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Modal Logics with

Functional Alternative Relations

KRISTER SEGERBERG*

Some families of modal logics form lattices; particularly important exam-
ples are the set of extensions of a modal logic and the set of normal extensions
of a normal logic. One traditional way of studying such lattices, falling back on
previous work in algebra, seeks to establish general properties of very big lat-
tices. Thanks to Kit Fine, Wim Blok, Johan van Benthem, and others, this tra-
dition is very much alive.

But there is also an earlier tradition, related to but perhaps possible to dis-
tinguish from the one mentioned, where the ambition is to map out in complete
detail sufficiently small lattices. The first work in this vein was Scroggs's cele-
brated [15], followed by Bull's equally celebrated [1]. Other investigations in the
same tradition are exemplified by [2], [6], [18], [19], [21], [22]; and works such
as [5], [7], [11] also bear on it. In view of how enormously complicated the big
lattices are, this tradition can never hope to develop very far. Nevertheless, where
it is viable there may still be some interest in seeing it pursued. In this paper we
will offer one such example, exploring the lattice of extensions of the normal
modal logic KDC, where the schema Dc. OA D DA is the converse of the well-
known "deontic" schema D. DA D OA. At the outset we may note that the only
extensions of KDC other than the Inconsistent Logic (the normal extension of
K by J.) which seem to have been described in the literature are KDΪ = KDDC

(the smallest normal logic to contain both D and £>c), the Trivial Logic (the
normal extension of Kby the schema DA = A), and the Verum Logic (the nor-
mal extension of ΛΓby D ± ) . The relationship between these logics is set out by
the chart in Fig. 1. This, then, is the map whose white patches we propose to fill.

T h e research reported in this paper was prompted by Brian Chellas's interest in func-
tional modal logics, as explained in [4], and the author would like to acknowledge
fruitful exchanges with him, Max Cress well, and Steve Thomason on this topic, in con-
versation and in correspondence. The results achieved were presented in the author's
invited address to the Australasian Logic Conference at the University of Western Aus-
tralia in May 1983 and were summarized in the abstract [20]. The author wishes to thank
Graham Priest and his colleagues for an exciting and well-organized conference.
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The paper consists of three sections. In Section 1 we study the class of nor-
mal logics between KDC and the logic KD!. In Section 2 we report the main
result of the paper that every normal extension of KDC has the finite model
property. This insight is a key to an understanding of the lattice of extensions
of KD!, and in Section 3 we show how it can be used to gain an understand-
ing of the lattice of extensions of KDC as well. A noteworthy feature of our
investigation has to do with the relationship between normal and nonnormal
modal logic: Sections 1 and 2 are concerned with normal logics only, and in Sec-
tion 3 it is shown how the picture obtained in the first two sections, interesting
and informative as it is, is still incomplete, and how the general picture obtained
when all extensions are considered, nonnormal as well as normal, is superior.

A background in standard modal logic is assumed. Such a background may
be got by referring to the author's [17] or to the more current texts [3], [8], [10].
Some conventions: we use P for propositional letters; A, B, C for formulas; /,
y, k, /, m9 n for natural numbers 0, 1,2,...; and the set of all natural numbers
is denoted by ω.

/ Normal logics between KDC and KDl A frame (U, R) is serial if
Vxly xRy\ functional if VxVyVy' {xRy & xRyf => . y — y') totally functional if
functional and serial; and partially functional'if functional but not serial. Func-
tional frames and their logics have been studied by Prior [13], [14], von Wright
[23], Lemmon and Scott [10], and Segerberg [16]. It is well known that KD,
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KDC9 and KD\ are strongly complete in relational frame semantics, and that
every frame for KD (KDC, KD\) is serial (functional, totally functional).

We now describe and introduce notations for all generated functional
frames. The finite, generated, partially functional frames are particularly sim-
ple as they are of the type *βΛ = (Un, Rn), for n ^ 0, where

Un = {i:i<n},

/?„ = {</,/ + 1> : / < / ! - 1}.

Note that we recognize the "empty frame" tyo = (0, 0 ) as a partially func-
tional frame. This is perhaps unorthodox, but in the present context it is nat-
ural, as will be seen below. The finite, generated, totally functional frames are
all of the type ZkJ = <t/M, Rkj), where k ^ 0 but / > 0, and

UkJ= {/:/ < k + /},
Rk'J= {</, /+ l) : / < £ + / - 1} U {<£ + / - 1, k)}.

This accounts for all types of finite, generated, functional frames. Among infi-
nite, functional frames, the only generated ones are those isomorphic to the
"omega frame" (Uω, Rω)9 where

Rω={(i, /+ l ) : / < ω } .

We will write ω for this frame, so in a sense we identify the omega frame with
the set of natural numbers; but this convention should not cause any confusion.
In what follows we will also identify isomorphic frames. Thus, for example, we
will regard ω as the unique infinite, generated, functional frame. The schematic
representation in Fig. 2 of all generated, functional frames will perhaps be
helpful.

A logic is a set of formulas that contains all tautologies and is closed under
modus ponens and substitution. A logic is a normal (modal) logic if it contains
the scheme D ( A Λ B ) = DAΛ DB and, in addition, is closed under necessita-
tion (it contains DA whenever it contains A). If 2ft is a model, then Th(Wl)
denotes the theory determined by SDί; that is, the set of formulas true at every
point of m. We say that 3D? is a model for a logic L if L c Th(Wl). If % is a
frame, then L(g) denotes the normal modal logic determined by g; that is, the
set of formulas valid in %. Similarly, if C is a class of frames, then L(C)
denotes the normal logic determined by C; that is, the set of formulas valid in
every frame in C. In other words, L(C) = f] {L(g): g e C}. We say that % is
a frame for a logic L if L <Ξ L(%). Note that the Inconsistent Logic, the Verum
Logic, and the Trivial Logic are identical with L(^o)> £0Pi)> and L(£o,i)>
respectively.

The following two results are well-known:

L e m m a 1.1 KD\ = L(ω) = f) {L(ZkJ) :k, / < ω & / > 0 } .

L e m m a 1.2 KDC = f] {L(^n) \n<ω}.

We also list some other results of interest for our investigation.

Lemma 1.3 L(%kj) is the smallest normal logic to contain the formula

•*(P 3 / 8 D 7 P).
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Fig. 2. Schematic inventory of all generated functional frames (up to isomor-
phism)

Lemma 1.4 L(^n) is the smallest normal logic to contain the formula
\fJ{OiΠ±:i<n}.

Lemma 1.5 L(ym) c L(%) if and only ifm^n.

Lemma 1.6 L(Zkj) Q L(Zk\r) if and only if k^kf and Γ divides /.

Proof: First assume that L(Zk,ι) £ L(Zk',r)> f° r some k, k' ^ 0 and some /,
/' > 0. If k < k\ then let 3Dΐ be a model on Zk\r in which a certain proposi-
tional letter P is true only at k. By the assumption and Lemma 1.3, Πk(P =
D'P) E L(Zk'j>). Hence, in SDΪ, ΏιV is true at A:. As P is true only at k and
Zk',r is functional, it follows that / = 0, a contradiction. Consequently, k^k'.

To see that /' divides /, let 9ft instead be any model on Zk\v such that
P holds at k' and nowhere else. Note that, since L(Zk,i) is normal, D'(P =
D'P) E L(S*,/)> f o r all / ̂  A:. From our assumption that L(Zk,ι) ^ ^(ϊ^',/0 it
then follows that, for ally such that k' ^j < k' + Γ - 1, P s Π 7? holds at j.
In particular, D7P holds at k'. But as P is true at k' only, it must be that k' +
1 = k' + ml\ for some m^0. Hence / = m/'; and as /, /' > 0, also m > 0. Con-
sequently, /' divides /. Thus we have proved the first half of the lemma.

For the converse, suppose that k^k' and /' divides /, where /, /' > 0.
Define a function/: Uk'j-* Uk>>r as follows:

f x, if x< k\
fx= I

I k' + {{x - A:')(mod / ' ) ) , if kf ^ x < k' + I.
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It is clear that /is well-defined. Since /' divides /, /' ̂  /, and so /is onto. It is
not difficult to verify that/is a p-morphism from %k>tί to £*',/'• Actually, the
detail that needs checking is that f(k' + I - 1) = k' + V - 1. But this holds iff
(/- l)(mod/') = / ' - 1; which holds iff/- 1 - ml' = /' - 1, for some m ^ O ;
which holds iff I = (m + 1)/', for some m ̂  0; which holds iff /' divides /; and
that this holds we have assumed. Therefore, by the P-morphism Theorem,
L{%k>j) c= L(%k>j>). Moreover, we have assumed that k ̂  k'. Therefore by the
Generation Theorem, L(ZkJ) c L(Zk>j). The desired result follows. QED

Now consider two other families of formulas (C for Chellas, H for
Hughes):

Cn. DΛ0T;
Hn. OΠDAD DΛ0A.

The question whether there are normal logics between KDC and KDΪ was
broached at the Waikanae meeting of the Scroggs Society in January 1983. After
the meeting Brain F. Chellas observed that {KDcCn:n < ω} constitutes a
sequence of such logics; and George Hughes, independently, observed that
{KDcHn: n < ω} does. It is easy to see that the two sequences are the same. We
denote KDcCn - KDcHn by {CH)n and will refer to the members of the
sequence {(CH)n: n < ω} as the Chellas/Hughes logics. Note that (CH)n+x c
(CH)n but (CH)n $έ (CH)n+ι; that KDC c (CH)n but (CH)n £ KDC\ and that
(CH)o = KD\. We will now prove that the Chellas/Hughes logics are in fact
all the normal logics between KDC and KD!.

Lemma 1.7 (CH)n = KD\ Π L(<$n).

Proof: The Q.part is obvious. For the Ξ2-part, assume that A ^ (CH)n. We
must prove that either A φ. KD\ or A φ L(^n). By standard reasoning, A fails
in some generated submodel 50Ϊ of the canonical model for {CH)n. There are
three cases. Case 1. 3JΪ is infinite. Then 3JΪ is based on the omega frame ω. But
ω is a frame for KD!, by Lemma 1.1. Therefore A £ KD!. Case 2. Wl is finite
and totally functional. Then there are k ̂  0 and / > 0 such that %k>ι is the frame
of 2K. Consequently A £ L{Zk>ι), and so, by Lemma IΛ,A£KDI. Case 3. 2)ΐ
is finite and partially functional. Then there is some k such that tyk is the frame
of 2ft. Assume that k> n. Then k — n — 1 is a nonnegative number and hence
an element of *$k. As 3ft is a model for (CH)n, the formula •"OT is true at
k - n - 1. Hence OT is true at k - 1, the last element of ^ But this is a con-
tradiction, for a last element has no alternatives, and so OT cannot be true at
it. Consequently, k ̂  n. Therefore, by Lemma 1.5, L(^k) 2 L(^n). From this
and the fact that A £ L(<β*) it follows that A £ L(φ Λ ) . QED

Corol lary 1.8 KDC = f | {(CH)n :n<ω}.

Proof: The c.part is obvious. For the ̂ -part, suppose that A £ KDC. Then, by
Lemma 1.2, there is some n such that A £ L(^n). Hence, by Lemma 1.7, A φ
(CH)n. QED

Corollary 1.9 (CH)n has the finite model property.
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Proof: A normal logic is said to have the finite model property (f.m.p.) if and
only if it is determined by a class of finite frames. It follows from Lemmas 1.1
and 1.7 that (CH)n is determined by the class {ZkJ:k, / < ω & / > 0 } U {<$„}.

QED
The following result is well known but of special importance to this paper:

Proposition 1.10 (Segerberg [17], cf. Fine [6]) Let W be a distinguishable
model based on a finite frame g. Then, for any logic L, L c Th(Wl) only if

Lemma 1.11 If L is a normal extension of KDC, then the formula <>nΏ±.
is consistent in L only if L ^ L(^β π + 1 ).

Proof: Let L Ξ2 KDC be a normal logic. Suppose that OΛD_L is consistent in
L (by which is meant that the set {O*D_L} is consistent in L). By Linden-
baum's Lemma there is some maximal L-consistent set x of formulas such that
OΛD_L Ex. Since x is an element of the canonical model 50?L for L, it makes
sense to speak of the submodel 3Dί generated from WlL by x. By assumption, L
extends KDC, so the accessibility relation of Wl is functional. As O"Π± Ex, the
frame of 9JΪ must therefore be (isomorphic to) tyn+i. Thus 3JI is a finite distin-
guishable model for L. Hence, by Proposition 1.10, φ Λ + 1 is a frame for L.

QED

Theorem 1.12 The only normal logics between KDC and KDl are the Chel-
las/Hughes logics.

Proof: Suppose that L is a normal logic such that KDC ί l c KDl. We wish to
prove that either L =KDC or else L = (CH)n. Consider the set

J — {i: O'D-L is consistent in L}.

There are three cases. Case 1. J is empty. Since 0 φ J, • _L is inconsistent in L.
This means that OΊ E L and therefore that KDl c L. Thus in this case L =
KDl. Case 2. J is nonempty but finite. Let n be the maximum number in /.
Then on the one hand O / Z + 1D JL is inconsistent in L, whence D Π + 1 OT E L, and
so (CH)n+ι Q L. On the other hand O"D_L is consistent in L, whence L c
L(^n+ι) by Lemma 1.11, and so L Q {CH)n+x by Lemma 1.7. Thus in this
case, L = (CH)n+x. Case 3. J is infinite. Then O"D± is consistent in L, for all
n\ hence D^OT ^ L, for all n\ hence, by Lemma 1.11, L c jL(<βrt+1), for all n\
hence, by Lemma 1.2, L c iSΓZ)c. Thus in this case L = JCDC. QED

Figure 1 can now be updated as shown in Fig. 3. However, the picture is
still far from complete.

2 Normal extensions of KDC In the preceding section we determined the
normal logics between KDC and KDI. In this section we will go one step fur-
ther and map out all the normal extensions of KDC. The pivotal result on which
everything else turns is this analogue of Proposition 1.10:

Proposition 2.1 Let Wlbe a distinguishable model based on the omega frame
ω. Then, for any logic L, L c Th(W) only if L c L(ω).

Proof: Suppose that 9K is a distinguishable model on ω. Let L be a logic such
that
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(1) L^Th(m).

Suppose that A is any formula such that

(2) A g L ( ω ) .

It will be enough to prove that A ^ L . Now, by (2), A will fail at 0 in some
model 9Dΐ* on ω:

(3) 9DΪ* ô A.

That 9Jί is distinguishable means by definition that, whenever mΦn, then there
is some formula Cm,n such that Wl \=m CmyΠ but ϊft ψn Cm^n. For any m, define
the formula

Cm =df /Aic>n,n: m Φ π & n ̂  deg A},

where fl\ stands for finite conjunction and deg A is the modal degree of A (that
is, the maximum number of nested modal operators in A). Then, for all m,
n ^ deg A, we have

Wt tn Cm iff TΠ = /!.

The following defines a substitution function s: for every propositional letter P,

p 5 =df \(J{Cm: m ̂  deg A & Wl* Ym P},
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where \fj stands for finite disjunction. We now make the following claim- for
all formulas B and all natural numbers m,

(4) if m + deg B =i deg A, then 2R* Nm B iff 3ft \=m B 5.

The claim is proved by induction on B. The basic step goes through thanks to
the definition of s. The inductive step is trivial in the Boolean cases. In the modal
case we rely on the fact that x + deg ( ϋ C ) = x + 1 + deg C, for all C. Thus
in the latter case —assuming as the induction hypothesis that (4) holds for B —we
have Wl* Ym ΠB iff 3Dΐ* N m + 1 B iff 3JΪ ¥m+i B 5 iff 3Dΐ Vm ΠΆS iff M Vm (ΠB) 5 .

From (3) and (4) it follows that 2ft Ψo A5. By (1), therefore, As <£ L. But
L is closed under substitution. Consequently, A ζέ L, as we wanted to show.

QED

We are now ready for the main result of this section, which holds the key
to an understanding of the structure of the entire class of normal extensions of
KDC:

Theorem 2.2 Every normal extension of KDC has the finite model property.

Proof: Suppose, by way of contradiction, that there is a normal logic L 5 KDC

which lacks the f.m.p. This means that there must be some nontheorem of L
that fails in no finite model for L. But L is normal, so every nontheorem of L
fails somewhere in the canonical model 9JίL for L. Consequently, 3JlL has an
infinite, generated submodel 9Ϊ? which is a model for L: L <Ξ Thiffll). As L
extends KDC, 2Jί is functional. In other words, 2ft is based on the omega frame
ω. Moreover, as submodel of a canonical model, 90ΐ is certainly distinguishable.
By Proposition 2.1, therefore, L <Ξ L(ω). Hence, by Lemma 1 . 1 , 1 c KD!. By
Theorem 1.13, either L = (CH)n, for some n, or else L = KDC. In either case
L has the f.m.p., by Corollary 1.9 in the former case, by Lemma 1.2 in the lat-
ter; and so in either case we have a contradiction. QED

Corollary 2.3 If L is a normal extension of KDC not contained in KD!,
then L is determined by a finite class of finite frames.

Proof: Let L 2 KDC be a normal logic. By Theorem 2.2, L is determined by a
class C of finite, functional frames. Assume that C contains infinitely many
frames. It will be enough to show that this assumption entails that L <Ξ KDl.

Let A be any formula such that A ^ KD!. Then there is a model 9J? based
on the omega frame ω such that

(1) 2J iμ 0 A.

Since C is assumed to be infinite, C must contain arbitrarily large frames of type
Zfcj o r tyn- Let g be any frame in C with deg A elements. Let W be a model
on g which copies the behavior in 3Dΐ of propositional letters on 0, 1, . . . ,deg A.
In other words, for all propositional letters P and all natural numbers / ̂  deg A,

W h, P iff 3R h P.

A straightforward inductive argument shows that, for all formulas B and all nat-
ural numbers /,

(2) if / + deg B ^ deg A, then W h, B iff m h B.
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From (1) and (2) it follows that W feέ0 A. But $ is a frame for L, so evidently
A <£ L. Thus we have established that L g KDl. QED

Corollary 2.4 Every normal extension of KDC is determined by some class
of finite, functional frames.

Corollary 2.5 Every proper normal extension of KDl is a finitely many-
valued logic.

Proof: By Corollary 2.3, if L g KDl is a normal logic, then L is determined by
a finite class of finite frames. In algebraic terms —see, for example, Lemmon
[9]-this means that L has a finite characteristic matrix. QED

Thus every proper normal extension of KDI can be viewed as the intersec-
tion of finitely many logics of type L(%kj). This means that KDl has a rela-
tively unusual property:

Corollary 2.6 KDl ispretabular.

Proof: A normal logic is defined as pretabular if it lacks a finite characteristic
matrix but every proper normal extension has one. The result follows from
Lemma 1.1 and Corollary 2.5. QED

The last two corollaries in conjunction with Lemma 1.6 afford a good
understanding of the structure of the lattice of normal extensions of KD I.
Interestingly enough, this understanding will help us to understand also the more
complicated lattice of normal extensions of KDC. In order to substantiate this
claim, it is useful to introduce the notion of a normal slice. For each n, let/Λ

be the function on the class of normal extensions of KD I defined by the con-
dition

fn{L) =dfLΠLWn).

By the n-th normal slice, denoted by Sn, we mean the range of fn. Thus So, the
zeroth slice, is simply the set of normal extensions of KDl (as well as the domain
of fn, for every n).

Lemma 2.7 Sn consists of the normal logics between (and including)
(CH)nandL(%).

Proof: We wish to prove that

Sn = {L:L is normal & ( C f f ) B c l c i ( ^ ) } ,

There are two halves to the proof. For the first one, take any L E So. We must
now prove that fn(L), obviously a normal logic, contains (CH)n and is con-
tained in Lityn). Now D"OT is a thesis of KDl and hence of L; it is also a the-
sis of L($n). Therefore ΠnOΎ efnL, and so (CH)n £/„(£) . ThatΛ(L) £
L(tyn) is trivial.

For the other half of the proof, let L be any normal logic such that
[CH)n c L c L(%). By Corollary 2.4 there is a class C of finite functional
frames such that L = L(C). Let C+ and C~ be the classes of frames of C
which are totally functional and partially functional, respectively. Evidently,
C+ ΠC~ = 0 and C+ U C~ = C, so we note that L = L(C+) Π L(C~). Since
L c L($„), there is no loss of generality to assume that ^n E C~. Hence
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(1) I ( C - ) c i ( ί β Λ ) ,

On the other hand, since {CH)n c L and thus D"OT G L, it is clear that % E
C" only if k % n. In other words, C" c {*)&*:£ ̂ Λ } , S O Z ( C ~ ) 3 p) {Z,(<>)3rt):
Λ: ̂  /?}. Hence, by Lemma 1.5,

( 2 ) I ( C - ) 3 L ( W .

Putting (1) and (2) together, we conclude that L(C~) = L(φn) and hence that
L = L(C+) Π HWn). Therefore, as L(C+) G So, we have shown that
fn(L(C+)) = L. That is to say, L G Sn. QED

Lemma 2.8 Every proper normal extension of KDC belongs to a unique
normal slice.

Proof: Uniqueness: Suppose that some normal logic belongs to both Sm and Sn.
Then there are L, L G So such that L Π L(^m) = L Π L(<Pn). Now, L is a nor-
mal extension of JED!, and so G'OT G L, for all /. Therefore, for all /, D'OT G
L ΠL(φ m ) if and only if / ^ m, and D'OT G Γ Π L(φn) if and only if / ^ Λ.
Consequently, m — n.

Existence: Suppose that L is a proper normal extension of KDC. Define

J = {/: D'OJL is consistent in L}.

As in the proof of Theorem 1.12 there are three cases, and analogous arguments
apply. If /is empty, then KD\ c L, and so L G 5 0 (Case 1 in the proof of The-
orem 1.12). If /is infinite, then L c KDC, contradicting the assumption that L
properly extends KDC (Case 3 in the proof of Theorem 1.12). If / is neither
empty nor infinite we have a more complicated situation (Case 2 in the proof
of Theorem 1.12). In this case there must be some number n such that

(1) D'OT G L, for all / > n,
(2) L c L p β Λ + 1 ) .

Now consider the class C of normal extensions of L. It is clear that f) C exists
and is a normal logic; thus Q C is the smallest normal extension of L. In order
to prove that L G Sn+ι it will be enough to prove that L = f]C Π L(tyn+ι).
That L ς p | C Π L(yn+ι) follows from (2) and the definition of C. To see that
L 3 p | C Π L ( φ Λ + 1 ) , assume that A £ L. By Theorem 2.2, A fails on some
finite frame % for L, which then has to be functional. If % is totally functional,
then g = ZkJ, for some / > 0. Evidently ZkJ G C, and so Q C c L(2*,/) Con-
sequently, A ί p | C. On the other hand, if g is partially functional, then % =
φ*, for some /:, and so A <£ £($*) . But D ^ O T £ L(<P*)> and so (1) implies
that k ^ n + 1. Hence, by Lemma 1.5, A £ I/(^Λ+i). QED

In other words, the set of normal slices partitions the set of proper normal
extensions of KDC. We will now investigate the structure of each normal slice.

Lemma 2.9 Let L and L be normal extensions ofKDl. IfL — L'Φ0, then
fn(L) -fn{Lf) Φ 0 .

Proof: Suppose that L, L G Sp. If L - L Φ 0 , take any A G L - L. Consider
the formula A* = A v ^/{O'D± :/ < n}. Since A G L and \χ/{O'Π_L :/ <
n} G L(φ π ), it is clear that A* G L Π L ( ^ π ) ; that is, A* Efn(L). By previous
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results, there is a class C of totally functional frames such that L =L(C). Since
A <£ L\ there is some frame g G C such that A £ L(g). As g is totally func-
tional, \X/{O'D J- : / < Λ} ί L(g). Therefore A* <£ L(g), and so A* <£ L' Π
L(φπ); that is, A* £/Λ(L') Consequently, A* e / π ( Γ ) - / „ ( ! / ) . QED

Lemma 2.10 If L is a normal extension ofKDl, then L = L(C) if and only
ι // π (L)=L(CU{φ π }) .

Proof: The only-if-part is immediate. For the if-part, assume that fn(L) =
L(CU {<$„}). Then fnL = L(C)r)L(yn). By definition, fn(L(C)) = L(C) Π
LWn), so fn(L) =fn(L(C)). Hence, by Lemma 2.9, L = L(C). QED

Theorem 2.11 fn is a lattice isomorphism from So to Sn.

Proof: By Lemma 2.9, fn is one-to-one. By definition, it is onto. Suppose that
L, L e>S0. Then L^L implies L Π L ( φ π ) c i ' Π L ( φ j , whence fn(L) g
Λ(L ' ) . On the other hand, if L £ Z/, then/ Λ (L) ί Λ(L ' ) , by Lemma 2.9.

QED

The upshot of this examination is that the set of normal extensions of KDC

consists of KDC itself and denumerably many isomorphic normal slices. Thus
the chart of normal extensions of KDC given in Fig. 3 can now be improved on
as shown in Fig. 4. The latter is complete in the sense that it intimates all nor-
mal extensions of KDC.

-̂*-"—O L(<J3o) = INCONSISTENT

/ S ί / s^v ^OPl) = VERUM

KD\ = (CH)0°<^ / //s / \

\ \
\ \

N \

KDC

Fig. 4
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3 Quasi-normal extensions of KDC The preceding account of the normal
extensions of KDC leaves us with some gaps and some puzzles. Among the gaps
are some unanswered questions concerning logics that are not normal: are there
nonnormal extensions of KDCΊ If so, where are they? In particular, are there
any between (CH)n and (CH)n+\Ί Among the puzzles is the fact—presented in
more detail below —that whereas all extensions of AD! = (CH)0 and of {CH)X

are normal, (CH)2 has a nonnormal extension ([17], pp. 192 ff): why does the
dividing line go between 1 and 2 and not between 0 and 1? Another puzzle is
the unique position of KDC: why is that the only logic to fall outside the nor-
mal slice system?

To gain a deeper understanding of the situation we now proceed to ana-
lyze the full set of extensions of KDC. First we review some terminology, some
of it established, some of it new. A modal logic is quasi-normal if it contains
the minimal normal modal logic K and is closed under modus ponens and sub-
stitution. Thus a quasi-normal logic is normal if and only if it is closed under
necessitation. If g is a frame generated by some element t, then we will write
Lt(%) for the set of formulas which hold at t in every model on %. Thus L(%) =
f] {Lt(%): t G dom %}, where of course dom g is the domain of %. It will
prove convenient sometimes to use the symbol "*" as a generic name for the gen-
erator of a generated frame. Thus, if t is the generator of g, then Lt{%) =
L*(g). By convention, L*(0) will denote the Inconsistent Logic. It is easy to
check that L*(g) is always a quasi-normal logic. Similarly, if C is a class of gen-
erated frames, then L*(C) = Q {L*(g): g G C} is also always a quasi-normal
logic. By analogy, if 2ft is a model, then we might write ΓA*(2ft) for the set
{A: 2ft h* A} of formulas true in 2ft at *. Thus if L is a logic such that L Q
L*(2ft), then 77z*(2ft) will be a maximal L-consistent set.

Let us first establish the existence of nonnormal logics in the area under
study.

Lemma 3.1 For m > 0, O ^ D l G L*(^n) if and only if m = n.

Corollary 3.2 If K is any class of generated, partially functional frames,
then, for m > 0, D ^ O T G L*(K) if and only if<$m <£ K.

Lemma 3.3 £*($„) is normal if and only if n ^ 1.

Proof: L*(%) = L(<β0) and L*(^i) = L(%), so L*(φ0) and L.WX) are nor-
mal. Assume that n > 1. By Lemma 3.1,

(1) O^DIEI^).

By Lemma 3.1, also O^D_L <£ L^n^). It is clear that yn_Y is isomorphic
to *βi, the subframe of tyn generated by the element 1. Therefore, O ^ D x £
LiOβJ, and so

(2) DO'-ΐlίl^).

It follows from (1) and (2) that £*($„) is nonnormal. QED

As we tend to be particularly interested in logics that are normal, it is
important to develop criteria for normality.
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Theorem 3.4 Ifξ is any generated frame, then for L*(%) to be normal it is
sufficient that, for all alternatives u of*9 there be a p-morphism from % to %u

taking * to u.

Proof: Assume the condition which is claimed to be sufficient. Suppose that
A E L*($). Let u be any alternative of the generator *. According to the
hypothesis, there is a p-morphism/: g —> g" such that u = / * . Hence, by the
P-morphism Theorem, A E Lu(%u), and so, by the Generation Theorem, A E
Lu(%). Consequently, DA E L*(g). QED

Theorem 3.5 If % is a generated, functional frame, then for L*(g) to be
normal it is necessary and sufficient that, if* has a distinct immediate succes-
sor s, then there is a p-morphism from g to %s.

Proof: If g is the empty frame, the theorem is trivial. Therefore assume that %
is not empty.

Sufficiency: First suppose that * lacks an immediate successor other than
itself. Then % must be either ZQΛ or φ o It is well known that L*(£0,i)

 =

£(£o,i)> the Trivial Logic, and L*(%) = L(%), the Verum Logic, are normal.
Next suppose that * has an immediate successor, s. Moreover, suppose that there
is a p-morphism from g to g5. The result will follow from Theorem 3.4. If
/* = s, then the theorem can be applied directly. Therefore suppose that/* Φ
s. As / is onto there must be some x in § such that fx = s. Both % and %s are
generated, so — if R stands for the accessibility relation in both cases —there are
m and n such that *Rmx and sRnf*. Since / i s a p-morphism, we also have
f*Rmfx; that is, f*Rms. Therefore, sRm+ns. If m = 0 or n = 0, then/* = s, con-
trary to assumption. Therefore m > 0 and n > 0, and a fortiori m + n > 1. This
means that sRιs, for some / > 0. Since R is functional, this in turn means that
the set {y: 3/ < l(sRιy)} comprises all elements of g5; and this set is finite.
Hence %s is of type £0,/> and so g is of type ϊ l f / or £0,/ In either case it is easy
to define a p-morphism from % to g5 which takes * to 5. Now Theorem 3.4 can
be applied.

Necessity: Suppose that % = (U, R) is generated and functional, and that
L*(g) is normal. Since we identify isomorphic frames, g is one of the frames
listed in Fig. 2. In particular, U is a nonempty set of natural numbers, * is 0,
and the immediate successor of *, if it exists, is 1. If % is only partially func-
tional, then g = *$„, for some n > 0. But, by Lemma 3.3, the only case in which
L*{^n) is consistent and normal is when n = 1. In this case the condition of the
theorem is satisfied, for 0 has no immediate successor in ̂ . Therefore assume
that g is totally functional. Either g = ϊ*,/» for some k ̂  0 and / > 0, or else
g = ω. In the former case define a function/on Uk+ι by the condition

Γ /+ 1, i f / < £ + / - 1,
l~{ k, if i = k+l- 1.

In the latter case define a function / on ω by the condition

// = / + l .

In either case it is easy to check that/is a p-morphism from g to g1. QED
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The following corollary does for the finite totally functional frames what
Lemma 3.3 did for the partially functional ones:

Corollary 3.6 For all k^O and I > 0, L*(ZkJ) = L(ZkJ) is normal.

It is worth noting that L(*βΛ) = f){L*(%):i ^ n} and KDC =
P | {/,*($/): / < ω}. This result can be generalized as follows:

Theorem 3.7 Let C be a class of finite, generated, functional frames. Then
the following three conditions are equivalent:

(i) L*(C) is normal.
(ii) For all n, if<$n E C, then L*(C) c L(%).

(iii) For all n, if<$n E C, then for all i ^ n, L*(C) c L*(%).

Proof: Let C be any class of finite, generated, functional frames.
(i) => (ii): Suppose that L*(C) is normal. Take any *βΛ E C. Assume that

(1) AGL*(C);
(2) AίL(φΛ).

It will be enough to derive a contradiction. By (2), there is some / such that
0 < i'"^ n and

(3) AίI(W.

Since n - i ^ 0, the notation D ^ A is meaningful; and it is clear from (3) that

(4) DΛ-'"A £/,»($,,).

But by (1) and —this is where the assumption of normality comes in —some num-
ber of applications of the rule of necessitation, DΛ~7A E L*(C). That tyn E C
implies that L*(C) c /,•($„), and so DΛ"'A E L*(φπ), contradicting (4).

(ii) =» (iii): Obvious.
(iii) => (i): Assume condition (iii). Suppose that

(1) AGL*(C).

Take any g E C. If § is totally functional, then from (1) it follows by Corol-
lary 3.6 that DA E L*($). If, on the other hand, % is partially functional, then
there is some n such that % = *βΛ. If n = 0, then it is trivial that DA E £*($)>
for L(̂ Po) i s the Inconsistent Logic. If n > 0, then π — 1 exists, and by con-
dition (iii) L*(C) c £•($„_!). Therefore A E LS J C(^_1), which implies that
DA E /,*($„); for ^3w_j is isomorphic to tyj,. Thus in any case DA E L*(C),
so L*(C) is normal. QED

Many results in normal modal logic have counterparts in quasi-normal
modal logic. As the difference between normal and quasi-normal has to do with
validity and not with truth at a point in a model, proofs can often be taken over
with little or no change. We will now discuss some that are of special interest
to us.

Proposition 3.8 Let 2Jϊ be a distinguishable model based on a frame % that
either is finite or else is the omega frame ω. Then, for every logic L, L <Ξ
TK{m) onlyifL^L*(%).
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Proof: This result is a variation of Proposition 1.9 and Proposition 2.1. QED

Theorem 3.9 For every quasi-normal extension Q of KDC there is a class C
of nonempty, finite, generated, functional frames such that Q = L*(C).

Proof: If Q is the Inconsistant Logic, then Q = L*(0). Therefore suppose that
Q is a consistent quasi-normal extension of KDC. Suppose that A £ Q. It will
be enough to exhibit a finite frame % such that A ί £*($) and Q <Ξ L*(g).
Assume that Q U {~Ά} is inconsistent in XDC. Then there would be some
B o , . . . ,B m _! E Q such that ->(B0 Λ . . . Λ Bm_! Λ -IA) G AZ>C. AS Q extends
KDC, and quasi-normal logics admit truth-functional reasoning, we conclude
that A e β ; which contradicts our assumption. Consequently, Q U {~>A} is con-
sistent in KDC. By Lindenbaum's Lemma there is a maximal KDC -consistent set
x such that A £ x. Now x is a member of Sftjr/v the canonical model for KDC.
Let 3Dΐ be the submodel of TIKDC generated by x. Then it is true to say that
Q c L*(30ΐ) but A ί L*(9Dΐ). But 2tt is certainly distinguishable. Moreover,
because of the syntactic strength of KDC, 9J? is functional and hence, being gen-
erated, is based either on a nonempty, finite frame or on ω. In either case,
Proposition 3.8 is applicable, and we conclude that Q <Ξ L*($), where g is the
frame of 3Dί.

If g is finite, our task is complete. Therefore assume g is not finite. Then
% = ω. But from Lemma 1.1 and Corollary 3.6 we infer that Q c
Π {£*(£*,/): k i= 0 & / > 0} and A £ f| {£„(£*,/): A: ̂  0 & / > 0}. Conse-
quently, there must be some k ^ 0 and / > 0 such that Q c L * ^ /) and A ^
^*(ϊ*,/). ' QED

Corollary 3.10 Every extension of {CH)χ is normal. In particular, every
extension of KD\ is normal.

Proof: By Theorem 3.9, if (CH)X c Q, then there is a class C of finite, gener-
ated, functional frames such that Q = L*(C). Since by assumption DOT G Q,
for all / > 0, it is clear that every nonempty member of C either is totally func-
tional or else is %. Therefore, by Corollary 3.6 and Lemma 3.3, Q is normal.

QED

The following result is perhaps surprising:

Theorem 3.11 The n-th normal slice, Sn, contains all quasi-normal logics
between (CH)n andL{^n).

Proof: Let Q be any quasi-normal logic such that (CH)n Q Q c L(tyn). By
Theorem 3.9, there is a class of finite, generated, functional frames such that
Q = L*(C). Let k be any number, and suppose that ^k G C. As (CH)n c Q,
we have D'OT E Q, for all / ̂  n. It follows from Lemma 3.1 that k < n. By
Lemma 1.5, then, L(tyk) 3 L(^n). A s β c L(φ Λ ), we conclude that Q c
L(φ^). By Theorem 3.7, this shows that Q is normal. QED

We will now generalize the notion, introduced in Section 2, of a normal
slice. First we define, for each class K of nonempty, generated, partially func-
tional (and hence finite) frames, a function/^ on the set So of normal exten-
sions of KD\:
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MD =dfLΠL*(K).

The range fκ is called the slice determined by K, and we denote it by Sκ. This
terminology well agrees with that laid down in Section 2, for the n-th normal
slice coincides with the slice determined by the class {%•: 0 < i:^ n}; and, as we
saw in Theorem 3.11, this slice contains only normal logics and therefore must
be said to have earned its name of normal. Note in particular that So in the old
notation is identical to S0 in the new. In what follows, let us agree to use K,
possibly superscripted, as a parameter over nonempty classes of generated, par-
tially functional (hence finite) frames.

Lemma 3.12 K^Kf if and only if U(K) Ώ U{K').

Proof: The only-if-part is trivial. For the if-part, suppose that ^n E K — K\ for
some n > 0. Since n — 1 exists, Ώn~ιOT is a formula and, by Corollary 3.2, is
a thesis of U{K') but not of L*(K). QED

Corollary 3.13 If K Φ K\ then L*(K) Φ U{K').

Corollary 3.14 If K Φ K\ then Sκ Φ Sκ>.

Proof: Recall that L(0) is the Inconsistent Logic. Clearly, fK(L(0)) =
L(0) Π U(K) = U(K) and/^(L(0)) = L(0) Π L+(K') = L^(Kf) are the
strongest logics in Sκ and Sκ>, respectively. The result then follows from Corol-
lary 3.13. QED

Corollary 3.15 There are nondenumerably many nonnormal extensions of
KDC.

Proof: By Corollary 3.13 there are nondenumerably many quasi-normal exten-
sions of KDC. In Section 2 we established that KDC has only denumerably many
normal extensions. QED

Next we will embark on an analysis of the system of slices which will gener-
alize that of the normal slice system in Section 2.

Lemma 3.16 Suppose that K is finite. Then, for all L, L E So, ifL^L'
then ML) £ ML).

Proof: Let K be finite and suppose that L and L are normal extensions of KDl.
Assume that A G l - L ' . Since K is finite, either K is empty or else there is a
greatest number m > 0 such that tym G K. In either case, Πm± E L*{K). From
this and the fact that L is normal it follows that the formula A v Πm J_ is a the-
sis of ML) =LΠ L*(K) but not of fκ{L) = L Π L*(K). QED

Lemma 3.17 IfK£K\ then, for all L, L E So, fκ(L) -$.fκ\L).

Proof: Suppose that K£K''. Then there is some m > 0 such that φ m E K - K'.
Consequently, by Corollary 3.2, D^^OT is a thesis of L*(K') but not of
L*{K). Let L and L be any normal extension of KDl. Then D^^OT is a thesis
of fκ>(L') = L Π U(K') but not of fκ{L) =LΠ L*(K). QED

We are now able to prove that, just as the normal slice system partitions
the class of all normal extensions of KDCi so the general slice system partitions
the class of all extensions of KDC.
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Theorem 3.18 Every extension of KDC belongs to a unique slice.

Proof: Uniqueness: Suppose that some logic belongs to slices Sκ and Sκ>. Then
there must be some logics L, L G So such thdXfκ{L) = fκ(L'). By Lemma
3.17, twice applied, K = K''.

Existence: Let Q be any extension of KDC. By Theorem 3.9 there is some
class C of nonempty, finite, generated, functional frames such that Q = L*(C).
Let C+ and C~ be the classes of totally functional and partially functional
frames in C, respectively. Then Q = L*(C+) Π L*(C~). By Corollary 3.6,
L*(C+) is a normal extension of KD\. Consequently, Q =fc-(L*{C+)), and
so Q belongs to the slice determined by C~. QED

The following two theorems settle the internal structure of each slice:

Theorem 3.19 Every slice determined by a finite class is isomorphic to So.

Proof: Suppose that K is finite. Then/^ is one-to-one, by Lemma 3.16; onto
Sκ, by definition of fκ\ and order-preserving both ways by the same kind of
argument as in the proof of Theorem 2.11. QED

Theorem 3.20 Every slice determined by an infinite class is a singleton, the
only element of which is a logic between KDC and KD\.

Proof: Suppose that K is infinite. First we establish the second part of the the-
orem. That KDC c L*(K) needs no proof. Take any A <£ KD\. Then A fails in
some model on ω. Since K is infinite, it contains arbitrarily large, finite, gen-
erated, partially functional frames. Pick any <βw E K where m ^ deg A. It is
easy to see that A ζέ L*(̂ }3m), and so A φ. L*(AΓ). Thus we have shown that
L*(K) g KDL The first part of the theorem is a consequence of this result, for
now we may infer that fκ(L) =LΠ L*(K) = L*(#), for every L G So. QED

The relationship between logics in different slices is settled by the follow-
ing two theorems:

Theorem 3.21 Suppose that K is finite. Then, for all L, L G So, fκ(L) c
fK'{Lf) if and only if L c U andK^K'.

Proof: The if-part follows from Lemma 3.12, the only-if-part from Lemmas
3.16 and 3.17. QED

Theorem 3.22 Suppose that K is infinite. Then, for all L, L G So, fκ(L) £
fK'{U) ifandonlyifK^K'.

Proof: If K is infinite, then, by Theorem 3.20, L*{K) c KD\. This means that
ML) ^fK'(L') iff L Π L+(K) c L Π U(K') iff L+(K) c L+(K') iff, by
Lemma 3.12, K 2 K'. QED

We have reached the end of our investigation. The puzzles mentioned at
the beginning of this section have been given an explanation by being put into
perspective. Complexity unfortunately makes it too difficult to represent the
insights gained in a final chart that could replace Fig. 4. Nevertheless, the last
several theorems, together with Lemmas 1.5 and 1.6, can be used to answer any
question about the structure of the set of extensions of KDC.

Perhaps the following final remarks will also be of some help. For any
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L G So, let us define the finite-class stratum determined by L as the set
{fκ{L): K is finite} and the infinite-class stratum as the set of logics occurring
in any slice determined by an infinite class. Then every extension of KDC

belongs to a unique stratum. Anyone who would like to try to draw an improved
chart should contemplate the following facts, the proofs of which are left to the
reader: Every finite-class stratum is isomorphic with the lattice of co-finite sets
of numbers; the infinite-class stratum is isomorphic with the lattice of co-infinite
sets of natural numbers; and the set of logics between KDC and KD\ is iso-
morphic with the lattice of all sets of natural numbers.
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