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Full Satisfaction Classes: A Survey

HENRYK KOTLARSKI

Abstract We give a survey (with no proofs) of the theory of full satisfac-
tion classes for models of Peano Arithmetic.

Arithmetize the language LP A of Peano Arithmetic (PA). Let M t= PA. By a
full satisfaction class for M we mean a subset S Q SentM (the set of sentences in
the sense of M) which satisfies the usual conditions on truth given by Tarski, i.e.

(i) If φ is of the form Sm0 + S*0 = Sr0 then φ E S iff m + k = r.
(ii) The same for other atomic formulas,

(iii) (-ι<ρ) G S iff φ £ S for each sentence φ.
(iv) (φ &φ)GS iff both φ, φ are in S.
(v) (3vkφ) E S iff <p(SmO) E S for some m.

Think of this as follows: S is just the notion of truth for all sentences in the
sense of M, including nonstandard ones. Robinson [16] was the first to treat se-
riously the nonabsoluteness of the finiteness in the very definitions of the lan-
guage. The notion of a full satisfaction class was defined explicitly by Krajewski
[11], who proved the following nonuniqueness result.

Theorem 1 (Krajewski [11]) There exists M, a model of PA, which has many
different satisfaction classes. To be more specific, ifS0 is a full satisfaction class
for a countable M so that (M, 50) is recursively saturated then So has 2*° auto-
morphic images, i.e.

{S c M: 3g E Aut(M) S = g * So]

is of power continuum.

The idea of the proof of Krajewski's result is to apply the countable version
of the Chang-Makkai Theorem (cf. Schlipf [17]). In order to verify the assump-
tion, use Tarski's Theorem on Undefinability of Truth.

After having shown that the nonstandard language determined by an M1=
PA does not have uniquely determined semantics, the question arises: for which
models M of PA does there exist such a semantics? That is, which models ad-
mit a full satisfaction class?
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Theorem 2 (Kotlarski, Krajewski, Lachlan [8]) Every countable and recur-
sively saturated model M of PA admits a full satisfaction class.

Theorem 3 (Lachlan [13]) If MY PA, M is nonstandard and admits a full
satisfaction class, then M is recursively saturated.

We comment on these results. We say that a full satisfaction class S for M
is Σn-inductive if (M, S) satisfies induction for Σn formulas in LPA U [S]. Lach-
lan's result (i.e., Theorem 3) is obvious under the stronger assumption that
M admits a Σγ-inductive satisfaction class. To see why this is so, note that if
p(v9 b) is a recursive type in the variable υ and parameter b G M, we represent
it in PA and hence are able to argue as follows:

Vλ: G J\ί(M, S) 1= IMφ <k[φGp=* S(φ; v, b)].

By Σλ induction, this holds for some k > J\ί. Then the v granted by this formula
realizes p because its elements are standard. Elimination of Σi induction from
the above argument requires an ingenious trick (see [13]).

For Theorem 2, define the following system of ω-logic. Let Γo be the set
of all true atomic and negated false atomic sentences, and all sentences of the
form -\φ v φ. We let ΓΛ+1 = the set of all sentences in M which may be derived
from sentences of Yn by a single application of one of the rules of the predicate
calculus or by a single application of the ω-rule:

infer η v Vz^(z) from all sentences η v φ(SzO).

Then one can express the notion of Γn in PA (indeed, the function n -• Tn is
primitive recursive).

Let Λi be the disjunction of copies of the sentence 0 = 0 with the following
distribution of parentheses: Ao is (0 = 0), Ai+χ is (Aj v Aj). The main lemma for
Theorem 2 is:

Lemma 4 For each k there exists m so that -^Tk(Am).

(This is intuitively obvious for clearly there is no other way to derive Afs
than to first check that ΓoMo) holds, then derive A\ from Ao, etc., so the
greater m is the greater k must be. However, a precise proof of this requires some
work. It is nontrivial to show that there is no essentially simpler proof of all the
^4/'s, say in five steps.)

Granted this, we see that for m G M\J\ί, M V -iTk(Am) for all k. Thus, it
suffices to prove the following lemma.

Lemma 5 IfM is a countable recursively saturated model of PA and φGM
is such that

VA:GeWMI=-.I\(-i<p),

then there exists a full satisfaction class for M making φ true.

(This is proved much like the Completeness Theorem. The ω-rule is essen-
tial to choose constants.)

It should be noticed that this method allows us to construct an S for M mak-
ing all the axioms of PA true (all in the sense of M, so including nonstandard
instances of the induction scheme), but, as we shall see later, the existence of an
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S making all the theorems of PA true requires more than mere recursive satu-
ration of M.

As we have seen, the heart of the matter in Theorem 2 was to prove that deri-
vations of v4/'s needed many steps. Questions of this sort were studied also by
Czech mathematicians; see Krajicek [12] and references in his paper.

The natural question whether the countability assumption is essential in The-
orem 2 and Lemma 5 was settled by Smith ([18] and [20]). His result is as follows:

Theorem 6 Kaufmann's model has no full satisfaction class.

Kaufmann [1] constructed ωi-like recursively saturated models Mfor PA
with the property of being "rather classless", i.e.

if X c M is such that vZ? G M XΠ <bis (coded) in M then X is definable
with parameters in M.

See also Schmerl [21] for more in this direction. Once again, it is quite easy
to see that Kaufmann's model has no full Σj-inductive satisfaction class. In
Smith's result, eliminating induction requires a lot of work to ensure that only
the standard Tar ski conditions on truth are used.

Ratajczyk [15] studied satisfaction classes from the point of view of parti-
tion properties, in the Paris-Harrington style. Let us state his result.

Definition (in PA). c is a sequence of n + max indiscernibles for φ iff
(i) c is an increasing sequence

(ii) vbucub2,c2 subsequences of c if lh(bχ) = n = lh(b2) and lh(cγ) =
max(6i) & lh(c2) = max(62) then [φ(bγ Π Cγ)**φ(b2 Π c2)].

Here φ is a formula in one free variable; bλ Π cλ and b2 Π c2 are parameters.
Consider the sentences

Vbχ3Cι vZ?w3cw[&/<w[c/ is an increasing sequence and 6, < min(c/)

andZ?/< ifi(Cj)]

& [&/<m_i max(c# ) < min(c/+1)]

& [c\ Π Π cm is a sequence n + max — indiscernible for φ]}.

Denote these sentences

ί d - ^ ( m <«) Λ + Π U B l .

Denote

ω _ ^ (m* < ω)nJhmax

the scheme

ω —• (nϊ < ω) , φ £ ΔQ.

Theorem 7 If Mis α countable recursively saturated model of PA then M ad-
mits a full inductive satisfaction class iff

V/w,ΛGcNMhω ^ ( m * < ω ) Λ + m a \

Ratajczyk (in the same paper [14]) gave also a combinatorial sentence φ, in
the Paris-Harrington style, such that φ is independent from the theory PA(S),
i.e. PA + S is a full inductive satisfaction class. Let me state his result. Define
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(in PA) a finite set X to be k-large if there exist sets Xx Xk such that X =
Xx U U Xk and max( Λ}) < min(Λ}+i) and minCΛ̂  ) < card(Λi), / < k. Write
Aί ~τ+ (k)er+max if for every partition P: [M] -M-+r there exists a Jt-large // g
M and c < A* so that for each increasing sequence a Π b Q H with lh(a) = e,
lh(b) = max(tf) we have P(α Π ί ) = c.

Theorem 8 (again [14])
(i) vfc, r,eGcN PA(S) h 3 M M - ^ (£)* + m a x

(ii) ίΛe combinatorial principle Vk, r, e IMM -^> (k)e

r

+max is independent from
PA(S).

Krajewski's Nonuniqueness Theorem (i.e. Theorem 1) was strengthened by
Kossak [2]. Let us recall that Krajewski obtained continuum many distinct au-
tomorphic images of a single S, provided that (M, S) is countable and recursively
saturated. Call two satisfaction classes Sχ,S2 for M isomorphic (elementarily
equivalent) if Sx is an automorphic image of S2((M, Sx) and (M, S2) satisfy the
same theory in LPA U {S}). Kossak's results are stated below.

Theorem 9 If a countable nonstandard M admits an inductive full satisfac-
tion class then
(i) it admits continuum many nonelementarily equivalent inductive full satisfac-

tion classes
(ii) it admits continuum many elementarily equivalent but nonisomorphic satis-

faction classes.

Kossak's proofs use the fact that some results obtained originally for mod-
els of PA work for models for PA(S) as well.

In Kotlarski [6] I considered models for the theory Δo - PA(5) = PA + S
is a full satisfaction class + induction for bounded formulas in L P A U {S}. The
first result is as follows.

Theorem 10 [6] Δo - PA(S) is finitely axiomatizable. One of the axiomati-
zations is PA~ + S is a full satisfaction class + V<p[(PA + φ) =» S(φ)].

Let us recall that in Theorem 2 we were able to obtain a full satisfaction class
making all the axioms of PA true whenever M was countable and recursively sat-
urated. Theorem 10 shows in particular that the existence of S making all the the-
orems of PA true requires not just that M be recursively saturated. In addition
Mmust satisfy some theory stronger than PA. Indeed, S(0 = 1) cannot hold, so
PA h 0 = 1 cannot hold in M, i.e. Mmust think that PA is consistent.

In order to specify the theory we are speaking about we change the system
of ω-logic described in the comments to Theorem 2. In that system, the use of
each rule increased the complexity of the proof. Now we work with the system
in which only the use of the ω-rule increases the complexity of the proof. The
definition is as follows. Define formulas Tn G LPA by the following induction.

Γ 0 (^) i sPA|-^

ΓΛ+i/2(*>) is "φ is of the form η v Vzψ(z) and VzΓπ(iy v ψ(SzO))".

Tn+ι(φ) is "there exists a proof of φ from PA U [ψ: Tn+ι/2(ψ)}".
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Theorem 11 [6] If M is countable and recursively saturated then M admits
a full A0-inductive satisfaction class iff VAZ E J\ί M N ~ |Γπ(0 = 1).

On the other hand, we have the following result.

Theorem 12 The theory Δo - PA(S) + ξ/S(Γ, (0 = 1)) is consistent. Indeed,
if a countable nonstandard model M of PA admits an S so that (M, S) \= Δo -
PA(S), then M admits also an S so that (M, S) t= Δo - PA(S) + 3/S(Γ, (0 =
D).

Theorem 12 was obtained in [6] with the use of the usual method of Gόdel
using diagonalization. Later, I realized that one of the model-theoretic construc-
tions of Section 4 of that paper allows one to obtain Theorem 12 with no di-
agonalization.

Thus, there arises the following problem: what conditions should be imposed
on the theory of Min order to ensure that (if Mis countable and recursively sat-
urated) M admits a Σn -inductive full satisfaction class? This question was solved
by Ratajczyk and myself ([9] and [10]). In order to state the results, we define
the transfinite iterations of ω-logic. Fix a "natural" system of notations for or-
dinals < e0 in PA; this is given by the Cantor Normal Form Theorem for ordi-
nals < e0. We define by transfinite induction on a < e0 theories Ta and Γ". We
put T° = PA and Γ§ = PA. Γ£ are defined as previously, i.e. Γg(^) is Ta h φ,
ΓS+1/2M is

"φ is of the form η v Vzψ(z) and VzΓ£(r? v ψ(z))",

Γ«+1 (φ) is Γ« U Γ«+1/2 h φ. Finally

Ta+ι = TaU ( - i Γ £ ( 0 = l):n]

and Tλ = (Ja<\ Ta for λ limit.
There is a well-known trick (using the Recursion Theorem) which allows us

to formalize this definition in PA.
Define, for an ordinal a, the sequence ωm(a) by putting ωo(a) = α,

ωw+i(α) = ωω / w ( α ) (ordinal exponentiation).

Theorem 13 Fix a natural number m. Then for any countable and recursively
saturated model M of PA, M admits a full Σm-inductive satisfaction class iff

v£ecJ\fMI=-.Γ£"' (* )(0= 1).

Corollary 14 If MY PA is countable and recursively saturated, then M ad-
mits a full inductive satisfaction class iff

VΛGeMM t=iΓ^(O= 1).

Here ωn = ωn(ω) is the natural sequence convergent to eo
Corollary 14 follows from Theorem 13 immediately. The proof of Theorem

13 is in two steps. In the first step, we prove that if Mis a countable recursively
saturated model of PA + consistency of sufficiently much of this ω-logic, then
Mhas an S so that (M, S) (= Δo — PA(5) and some rapidly growing functions
are total. In the second step, we prove that if (M, S) 1= Δo - PA(S) + totality
of these functions, then M admits also a Σm-inductive full satisfaction class. We
stress that the ideas come much more from the theory of models for PA rather
than Proof Theory.
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In [10] we extended the methods to obtain a proof theoretic description of
the strength of the existence of a full inductive satisfaction class.

Theorem 15 If Mis a countable recursively saturated model of PA, then M
admits an S so that (M, S) \= Σm - PA(5) iff

Vk G eJ\ί M N transfinite induction over eωmik).

Similarly, we have the following result.

Corollary 16 If Mis a countable and recursively saturated model of PA, then
M has a full inductive satisfaction class iff

VA: E el\( M1= transfinite induction over eω/c.

Once again, the methods used to prove Theorem 15 and Corollary 16 are
model-theoretic. We did not use the Cut Elimination Theorem.

There were some applications of a bit weaker notion, that of a partial satis-
faction class, to study recursively saturated models for PA. Thus in [3] and
Kossak and Schmerl [5] an α^-like recursively saturated rigid model for PA was
constructed using partial satisfaction classes. But, the most interesting applica-
tions of partial satisfaction classes are due to Schmerl [21]. Also, Smith ([18] and
[19]) gives interesting applications of full satisfaction classes to recursively sat-
urated and resplendent models.

Another survey of satisfaction classes is due to Murawski [14], who mentions
other applications.
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