contents of <50, K,SΊ» -will be denoted by E(S0, V,SUJ)
(EiSo.KSri).

Theorem 1.2 For every s.g.r. RPg-space <S0, K,Si>, E(S0, V9Sχ) is a super-
relevant predicate logic.

Proof: Enlarges with minor modifications the corresponding proof of Routley
and Meyer ([9]) showing that the axioms of RQ are true in any s.g.r. RPg-model
and that the rules of RQ preserve truth.

2 If for the superrelevant predicate logic L there exists a set {<S, , Vh%t)\ i G
/} of g.r. RPg-spaces such that L = f] E(Si9 ϊ^,2ί/), then we say that L has

iGl

characteristic class of g.r. RPg-spaces. Similarly, if L is a superrelevant predi-
cate logic and if there exists a set {<5έ, K',S{>| / G /} of s.g.r. RPg-spaces such
that L = f] E(SQ, V\S{), then we say that L has characteristic class of s.g.r.

iGE

RPg-spaces.
Let the symbol RQF denote the superrelevant predicate logic RQ + F(F =

lx(p(x) -+ Vyp(y))) and let the symbol H denote the formula (g ( 0 ) -> r ( 0 ) ) v
(r(0) _> ̂ (0)) v Vχvj(5(x) -* s{y)).

Lemma 2.1 H £ RQF.

Proof: We define the s.g.r. RPg-space <S0, V9Sχ) as follows:
Let A = (Λ,<A) be the poset such that A = {a9b,c} and <A = {(x,

x)\xeA] U {<c,α>,<c,*>}. Let A- = {χ- |*G,4}, .4+ = {jc+ |xGyl}, < " =
i(x~,y~>\y <A x] and < + = {<x+,y+>\x <A y} Let <S0,<> be the poset
such that So = A~ U A+ U {0}, where 0 £ A~ UA +

 9 and < = <~ U < + U
{<0,0>}. Now we define the relevant RPg-space So = (S0,R0,P0,g0) in the
following way: Po = {0}; g0 is the function So •-> So such that go(x~) = x+

9

go(χ+) =χ~ for all * G ,4 and^o(O) = 0; Ro = (A~ U ^ + ) 3 U [<0,x,^>|x<
y] U {(x,0,y}\x<: y] U {(x,y,0)\y < go(x)). Because <50 = <, then the order
<50 may be indicated by the diagram

+ u+ A C~

0

Let <5Ί,<> be the poset such that S t = {w + ,w~,0} a n d < = [(x,x}\xESι}.
We set the mapping g\i Si-* Sx, defined as follows: g\(u + ) = u~, g{(u~) =
u+ andg!(0) = 0. Moreover we put Px = {0} andR{ = {u + ,u~}3 U {<0,X,X>|JCG
{u + , u - } } U [ < x , 0 9 x ) \ x e {u +

 9 u - } } U { ( x , x , 0 ) \ x e {u + , u - } } U { < 0 , 0 , 0 » . S o
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we have defined the relevant RPg-space S\ = (S\9R\,Pι,g\). The order can be
demonstrated by the following diagram:

ύ+ 0 ύ~

Let V= {a9b}. This gives us the s.g.r. RPg-space <S0, V9Sχ).
Now we define the interpretation function in the s.g.r. RPg-space

<So,KSi> putting:

for {x9y) E {<0,0>,<Z? + ,0>,<c + ,0>}, J(q(0\x9y) = 0
and J(q^°\x9y) = 11 otherwise

for {x9y) E {<0,0>,<*+,(»,<c + ,(»}, J(r^°\x9y) = Φ
and J(r{0\x,y) = 11 otherwise

ί/Gfl (J(s,x,y)\<x,y> G (S{ x S2) - «0,0»), and
be ft (J(s9x9y)\<x9y) E (Si x S2) - {<0,0>,<c+,0>}).

Then we have if $. E(Sθ9 V,S\,J). It remains to prove that for any for-
mula a (x) constructed by q(0),r(0), and s, 3x(a (x) -> Vyα (>>)) £E(Sθ9 F, SUJ).
Suppose to the contrary, i.e. that 3x(α(x) -> Vyα(j>)) £ E(Sθ9 V9SΪ9J). Hence
it follows that for every assignment a for <S0, F,Si,/>, f (α(x) -» Vyα ĵO,
g,0,0) = Φ. Let a and α' be assignments for <50, V9S\9J) such that ά(x) — a
and a'(jc) = b. Therefore there exist αo,6o E So and wo,Wo E Si and such that
R00a0b0, Rιθwouo, v(a(x),a,ao,wo) = II, and v(Vya{y)9a9bθ9uo) = β. Hence
we obtain that f(a(x),a,Z?0,w0) = 11 and v(a(x),a'9b0,u0) = Φ. Analogically,
there exist #1,61 E So and Wi,«i E St such that R00aχbχ9 Rι0wιUι9v(a(x),a'9
auwx) = 11, and t ίYycxOO^&^W!) = Φ Consequently, v(a(x)9ά

/

9buuι) =
11 and v(a(x)9a,bι,Uι) = Φ. It can easily be seen that b0 ί ^4~ and Z?χ ξέ A~,
because for each a E A~ and for each w E Si, v(ct(x)9ά9a9w) = v(a(x)9a'9
a9 w). The elements bo,b\ cannot be compared with respect to the relation <50,
since then v(a(x)9a9bθ9uQ) = v(a(x),a'9bχ9Uγ) = 11 and v(a{x)9a9bχ9U\) —

v(a(x)9a'9bO9uQ) = Φ could not occur. Hence either b0 = a +

 9 b{ = b+ or con-
versely b\ = a +, b0 = b +. But one can check, that for any a E {a +

 9b
+} and

for any w E Si, v(a(x)9ά9a9w) = v(a(x)9ά'9a9w)9 which contradicts the as-
sumption that 3x(a(x) -> Vya(y)) £ E(Sθ9 V9SUJ).

Lemma 2.2 For any g.r. RPg-space <S, F,2ί>, F E £(S, F,2ί) //w/?//β5 if E
F(S,F,2l).

Proofs If F = 1, then for any g.r. RPg-space <S, F,2I>, if E £(S, F,2I). Suppose
that F > 2 and H £ E(S9 F,2l). Then there exists an interpretation function J
in the g.r. RPg-space <S, F,2ί> such that if £ E(S9 F,2I,/). Hence for some ele-
ment a0 E P, v((ςr(0) -^ r ( 0 ) ) v (r ( 0 ) - ^r(0)),α0) ί Λ Let u0 be an element of
F. Consider now the interpretation function Jx in <S, F,2ί> such that for any
aeS: Jx(qW\a) = /(^(0),α); ^ ( r ^ ^ ) = /(r<°\β); Mp,a)(u) = J(q<°\a)
if w = wo; /1 (p9a)(u) = J(r{0\a) if u Φ u0. Let t;! be the value-function for the
g.r. RPg-model <S, F,2l,/i>. Then it is obvious that for any assignment a for
<S, F,2I>, ϋ! (3x(p(x) -̂  vyp(y)),a,a) = υx ((q{0) -> vχp(,y)) v (r ( 0 ) - V ^ ( j )),
ά9a) = V l ((^ ( 0 ) -> q(0) Λ r ^ ) v (r ( 0 ) -* ̂ ( 0 ) Λ r ( 0 ) ) ,α) . So, if υx ((q(0) -> g ( 0 ) Λ
r ( 0 ) )v( r ( 0 ) ->g ( 0 ) Λr ( 0 ) ) , f l )GA then after an easy calculation we obtain that
also M ( 4 ( 0 ) - ^ ( 0 )) v (r<0) -> ̂ ( 0 ) ) ,α) E A and v((q{0) -> r ( 0 )) v (r ( 0 ) ->
(7(0)),α) E Z). Therefore, on the strength of the assumptions, v{(lx(p(x) ->
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Yyp(.y)),5,ffo) ί D for any assignment # for <S, F,2l>, and consequently F£
E(S,V9H).

Theorem 2.1 The super relevant predicate logic RQF does not possess char-
acteristic classes of the g.r. RPg-spaces.

Proof: On the strength of Lemmas 2.1 and 2.2.

Lemma 2.3 For any s.g.r. RPg-space < So, F, So >, F G E(S0,V,S{) implies
HeE(Sθ9V,S{).

Proof: If K = J , then for any s.g.r. RPg-space <S0, K,Si>, H<ΞE(S0, V,SX).

Suppose that V > 2 and H £ E(S0,V,Sι). Therefore there exists an interpre-
tation function / in the s.g.r. RPg-space <S0, V9S\) such that H £ E(Sθ9 V,
Si,7). Hence for some elements a0 G Po and w0 G Pu v((q{0) -• r ( 0 ) ) v (r{0) -+
#(O)),tfo> w0)

 = ® Let w0 be an element of V. Consider now the interpretation
function Jλ in <S0, K,SΊ> such that for any a E So and for any w G S^
Jι(q{0),a,w) = J(qi0\a,w); Mr<°\a9w) = J(r^°\a,w); Mp,a,w)u<>, if
J(q(°\a,w) = 1; and Jι(p,a9w)u iff /(r(0),ύr,w) = U, for every w G Fand
w Φ u0. If IΊ is the value-function for the s.g.r. RPg-model <S0, F,Si,/i>, then
we obtain that for any a G So, for any w G S l 9 and for any assignment <5 for
<S0, F,Si> the following equivalences hold: V\(lx(p(x) -> Vjμ/?(^)),α,β, w) =
li iff y!((^ ( 0 ) -+ Vj/7(^)) v (r ( 0 ) -> Vyp(y)),a,ayw) = 11 iff ^ ( ( g ^ -> ̂ ( 0 ) Λ
r ( 0 ) ) v (r ( 0 ) -> <7(0) Λ r ( 0 )),α,w) = U. The last identity implies the identity
Vχ{{q{0) -> ̂ ( 0 )) v (r(0) -• ̂ ( 0 )),α,w) = II, which is equivalent to y((^ ( 0 ) ->
r<°>) v (r ( 0 ) -+q(0)),a9 w) = U. Therefore for any assignment a for <S0, F,SΊ>,
ί;!(3x(/7(x) -> Vj/?(j)),<7,αo,wo) = (D, and consequently F ^ ^ ( S Q , K,SΊ).

Theorem 2.2 ΓΛe superrelevant predicate logic RQF does not possess char-
acteristic classes of the s.g.r. RPg-spaces.

Proof: On the strength of Lemmas 2.1 and 2.3.

By Lemmas 2.1 and 2.2 it is easily seen that the incompleteness result holds
for the semantics of the type <2ί, V). Also, by Lemmas 2.1 and 2.3 we get that
the incompleteness result holds for the semantics of the type (S,V).

3 Let S = (S,R,P,g) be a relevant RPg-space. A subset H Q S is called a
<5-hereditary if for any a, b G S it follows from a G H and a <s b that b €Ξ H.

Theorem 3.1 For any s.g.r. RPg-space <S0, V,SX) there exists s.g.r. RPg-
space So, K,S*> such that

(i) So* = <SS,Ri,P$,gζ> and S* - <S*,**,Pί,gf>
(ii) <5* and <s* are partial orderings on So and S*, respectively

(iii) Po is a <5*-hereditary subset of So and P* is a <5* -hereditary subset of
S*
(iv)^(S 0,F,S 1)=^(S 0*,F,S 1*).

Proof: Suppose that <S0, K,Si> is an s.g.r. RPg-space. Let PQ = [a G So | there
exists 6 G P 0 such that 6 <s0 α} and P? = [a G Si | there exists 6 G Pi such
that ft < ^ α}. By an easy verification we obtain that So = <So,i?o>Po>£o> and
S? = <Si,i?i,Pi°,#i> are relevant RPg-spaces, and that <s0 = ̂ s$ and < ^ =



SUPERRELEVANT LOGICS 289

<5p. Next, given the equivalence relations =§0 (for any a,b G So, a =sQ b iff
a <s§ b and b <s§ a) a n d =sx (for any a,b E Sx, a =sx b iff # <sp 6 and b
<5p #), we construct in the standard way the quotient relevant RPg-spaces
5(f = <SS,Ro,P5,go> and Sx* = <S*,ΛΪ,Λ*^Γ> corresponding to 50° and S?,
respectively. The final and crucial step of the proof consists in showing that the
following condition holds:

(*) Let (So, V,SX,J) be an s.g.r. RPg-model and let v be the value-function
for the <50, V,SX,J). Then for any a G FOR, if v(a,ά,a,w) = II and
b >s0 #> u >^ w, then v(a,ά,b,u) = U.

But then the condition (*) does not call for a new proof, since it is a well-known
lemma of Routley and Meyer ([9]). So by the condition (*) it can easily be seen
that (iv) holds.

In the remainder of this paper we will discuss only s.g.r. RPg-spaces
(SO,V,SX), where PO,PX are hereditary subsets of So and 5i with respect to the
partial orderings <s0

 a n d ^s l 9 respectively. G.r. RPg-spaces will be also dis-
cussed as g.r. RPg-spaces <S, K,2l>, in which the relevant RPg-space S =
(S,R,P,g) is such that P 9Ξ S is a hereditary subset with respect to the partial
ordering <^.

The following construction allows the correlation with any relevant RPg-
space S of the respective matrix. Let S = (S,R9P,g) be a relevant RPg-space.
The symbol A(S) denotes the class of all <^-hereditary subsets of 5, whereas
the symbol Άlg(S) denotes the algebra with universum (5) and operations
defined as follows: for any HUH2 Ξ A(S), Hx Λ H2 = Hx Π H2i Hxv H2 =
Hx U H2, Hx-+H2 = {a<Ξ S\ for every b,ceS: if Rabc and b<ΞHXi then c e
H2], -i/fj = [α|g(α) £HX}. It is obvious that inyl/g(5) there exist f\ Ht and

V Ht9 where Γis a set of any power, LetD(S) = (i/G ^4(S)|P g i/j .
/G71

Lemma 3.1 For any relevant RPg-space S = (S,R,P9g) such that the set P
has the least element, 21(5) = (Alg(S),D(S)} is an m-simple CRQ-matrix, where
m is any cardinal.

Proof: It suffices to verify that: (i) the class A(S) is closed with respect on the
operations Λ, V, ->, -ι; (ii) D(S) is a filter; and (iii) conditions 1,... ,14 defin-
ing an m-simple C^g-matrix hold (cf. also [5]).

Theorem 3.2 For any s.g.r. RPg-space (So, V,SX) such that the set Px g Sx

has a least element, E(S0, V,SX) = E(Sθ9 VM§X)).

Proof: Suppose that (So, V,SX,J) is an s.g.r. RPg-model and v is the value-
function for the (SO, V,SX,J). Let a be an assignment for the s.g.r. RPg-space
<50,ϊ/,51>. We define the interpretation function Jx in the g.r. RPg-space
<So, VMSX)) as follows: Jx(p{0),a) = ( w G Sx \J(p(0),a, w) = II and Jx{p{n),

a)(a(x0),..., a(xn_x)) = {w <Ξ Sx\J(p(n),a,w)ά(x0).. .a(xn_x)}, for n > 1.

Let vx denote the value-function for the <S0, F,2ί(5Ί)>. It is easy to verify that,
for any a G FOR, for any assignment a for the (SO,V,SX) and for each a E So,
vx(a,a,a) = {w G Sx\v(a,a,a,w) = 11). The proofs of the remaining steps are
easy and will be omitted.
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Let 21 = (A9D) be an m-simple C^-matrix. We say that a proper in-
complete filter F of the algebra A is an m-prime filter if it has the following
property: for any f < m, if \J at G F then [at\ t G T) Π F Φ 0 . If m < Ko

tGT

then we identify m-prime filters with prime filters.

Lemma 3.2 Let 21 = (A9D) be an m-simple CRQ-matrix. Then
(i) Ifm > Ko, then the m-complete filter generated by a nonempty subset Ao of

the uniυersum of the algebra A is the set of all elements^ a G A such that a >
f\ atfor some elements at E Aθ9 tGT, and for some ? < m
tψT

(ii) Ifm < Ko, then the m-complete filter generated by a nonempty subset Ao of
the uniυersum of the algebra A is the set of all elements a E A such that a> a0

Λ . . . Λ an_\ for some elements aθ9... ,#„_! E Ao.

Proof: By an easy verification.

It follows easily from Lemma 3.3 that

Lemma 3.3 Let a0 be an element of the uniυersum of the algebra A and let
F be an m-complete filter of the algebra A. Then [F9a0) = {a E A\a > a0 Λ C
and c E F] is the m-complete filter generated by the set FU {a0}.

Let the symbol Go denote the set of all proper m-complete filters of the
m-simple CΛQ-matrix 21 = <A,D). Let G = Go U {0,A}. For any FUF2 E G
let Fx F2 = [z\ there exist xGFγ and y GF2 such that x < y -* z]. By the sym-
bol Ψp we denote the set of all m-prime filters of the algebra A. Let F = F^ U
{09A}. We now introduce certain specific definitions (cf. [5]), namely: for any
F,FUF2 E F, R{FiFuF2) holds iff FF1 c F 2 , P = {F\F G F and F^ D], and
(̂F) = (xEyl|g(x)ίF}.

Lemma 3.4 Let 21 = (A,D) be an m-simple CRQ-matrix such that the set-
theoretic union of any chain of m-complete filters of the algebra A is an m-
complete filter. Let FUF2G<& and FGΨ. Then
(i) IfFγ F2^F, then there exists F* E F such that Fx c Ff and F* F2QF

(ii) IfFx F2QF, then there exists F2 G F such that F2 c F2 and Fx F} QF.

Proof: Let us note that if m < Ko then we consider filters and thus each algebra
A of the m-simple C^Q-matrix 21 = (A,D) satisfies the condition: the set-
theoretic union of any chain of filters is a filter. We only prove the lemma for
the case when m > Ko. To prove (i) let us assume that K = {F' \FG G, F{ c F'
and F' F2^F}. The collection K is nonempty, since Fx G K. Let β be a chain
in <#,c> and let P = (J (X\XG C). Since Fγ c Ff for each F1 G C, then Fx c
P. Since P F 2 = (J (F' ^ I F ' E C), then PF2 c F. In the case when P E
[0,A}9 then we conclude the proof. Let us assume that P ί {0fA}. Now, on
the strength of the assumptions of the lemma, P is an m-complete filter. Hence,
by the Kuratowski-Zorn lemma, K has a maximal element F*. Le^us assume
that F* <£ Wp U {A}. Then there exist elements atGA9tGT9 and f < m, such
that \J atGF* and *,|ί E Γ) Π F* = 0 . For each ί E T9 let F,* = [F*,^)

tGT

be an m-complete filter generated by the set F* U [at]. Hence F* D F* for each
ί E Γ. Therefore for all t G T there exist bt9ct G A such that bt-+ ct G F*9

bt G F2, and ct £ F By Lemma 3.3 there exist xt G F*9 t G T9 so that xt Λ
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at < bt-+ ct. Let x = /\ xt. Now, by an easy verification we get that x Λ at <
tGT

Λ bt -+ V ct f° r a ^ * G >̂ anc*> consequently, \J (x Λ α,) < l\bt^> \J ct.
tGT tGT tGT tGT tGT
Since x Λ \J at < \/ (x A at) then x Λ \J at < /\ bt-+ \/ ct. Hence it fol-

der /GΓ ίGΓ /GT ίGΓ
lows that /\ bt-+ \J ctE F * , but because f\btE F 2 , then \J ctE F — a con-

fer ίeΓ ί€EΓ /GΓ
tradiction, since Fis an m-prime filter.

The proof of case (ii) is entirely analogous to the previous proof, and there-
fore is omitted.

Lemma 3.5 For any F9FX E G:
(i) FFX E G
(iϊ)DF = F

(iii) FD^F

Proof: To prove (i) observe that if FFX E {0,A] then FFX E G. Now let us
assume that {at 11 E T] c F ^ ^ {0,^4}. Hence we get that there exist bt E Fx

for each ί E T such that bt-+ateE Then f\ bt e Fx and /\ (6? -+ at) e F
tGT tGT

Since /\ (bt^>at) < /\ bt-> /\ ^then f\ bt-+ /\ ί^EFand, consequently,
ίGΓ /GΓ ίGΓ /eΓ /G71

/\ atEF'F{. Now, assuming that aGFFx and α < 6 we get immediately that
/GΓ

there exists c GFX such that c-+ a E F and that c-+ a< c^>b. Then c-+ b EF
yields beF-Fi.

To prove (ii) observe that if x E JD F then there exists y E F such that
j - > x G / ) . Hence y G x and so x E F Next, assuming that x E F w e get that
also x E OF by virtue of the fact that x-+ x E D.

To prove (iii) suppose that x E FD. Thus for some y E D9 y ^ x E F
Therefore (y-* x)-+ x E D and so y -> * < x. Hence x E F

Lemma 3.6 Let 21 = (A9D) be an m-simple CRQ-matrix such that the set-
theoretic union of any chain of m-complete filters of the algebra A is an m-
complete filter. Then F(2t) = (W,R,P,g) is a relevant RPg-space.

Proof: In the first place we shall show that the following condition holds:

(*) For any FUF2E IF, Fx c F2 iff there exists FEP such that R(F9FUF2).

Let us assume that FX<^F2. Hence by Lemma 3.5(ii) DFγ c F2. If D E
F p U {̂ 4} then on the strength of Lemma 3.4(i) there exists F E F such that
D g F and F Fj c F 2 . Therefore, F E P and R(F9FUF2). Conversely, let
R(F9FUF2) for some F G P . Then FFX c F 2 . Since F E P then Z) c F Hence
DFi c F 2 , and consequently by Lemma 3.5(ii) Fi ̂  F 2 .

Remembering about the possibility of applying Lemmas 3.4, 3.5, and Con-
dition (*) the reader should not have any difficulties in supplying all the proofs
that are omitted here.

To verify RPg 9 observe that if F E F then g(F) E F. Applying the defi-
nition of the set g(F) one gets that x E g(g(F)) iff ^x E g(F) iff -ι-ιχ E Fiff
XEF

To prove RPg 10 suppose to the contrary that FFX c F 2 and F-g(F2) £
g(Fx). Hence there exists y9z E A such that y -+ z E F9 y E g(F2) and z ί
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g(Fι). Since y -> z ^ ~>z -> ~>j, therefore -i* -* -ιj> E F and -ιz E Fi, and con-
sequently -i^ E F 2 . Hence we conclude that y φ. g(F2) —a contradiction.

To prove RPg 11 let us note only that for any x,y EA, x Λ ~^y < -ι (x ->
y), since the proofs of the remaining steps are easy.

Lemma 3.7 (cf. [3]) Let % = (A9D) be a finite simple CRQ-matrix. Then 21
and %{WP{%)) are isomorphic.

Proof: The fact that ΨPCΆ) = (Ψp,R9P,g) is a relevant RPg-space is proved in
an analogous manner to the proof of Lemma 3.6. We add, however, that in
every finite simple C^g-matrix the set-theoretic union of any chain of filters
is a filter. Now, we define the function h: A •-> A(WP(%)) as follows: h(x) =
{F E ¥p\x E F} for every xEA. We omit the proof that the thus-defined func-
tion h is a well-defined function and that h is a bijection. And, moreover, the
reader can easily verify that the function h preserves operations Λ, V, -i; and
that for each x E A, x E D iff h{x) E D{WP{%)). To prove the inclusion h(x->
y) £ h(x) -» h{y) assume that FE h(x-»y) and F£ h(x) -+ h(y). Then we
get that x->y E Fand there exist Fl9F2G Wp such that R(F9FUF2)9 Fx<Ξh(x),
andF2<£ A(j>) Hence we haveF-^ ^ F 2 , x e F j andj><£F2. T h u s y e F FΪ9

and consequently y E F 2 — a contradiction. Now, we shall prove that for all
y GA and all eE^l, x =£ O ,̂ A(x) -* Λ(^) ^ h(x-^y). Let us assume that for
some F E F p , F φ h(x -+ y). Hence x-+ y φ F. Let us consider the sets F t =
{z\x < z) and F Fi. Thus ^ £F-FU because if ^ GFFx then z->j> G F for
some Z G F J and so Λ: -> y E F on the strength of z -+ y < x -> ̂ . Let F 2 be an
element in the set F^ such that FFX c F 2 and y φ F2. On the basis of Lemma
3.4(ii) there exists F* E Wp such that F t c F* and F F* c F 2 . Hence we obtain
that Λ(F,F*,F 2),F* Gh(x), and F2<Ξh(y), therefore F£ h(x) -* A(j). In
this way, it remains to prove that h(0A)-+ h(y) c ^(0^ -* j ) for all j E ̂ 4. But
since 31 is a finite simple C^g-matrix, then in the algebra A there exists a greater
element \A and 0A-+ y = \A. Hence h(0A ->y) = WP.

Theorem 3.3 Let 2t = (A,D) be a κ(V,S)-simple CRQ-matrix such that the
set-theoretic union of any chain ofκ(V,S) -complete filters of the algebra A is
a κ(V,S)-complete filter. Then E(A9 F,2ί(F(2t))) c E(S, F,§ί).

Proof: By the construction of the relevant RPg-space F(2I) = (Έ,R,P,g) the set
P has a least element. So by Lemma 3.1 2t(F(2ί)) is a κ(F,S)-simple CΛ Q-
matrix. Let h be the function from A into ̂ 4(F) given by: h(x) = {FG W\x E
F] for every xGA. Let us assume that a £ E(S, F,2l). Hence there must exist
a g.r. RPg-model <5, K,S,/> such that a £ E(S9 F,2ί,/). Now, we define the
interpretation function Jx in the g.r. RPg-space (S9 F,2ί(F(2I))> as follows:
Jι(p(0\a) = A(ιι), if J(pi0\a) = u; and Jι(p{n\a)(a(x0)9... ^ ( x ^ O ) =
A(M), if / ( p ^ t f K α U o ) , ,a(xn-i)) = ̂  n > 1.

Let t j denote the value-function for <S, F,2l(F(2l))>. We shall prove that

(*) For any formula α, for any assignment a for (S, F,2ί> and for each a E S:
Vι(a9ά,a) — h(u), if v{a,ά,a) = u.

The proof of (*) goes by induction with respect to the length of the formula a.
We verify only the cases when a = β -> 7 and a = Vxβ, because the verification
of the remaining cases is easy. By the proof of Lemma 3.7, h(x^y) Q h(x) ->
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h(y) for any x9y ELΛ. TO prove the inclusion h(x) -+h(y) £ h(x^y) assume
that for some F E F, F φ h(x-+ y). Hence x -• y £ F Let Fx = [z\x < z}.
Therefore y ί FFλ, because if y E i7-/7! then z -» J> E F for some z G F j and
so Λ: -> j> E F on the strength of the z -> 7 < x -> y. Let us consider F 2 E F such
that F-Fχ c F 2 and y <£ F2. By Lemma 3.4(ii) there exists F* E F such that
F1 c F* and F F* c F 2 . Hence it follows that R(F9F*,F2), F* E h(x), and

^2 ί h(y), s o / 7 ^ Λ(JC) ->Λ(j). In order to show that hi f\ aλ = /\ h{at)

for each Γsuch that f < κ(V,S) let us note that F E h[ f\ aλ iff /\ at E F
\t<ET / t<ET

iff for each t E Γ, at E Fiff for each t <Ξ T, FE h(at) iff Fe f\ h(at). Let

α = j8 -> 7. In this case we have: υx{β -» y9a,a) = /\ (vχ(β,ά,b) -• iΊ(7,β,
c)|6,c E 5 and itafrc) = f\ (h(v(β,a,b)) -^ Λ(v(7,δ,c))|6,c E S and i?α6c) =
Λ {h{υ(β,ά,b) -* y(7,δ,c))|6,c E 5 and Λflrftc) = A(Λ (v(β9a9b) ^ v(7,δ,
c)|6,c E 5 and Rabc)) = h(υ(β -+ y,a,a)). If a = VX|S, then we obtain that
Vχ(oί,ά,a) = /\ (vι(β,a\a)\a' is an assignment that agrees with a except on
x) = /\(h{υ{β,άf,a))\ά' is an assignment that agrees with a except on x) =
Λ(/\ (V(β,a',a))\af is an assignment that agrees with a except onx) = h(v(a,

a, a)).
Since a £ F(S9 F,2l,/), then there exists an assignment a for (S, K,2ί> and

a E P such that f(α,α,α) ί D. Thus, on the strength of the (*), Vi(a9ά,a) =
h(v(a9ά9a)) £ h(D) = £>(F(3I)), and consequently a £ E(S9 F,2I(F(3ί))).
Corollary 3.1 Let % = (A9D) be a κ(V9S)-simple CRQ-matrixsuch that the
union set-theoretical of any chain ofκ(V9 S) -complete filters of the algebra A is
a κ(V9S)-complete filter. Then E(S9 K,F(8l)) Q E(S9 K,Sl).

Proof: If follows from Theorems 3.2 and 3.3.

Theorem 3.4 Let 21 = <A9D) be a finite CRQ-matrix. Then E(S9 F,2I) =

E(S,V&(VpW))).

Proof: It follows from Lemma 3.7.

NOTE

1. It should also be mentioned that RQ is incomplete for the standard ternary relation
semantics and yet complete for a nonstandard ternary relation semantics, distin-
guished by a special clause for the quantifier. These results were given by Kit Fine
in his unpublished work. The author is greatly indebted to the editor for bringing this
fact to his attention.
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