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Abstract It is shown that of the results of de Jongh-Montagna (Provable
fixed points, Zeitschrift fur Mathematische Logik und Grundlagen der
Mathematik, 1988) on provable fixed points in PA at least the positive part
can be obtained for the system of bounded arithmetic of Wilkie and Paris
(On the scheme of induction for bounded arithmetic formulas, Annals of
Pure and Applied Logic, 1987). The methods used include use of a weaken-
ing of the scheme of Sigma-completeness due to A. Visser (this volume)
which is valid for bounded arithmetic. The results imply that the results on
shortenings of proofs due to Parikh (Existence and feasibility in arithmetic,
The Journal of Symbolic Logic, 1971) apply to bounded arithmetic.

/ Introductionι This work should be considered as part of the general in-
vestigation into the arithmetical system 7Δ0 + Ωi. We will present a refinement
to 7Δ0 + Ωi of a result stated in de Jongh and Montagna [4] on witness compar-
ison formulas having only provable fixed points in PA.

Briefly, let us introduce the arithmetical system and some of its properties:
7Δ0 + Ωi (cf. Paris and Wilkie [7]) is a set of axioms expressing the elementary
arithmetic properties of the basic symbols 0, ' , + , * , < (in the following we will
refer to the obvious first-order language containing these symbols as 5) together
with the bounded induction schema 7Δ0 (defined in S):

vx9z(φ(χ,θ) ΛVJ;< z.(φ(χ*y) - φ(χ,y')) - vy < zφ(χ,z)) (<P e Δo)

plus the S-sentence Ω! expressing Vxly.ωι(x) = y, where ωι(x) :=χW and | - |
is the length function for the binary representation of x.

We note that by the following result of Verbrugge [10]:

If NP Φ CO-NP then

l//Δo+ΩlvZ>,c(3tf(Prf(a,C)ΛVZ<C iPrf(z,b))
-> Pr( Γ3tfPrf(a, c) A \/Z < α-iPrf(z, b)π))

Received October 2, 1990; revised July 8, 1991



PROVABLE FIXED POINTS 563

it seems highly unlikely that the principle of Σι-completeness, i.e.,

φ-+Pr(rφ'Ί) forφGΣu

is provable in 7Δ0 + Ωi However, it can be shown that 7Δ0 + Ωj proves Svej-
dar'sprinciple (cf. Svejdar [9]): i.e.,

bΔo+Ω1Pr(Γ^"1) -> P r ( r 3 * ( P r f ( a , r y i ) A VZ < a ^Prf(z,Γφ~1)) - Φn)
(for all φ9φ)

(cf. Verbrugge [10]) and Visser's principle (cf. Visser [11])

H/Ao+o,Pr( Γ C(5) - s ' π ) - Pr( V π )

where C(S) = /& {s -> Pr( " V ) : 5 e S.}, S is a finite set of Σ^sentences, and 5'
is a Σι -sentence.

In [7], Buss [1], and [10] ample motivation for the general study of 7Δ0 + Ωi
is given. Therefore, we will turn our attention here directly to the more specific
aim of this paper.

In Parikh [6] it is shown that for each primitive recursive function g, there
is a Σj-sentence s such that hpA s and

^(μz.PrfP A(z,ΓPrP A(Γ5π)" 1)) < μz.PrfPA(z,Γsn). (*)

In [4] Parikh's result is analyzed in the modal context R (cf. Guaspari and
Solovay [5]) when g is the identity function; a simpler proof is presented, based
on the fact that (*) has only provable fixed points. Furthermore, a characteriza-
tion is given for pairs of modal formulas B(p) and C(p) such that for each
arithmetical interpretation *, if \-FAp*++ (ΠB(p) < ΠC(p))*, then \-PAP* '
ΠB(p) < ΠC(p) has only provable fixed points in PA. In de Jongh and Mon-
tagna [3] the result is extended to arbitrary g which are provably recursive in PA.

Our aim is to refine the positive part of the proof of [4], the part in which
it is shown that the formulas specified do indeed have only provable fixed points
in PA, to a weaker modal system in which the Σ-completeness axiom (i.e., the
corresponding modal version of the Σx -completeness principle) does not hold.

In Section 3, it is shown that the modal version (V) of Visser's principle play-
ing the role of a weak version of Σ-completeness suffices to obtain the refined
theorem we are looking for.

What is provable in the weak modal system including (V) is clearly provable
in 7Δ0 + Ωi under every arithmetical interpretation; therefore, it follows that PA
has no witness comparison formulas having only provable fixed points which the
system 7Δ0 + Ωj does not already have.

Based on the result obtained in Section 3, in Section 4 we present the inde-
pendence between (V) and the modal version (Sv) of Svejdar's principle (see Defi-
nitions 2.1(c) and (b)). In particular we give a counterexample to show that (Sv)
does not imply (V), which gives an insight to understand why Svejdar's schema
cannot play much of a role in the study of formulas having only provable fixed
points.

In the appendix we give some proofs, mainly due to Visser [11], of modal
principles derivable from Visser's principle.
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2 Modal systems and Kripke semantics In this section we will briefly in-
troduce the modal systems that we are going to work with, together with the as-
sociated Kripke semantics.

Formulas of our system are built up from propositional atoms using the
Boolean connectives Λ, V, - I , ->,<-•, T,J_,a unary modality D, and binary wit-
ness comparisons <, <, where < and < are applicable only to those formulas
having D as principal connective. The following definition will introduce the list
of modal systems.

Definition 2.1
(a) B~(Basic System) is the modal system L (Prl in Smoryήski [8] (including its

rules: modus ponens and necessitation) to which the following order axioms
are added (see de Jongh [2]):
(01) ΠA -> (ΠA < ΠBvΠB < ΠA)
(02) ΠA < UB -> ΠA
(03) ΠA < ΠBAΠB< ΠC^ΠA < DC

(04) ΠA < ΠB++(ΠA < ΠBΛ-I(ΠB< ΠA))

(b) Z~ (cf. Svejdar [9]) is the system B~ plus Svejdar's schema:

(Sv) ΠA -• D (ΠB < ΠA -> B) for all formulas A, B

(c) BV~ is the system B~ plus Visser's schema:

(V) Π(C(S)^s')-+Πs'

where C(S) = /A[s-+Πs:sE S], 5 is a finite set of Σ-formulas, and s' is
a Σ-formula. A Σ-formula is in this context a formula in the closure of the
set of D-formulas, <-formulas, and <-formulas under Λ and v.

(d) B, BV, Z are respectively the system B~9 BV~, and Z " with the rule ΠE, i.e.
ΠA/A added.

Let A(p) be some formula of B of the form ΠB(p) < ΠC(p). As in [4] we
take BC~, BVC~9 and ZC~ to be the systems B~, BV~, and Z", respectively,
plus the axiom c++A(c) (analogous notation is used for the systems B9 BV,
and Z). Since a different system is defined for different choice of A it would be
more appropriate to name the systems BC(A)~, BVC{A)~, and ZC(A)~. But,
as it will always be clear in the sequel which formula A is intended, we will re-
frain from doing so, in order not to unnecessarily complicate the notation.

Definition 2.2 A model for B~ is a finite, tree-ordered Kripke-model for L
in which witness comparison formulas are treated as atomic formulas and in
which every instance of (01)-(04) is forced at each node.

Definition 2.3 Models for BV~, Z~ are Kripke-models for B~ where, re-
spectively, (V), (Sv) is forced at each node.

It is appropriate to remark that, just as is pointed out in [10] for the system Z~,
also for BV~ the forcing for witness comparison formulas in BV~-Kripke-
models is not persistent, i.e. it does not necessary hold that if j Ih ΠA < ΠB
(resp. j Ih ΠA < ΠB) and jRk then k Ih ΠA < ΠB (resp. k Ih ΠA < ΠB).

No modal-completeness theorem or even a general extension lemma has been
established for BV(for Z, Svejdar did establish these in [9]).
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3 Witness comparison formulas having only provable fixed points in BV
Theorem 3.3 of [4] reads:

IfB(p) and C(p) are L-formulas (i.e. do not contain witness comparisons),
possibly containingpropositional variables other thanp, thenΛ(p) = UB(p) <
ΠC(p) has only provable fixed points in R iff
(i) \-LB(T)
(ii) h/,D+(D£(±) -• DC(±)) -+ D* + 1 ±,/or some k (where Π+D abbreviates

DAΠD).

Our aim is to obtain a characterization for a witness comparison formula to have
only provable fixed points in BV. The result presented in this section constitutes
a refinement of the theorem proved by de Jongh and Montagna; the proof that
we present is syntactical and based on a different approach characterized by the
proof of the following theorem:

Theorem 3.1 Let B(p) and C(p) be L-formulas. If

(i) \-LB(T)
(ii) \-LU+(ΏB(i.) -+ DC(-L)) -• D*+1_L, for some k9 thenA(p) = UB(p) <

ΏC(p) has only provable fixed points in BV.

Some preparatory lemmas are needed. In the following we assume that (i)
and (ii) of Theorem 3.1 hold, the systems BC~, BVC~, and BVC refer to the
A (p) of this theorem. Some results already proved by Visser (cf. [4]) for his prin-
ciple and used in the proof of the following lemmas are given in the appendix.

Lemma 3.2 h β C - Π + " I ^ - > Π*+1-L.

Proof:
1. ha-D-ic-* D(c^_L)

-> D + ( ( D £ ( C ) < - > D £ ( J _ ) ) Λ ( D C ( C ) ~ D C ( J - ) ) )

-> (Π+(ΠB(c) -+ DC(c)) -• Πk+ι±) (by (ii) and the
Substitution Lemma (cf. Smoryήski [8]))

2. \-BC-R+^c-> Π+(ΠB(c) -+ DC(c)) (by obvious properties of <)
3. VBC-n+-^c-+ Uk+ιL (by 1 and 2).

Lemma 3.3 \-LΏc-+ ΏB(c).

Proof:
1. VLc-+B(T) (by(i))
2. \-LΠc-+ΠB(T)
3. \-LΏc-+Π(c~T)
4. VLΏc^ΏB(c) (by 2 and 3).

Lemma 3.4 \-LΠ+c^> Π+B(c).

Proof:
1. \-Lc-+B(T) (by(i))
2. \-LΠ+c-+Π+B(T)
3. \-LΠ+c-+ Π+(c^T)

-> (Π+B(c)~Π+B(T))
4. \-LΠ+c-+Π+B(c) (by 2 and 3).
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Lemma 3.5 VLUk+ιL -» ( D C ( 1 ) ->B(±)).

Proof: We claim that, if \-LΠ+(ΠB -• DC) -> D ^ - L , then hz,D*+1± -•
(DC-> 2?), where 5, C are arbitrary Z-formulas. For suppose not, then a model
M exists such that M N D + ( ΠB-+ DC) -* D*+1JL and wlh D* + 1 JL Λ DC, w \\f B,
for some node w in M. Take the submodel of M generated by w and add a
tail of nodes below w of such a length that the new model gets a root x of
level greater than or equal to k + 1 (end nodes are counted as having level 0).
Clearly none of the nodes added below w can force ΠB but all of them force
Π+(ΠB -• DC). By hypothesis, x Ih D*+1-L and this gives a contradiction,
which proves our claim

By the claim and (ii) it follows that: h ^ D ^ 1 JL -> (DC(±) -> B( ±)).

Lemma 3.6 h 5 C Π + " 1 c ^ D+,B(c).

Proof:
1. h L D + π c ^ ( D C ( c ) ^ D C ( l ) ) Λ ( B ( c ) ^ ( l ) )

2. h^c-O"^"1^-^ (DC(c)->5(c)) (by Lemmas 3.2 and 3.5)
3. ^c-" 1 ^ -* (ΠB(c) -+ DC(c)) (by obvious properties of <)
4. \-BC-Π+-ic^ (ΠB(c) ^B(c)) (by 2 and 3)
5. \-BC-n+-ic^Π(ΠB(c)-+B(c))

-> ΠB(c) (by formalized Lob)
6. -+B(c) (by 4).

Lemma 3.7 h θ r D D i 4 v ΠΠB^ Π(Π+(ΠA < ΠB)v Π+(ΠB < ΠA)).

Proof:
1. DD^vDD^-^ D(D^ < ΠBvΠB< ΠA)

-* D((O4 < D5-^D(D^ < D 5 ) Λ ( D 5 < ΠA ->
D(DB< Di4))) ^ (D + (D^ < D5)vD + (D5< Dv4)))

-^ D(D+(D,4 < ΠB)vΠ+(ΠB< ΠA)) (by (V)).

Corollary 3.8 VBV-ΠA v ΠB -+ Π (ΠA < ΠB -> D (ΠA < ΠB)).

Proof: Trivial.

We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1:

1. VBVC-ΠΠB(c) -> D(D + (D5(c) < DC(c)) v D + (DC(c)<D£(c))
(by Lemma 3.7)

2. \-BVC-ΠΠB(c)-+Π(Π+cv Π + -ic) (by the fixed point equation of c)
3. I-BKC-ΠΠ^(^) -> QB(c) (by Lemmas 3.4 and 3.6)

4. h^κc-ΠΠ^(^) (by formalized Lob)
5. \-BVC-Π(Π+cvΠ + -ic) (by 2 and 4)
6. h * κ c - Π ( Π * + 1 c v D * + 1 ± ) (by Lemma 3.2)

7. h Λ F C -D* + 2 c
8. h β F C c (by ΠE).

The refinement that we were looking for is an immediate consequence of
Theorem 3.1:
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Theorem 3.9 Let B(p) and C(p) be L-formulas; then A(p) = ΠB(p) <
ΠC(p) has only provable fixed points in BV iff
(i) \-LB(T)

(ii) \-LΠ+(ΠB(±) -+ ΠC(±)) ^ Πk+1 ±, for some k.

Proof: (=>) If c is a fixed point for A(p) then KBKCC> therefore \-RQC and by
Lemma 2.3 in [4] \-R-Π+(c++A(c)) -> Πk+ιc for some k. Now apply Theorem
3.3 in de Jongh-Montagna [4].

(«=) by Theorem 3.1.

By Theorems 3.10 and 3.3 (cf. [4]) it follows that the formulas of the form
A(p) Ξ= ΠB(p) < ΠC(p) having only provable fixed points in R are exactly the
formulas having only provable fixed points in BV. In other words, to obtain the
formulas having only provable fixed points we do not need the strong Σ-com-
pleteness schema (i.e., A -> ΠA, for every Σ-formula A) but we can replace it
by the weaker (V).

Although Theorem 3.10 is formulated with iff one should note that, unlike
with R and PA, A{p) s ΠB(p) < ΠC(p) having only provable fixed points in
7Δ0 + Ωi for all arithmetical interpretations does not imply that A(p) has only
provable fixed points in BV, since arithmetic completeness even of L is unknown
for 7Δ0 + Ωi (see [10]). At the present, Theorem 3.10 does imply that each for-
mula of R having only provable fixed points in PA has only provable fixed points
in 7Δ0 + Ω! when arithmetical interpretations are restricted to sentences. The re-
striction to sentences is essential; otherwise Visser's principle loses its validity (see
[Π]).

4 Independence of Visser's and Svejdar's schemas As already announced
in the introduction, it can be shown that 7Δ0 + Ω! proves Svejdar's principle. Be-
cause the principle appears as a weak version of the Σ-completeness axiom it may
be of some interest to study its relations with Visser's principle: in this section
we will prove the independence of the two principles.

First of all we show that Svejdar's schema does not imply Visser's schema,
i.e. \tz (V). To prove that, consider the formula Π3p < Π2p having only prov-
able fixed points in R, as proved in [4]. By Theorem 3.10 it follows that this
formula has only provable fixed points in BV. On the other hand,2 note that
Π3p < Π2p cannot have only provable fixed points in Z, because by Svejdar's
essential reflexivity interpretation of ΠA < BB as "there exists a proof of A
using axioms with smaller Gόdel numbers than in any proof of B" (cf. [9]) that
would mean that for the fixed point c in PA, D 2c would have a proof in PA
using axioms with smaller Gδdel numbers than any proof of Ώc would use. This
is impossible because being a provable Σ-sentence, Πc would not need any but
the axioms of Q and we could take those as the zero base of our interpretation.
This proves our claim.

At this point it may be of interest to remark that the formula Ώ2p < Πp has
only provable fixed points in Z.

The following argument is due to Visser: in BC~ it is provable that D2c->
D (Πc < D 2c v D 2c < Πc). Thus, in ZC~, D2c-> Πc is provable, from which
with Lob in ZC, immediately c follows. Under the same arithmetical interpre-
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tation used in the previous argument, the result is not very surprising: it is well
known that there are theorems provable in PA and not in ζλ From these obser-
vations we can see that Svejdar's schema can by itself hardly be useful in study-
ing formulas having only provable fixed points in /Δo + Ω\. Recall also that in
the proof of Theorem 3.10, the schema (Sv) is not used.

To obtain our second claim, that Visser's schema does not imply Svejdar's
schema (i.e., VBV (Sv)), it is enough to exhibit a countermodel of BVto the for-
mula Ώp -+ D (Πq < Πp^q) (i.e., an instance of (Sv) where/? and q are prop-
ositional variables).3

Let A be the formula Ώp -> Π(Πq < Πp -> q) and consider the A -sound
model <{ 1,2,3,... },R, lh> shown in Figure 1, where the forcing relation is re-
stricted to subformulas of A, and where E and F stand for Up < Πq and Πq <
Πp respectively.

From the forcing relation indicated in the figure, note that: 2 does not force
p or q\ 4 does not force p or E -> ΏE, but does force F-+ ΠF; for kR5 and
k = 5, k does not force p9 q, E, F, but does force E -> Dif and F^> ΠF. In par-
ticular, note that 4 does not satisfy Ώp-* Π (Πq < Πp^>q).

Observe that the role of Node 1 is crucial to obtain a model forcing all the
instances of Visser's principle; consider the formula D -ιp and suppose that
Node 1 did not exist. It is easy to check that 6 \\f Π ((E -> ΏE) -* Π-i/?) ->
DD-i/λ

terminal nodes

P>F ® 1 2β>F 3® p,F

5 s*/ 4 1 q,E

6 i

7 '

8 "

9

Figure 1.
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We claim that under a suitable forcing extension given to the model, every
instantiation of Visser's principle holds on the model. Before giving the proce-
dure to define the appropriate forcing relation, let us fix some notation and
definition that will be used in the sequel. We write P to denote the set of all prop-
ositional variables except/? and q; S° for [p,q,Up,Uq,Up < Uq, Uq < Up,
Uq < Up, Up < Uq}; S2m+ι to denote the closure of S2m U Punder the prop-
ositional connectives and D (obviously P is effective only when m = 0); S2m+2

for S2m+ι U {UA < UB, UA < UB | UA, UB E S2m+ι}.

Definition 4.1 Let k, kr nodes of <{ 1,2,3,... },i?,lh>; we write:
UA <k UB iff afc' {(k'Rk or k' = k) and k' Ih UA and k' 11/ UB)
UA <k UB iff k Ih UA and v£' (if {k'Rk or k' = k) and k' Ih UB

thenfc'lhDΛ).

Here is the procedure to construct the forcing relation:
stage 0: for all r E P fix k\h r iff k\Vp for all nodes A:
stage 2m + 7; automatically and uniquely define a forcing relation for all

members of the closure S2m+ι

stage 2m + 2: call (as in de Jongh [2]) a boxed formula UA old if UA E
S2m and «<?w if UA E 5 2 w + 1 \S2 / W. To give an extension of the forcing relation
to s2m+2, it is enough to define the forcing on witness comparison formulas
UA < UB and UA < UB (belonging to S2m+2) for UA and D£ both new, UA
old and UB new, and for UA new and UB old. Before giving the way to con-
struct the forcing let us recall two definitions occurring in de Jongh [2] :

(i) k Ih UA < UB iff UA <k UB or, UA <k UB and UA old, UB new
(ii) k Ih UA < UB iff UA <k UB or, UA <k UB and D£ new.

We are now ready to present the procedure, to repeat for all nodes k. Here it is:

like {1,2,3,4,5} and 5 Ih UA and 5 \\f UB, then let k Ih UA < UB and
A:lhDv4 < UB.

Otherwise, fix the forcing on UA < UB, UB < UA, UA < UB and UB <
UA as defined in (i) and (ii), respectively.

Apply the procedure repeatedly (i.e. for all m E N) so as to cover all formu-
las, and call the resulting model M.

Note that Nodes 1 and 3 satisfy the same formulas since they are always
treated alike by the construction.

Claim 1 VsEΣ. 5 \\-s => λ:lhs where k E {1,2,4}

Proof: Suppose s E Σ and 5 Ih s; by cases:
s ΞΞ UB: by the previous observation Nodes 1 and 3 force the same formu-

las, therefore the claim;
s = UB < DC: by stage 2m + 2 of construction and definition (i);
s s UB < DC: by definition (ii) on stage 2m + 2 of construction;
s = "Boolean combination of Σ-formulas": by the previous cases.

Using Claim 1 and Definition 4.1, it is easy to check that stage 2m + 2 ex-
cludes the existence of two boxed formulas UA,UB for which UA < UB and
UB < UA are both forced at Node 4.
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Claim 2 5 Ih C( S) for all finite sets S of Σ-formulas.

Proof: Straightforward from Claim 1.

Claim 3 (Persistency property) Let ΠA,ΠB be two boxed formulas such
that at least one of them is new at some stage m>\\

if (k Ih UA < UB and kRk') then k' Ih UA < UB and
if (k Ih UA < UB and kRkf) then k' Ih UA < ΏB.

Proof: Immediate from the forcing procedure and the following consequences
of Definition 4.1:

if (UA <k UB and kRk') then UA <k> UB and
if (UA <£ UB and kRkf) then UA <k> UB,

Note that the only witness comparison formulas that do not satisfy the per-
sistency property are E and F (see the definition of forcing at Nodes 3 and 4).

Claim 4 All instances of Visser's schema are forced in each node of M.

Proof: Obviously Nodes 1, 2, 3 satisfy the claim. Moreover, notice that Visser's
principle is always satisfied at level 1 in any Kripke model since each C(S) is al-
ways satisfied at terminal nodes. Therefore, 4 and 5 satisfy the claim. By induc-
tion we check the tail of points k:

k = 6: suppose there exist C(S) and s' such that 6 \\f Us' and VA: (if 6Rk
then k Ih C(S) -• s'); it follows that ih (6Rh and h \\f s' and h \\f C(S)); but
k Ih C(S) for k G (1,2,3,5) therefore h must be 4. By Claim 1 we get a con-
tradiction.

k + 1: (with k + 1 > 6) assume the claim holding for all h such that k+\Rh
and suppose there exist C(S) and s' such that k+lV Us' and VΛ (if k + \Rh
then h Ih C(S) -> sf); it follows that 3h (k + \Rh and h \\f s' and h 11/ C(S));
this node must be k since, by induction hypothesis, every instance of Visser's
schema holds at k, so k Ih Us'. Therefore k \\f C(S)9 i.e. for some s E S, k Ih s
but k \\f Us. By cases:

s = UB: k Ih Us, a contradiction;
s1 ΞΞ Π5 < DC: k Ih D2* and 5 can be neither p nor q since Dp and D*? are

not forced at any node kR6. Therefore by Claim 3, the forcing on wit-
ness comparison formulas must be persistent and this gives a con-
tradiction.

s = UB < DC: similar to the previous case;
s = "Boolean combination of Σ-formulas": by the previous cases.

To show that M is a model for BFit suffices to prove the following

Claim 5 For all formulas A,
ifMtΠA thenM\=A,

Proof: Trivial.
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NOTES

1. Prerequisites: the reader should be familiar with Smoryήski [8]; knowledge of [4] also
will be helpful.

2. The argument was suggested to the author by F. Montagna.

3. Observe that VBv - Q4 -+ DD (D2? < ΠA -» B), for all formulas A,B. The proof
is an immediate consequence of Lemma 3.7.
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Appendix: Some theorems proved by Visser's principle In [11] the follow-
ing theorems, proved using the principle (V), are pointed out:

(VI) DWS->OWS+

(V2) Π(ΠA^>WS)ΛΠ(ψS+->A)->aA
(V3) a(C(S)-*(A^s'))-+ΠA->Πs'
(V4) D(C(S)->(Ds'-> s/))-*αs',

where Sis a finite set of S-formulas, C(S) = /k [s-> Ώs:s E S], S+ = (SΛ Ds:
sG S] and s' a Σ-formula.

We will give the proof of them in the modal system BV~:

(VI):
1. DWS->Π(C(S)-+WΠ+S)
2. D(C(S)->WD+S)->D(WΠ+S) (by(V))
3. DWS^ D(WΠ+S) (by land 2)

(V2):
1. D(DΛ->WS)-> D(DD/4-^DWS)

-» D(DDyl^D(WΠ + S)) ((by (VI))
2. D(WΠ+S->,4)->D(DW[I]+S->D.4)
3. D(Dy4-^ WS)ΛD(WΠ+S^/4) -» D(DD/4-*D^) (by 1 and 2)

-» D OA (by formalized Lob)
-> DS
^ D ( W Π + S ) (by (VI))

(V3):

1. D(C(S)-*(y4-^5'))^ D(>4-»(C(S)-»ί'))
-»• Dv4->D(C(S)^ s')
->ΠA^> Πs' (by (V))

(V4):
1. D(C(S)^(Ds'-*s')) -> D(D(C(S)->(Ds'->s')))

-*D(αD5'-»Dί') (by(V3))
-»• D Ώs' (by formalized Lob)
-* D(C(S)-Ds')
-+Π(C(S)->s')
- Os' (by (V)).




