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Polymorphism and Apartness
DAVID CHARLES McCARTY

Abstract Using traditional intuitionistic concepts such as apartness and sub-
countability, we give a relatively simple and direct construction of a natural,
set-theoretic model for the second-order polymorphic lambda calculus, a
model distinct from that of the modest sets.

1 Introduction The concept of apartness is an intuitionistic “positivization”
of the classical notion of inequality between real numbers. In classical mathe-
matics, every set has an apartness defined over it: apartness and inequality co-
incide. Intuitionistically, things can be very different —it is consistent with the
full intutionistic set theory IZF to assume that every apartness space is subcount-
able, i.e., a quotient of a set of natural numbers. What follows almost imme-
diately from this is a relatively simple and direct set-theoretic construction of a
natural model for the second-order polymorphic lambda calculus PA.

Working within the Kleene realizability universe V(K/) for set theory, we
construct a small category C of sets which allow apartness and which, thanks to
the presence of local axioms of choice, constitute a natural model of PA. This
affords us another clear indication of the mathematical advantages of intuitionis-
tic over classical metamathematics: using classical metamathematics, Reynolds
(in [27]) has shown that, on pain of violating Cantor’s uncountability theorems,
there can be no natural set-theoretic models of P\.

Our construction is one of a number of intuitionistic models for P\ (cf. Pitts
[24], Longo and Moggi [16]). The most popular of these is constructed over the
category of realizability-valued modest sets JM. The model € of the present pa-
per is distinct from that of modest sets: we prove that C is a proper subcategory
of &M in that the set of objects of the former is a proper subset of that of the lat-
ter. Second —and more importantly —our model construction does not leave one
with a faulty impression that has been fostered, we think, by the details of the
mathematics of ;M: that the existence of models of the polymorphic lambda cal-

Received February 13, 1990; revised January 4, 1991



514 DAVID CHARLES McCARTY

culus is conceptually (perhaps even logically) tied to Church’s Thesis and related
computability axioms such as ECT. By contrast, our construction is provably
independent of such computability axioms over the natural numbers. The con-
struction calls for pure set-theoretic devices only, such as local choice principles,
which are reasonably familiar to the constructive mathematician.

2 The polymorphic lambda calculus and its models For purposes of ori-
entation, we begin from a survey of the syntax and elementary theory of the poly-
morphic A calculus. For more information, the reader is advised to consult either
Bruce and Meyer [6], Fortune et al. [8], or Reynolds [26].

2.1 Polymorphism and impredicativity P\ is the standard second-order
polymorphic lambda calculus, elements of which are described in [26] and [6].
(In broad outline, our exposition follows the latter.) In short, P\ extends the or-
dinary typed lambda calculus: one adds type parameters and a higher-order
variable-binder A which can be applied to arbitrary lambda expressions. If ¢ is
a type variable and M is a term, then

At.M

is a new, higher-order term. Under the intuitive semantics, the term A¢. M de-
notes a function which will accept arbitrary types as inputs and yield suitably
typed functions as outputs. To keep faith with the insight of traditional typed
lambda calculus, Az. M itself has a type. If « is the type symbol assigned to M,
then

At.a

names the type of Az. M. Intuitively, Az.« ought to be a “large product type”:
the space of all functions which select, for each type ¢, an element of « (¢).

Along with the extension of the concept of variable abstraction, we also ex-
tend its “inverse operation”, the notion of application. It makes sense, in PA,
to apply the term At. M to any suitable type expression, since its intuitive seman-
tics is that of a function which has the entire collection of types as its domain.
Indeed, we can be fully impredicative in making applications: we apply Az. M to
its own type: the term

At. M(At.«a)

makes perfect sense even though, as a function, Az. M is a member of its type
At.a and so “ought not” be able to take it as an input value.

For computer scientists, a prime motive for concern with polymorphic terms
and the A operator is a desire to study, in “clean” formal environments, inter-
nal mock-ups of constructs from programming languages such as Ada and Clu.
Such languages seem to permit the creation of generic routines —ones allowing
types to be passed as parameters. Logicians have been concerned with higher-
order lambda terms in their attempts to provide systems of higher-order construc-
tive arithmetic with functional interpretations. Historically, interest in P\ derives,
in logic, from results in the thesis of Girard [9]; in computer science, two sem-
inal investigations of polymorphism have been [24] and Milner [22].
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2.2 Basic syntax To be more precise about the formal syntax of P\, take
Vr to be an infinite collection of (second-order) type variables. Over these vari-
ables, we define the set TE of type expressions as follows:

Definition 2.2.1 The set TE of type expressions over Vr is the least collec-
tion such that

(1) Vr < TE and

2) if cand 7 € TE and t € Vr, then 6 » 7 and At.c € TE.

We are now in a position to define the set NE of second-order lambda expres-
sions. Let V) be an infinite set of first-order variables.

Definition 2.2.2 The set AE of second-order lambda expressions is the least

set such that

(1) ¥\, S \E and

Q) if M,N€E \NE, x € W, 0 € TE and t € Vr, then all of (MN), M[o],\x €
o.M and At.M are members of \E.

The concepts of freedom of a variable occurrence, of freeness of a term for
a variable occurrence and of substitution of a term for a variable occurrence are
defined as usual.

Following [6], we assume that the variables of V) do not “come with type la-
bels attached”. Instead, we use syntactic type assignments B to label free vari-
ables in lambda expressions for purposes of type checking. Given a syntactic type
assignment B—a finite function from a subset of V) into the set 7E of type
expressions —one can readily set down decidable conditions by which correct and
incorrect typings of a term can be discriminated. The reader may consult [6] on
the precise nature of these conditions.

We move now to the axioms and rules which constitute the pure theory PA.

2.3 Pure theory

2.3.1 Axioms We assume that for each axiom of the form ¢ = 7, 0 and 7 are
both correctly typed with respect to an implicit syntactic type assignment B. The
axioms of P\ are all instances of the equalities «;, §;, and 5; for i = 1,2.

a; AXEoa.M=\y€o.[y/x]Mif yis free for x in M and y is not free in M.
oy At.M = Au.[u/t1M if u is free for ¢ in M and u is not free in M.

B1 (Ax€a.M)N = [N/xIM if N is free for x in M.

B, (At.M)[p] = [p/t]M if p is free for ¢ in M.

71 AX € 0.(Mx) = M if x is not free in M.

1y At.(M[t]) = M if tis not free in M.

2.3.2 Rules of inference Once again the rules are given with respect to an
implicit type assignment B. We assume that the terms M, N, P, and Q are from
AE while v € TE.

I.N=M,N=P+M=P
2. M=N, P=QF (MP) = (NQ)
3. M=NFM[y] = N[y]
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4 M=NFNxEyY.M=Ax€E~v.Nand
5. M=NFAx.M = Ax.N.

Finally, we can speak intelligibly of \ theories:

Definition 2.3.3 A \ theory in the second-order polymorphic lambda calcu-
lus is a set of equations among terms of A\E which is type consistent (in that there
is a type assignment B such that all expressions occurring in terms of the set are
coherently typed by B), contains all instances of the axioms of P\, and is closed
under P\’s inference rules.

2.4 Interpreting polymorphic terms We do not pretend to give a general
definition of “model of P\”; for that —and for further discussion— the reader
can consult one of [6], [16], or [26]. We have extracted from these articles the
concept of natural structure for P\.

Definition 2.4.1 Let C be a small category which is a full subcategory of the
category 8 of sets and such that there are canonical choices in C for exponen-
tial = and for the product II taken over the set G, of all objects of C. Hence,
= is a function from Cy X €, into €, such that 4 = B is obtained precisely as
in 8. Similarly, II is a function from C, = C, into C, such that IT(F) is obtained
precisely as in 8. Any such small category C we call a natural structure for P\.

Once we have said what it is for a category € to be a structure for P\, we
can spell out how the terms of the language of P\ are to be interpreted over such
a structure. We must start by assigning an interpretation to each type expression
in TE. (N.B. That one needs canonical choices for the exponentiation and prod-
uct operations ought to be obvious from the following.)

Definition 2.4.2 Let C be a natural structure for P\ and let  be a type en-
vironment, a function from the set of type variables V7 into the set C,. To ob-
tain the type interpretation T,,, we proceed recursively on the structure of a type
expression as follows, where = and II are the canonical exponentiation and prod-
uct functions, respectively.

(1) for t € Vp, T, () = (1),

() T,(y—=p) =T, (y) = T,(p).

(3) T,(At.y) =II(N\d € C(.T, [d/t] (v)).

As is standard in “referential semantic clauses” for bound variables, n[d/f]
is the type environment that agrees with n on all type variables except possibly
t, in which case

n[d/t]1(t) =d.

Clearly, the definition of T, is successful in that, for any type expression 7,
er(’Y) € eO'

There are certain extra details that must appear as preliminary to the assign-
ment of denotata to terms in NE. We must be very careful so that the denota-
tion assigned to a first-order term 7 agrees with the denotation assigned to the
second-order type expression that has been associated syntactically to 7 by the
type assignment B. All that care converges on the definition of a global B-
environment:



POLYMORPHISM AND APARTNESS 517

Definition 2.4.3 Let B be a syntactic type assignment. A N\-environment for
B is a function p such that

e:Vi— U x
x€Co
(p assigns to each \ variable a putative denotation, an element of some type in
C.) To ensure that this assignment is compatible with B, with define a global B-
environment to be a pair

{(m,p)

where

® 7 is a type environment —as defined above —and
® pis a A-environment for B with the property that, for all variables in the
domain of B, p(x) € T,(B(x)).

To put it bluntly, if p is the second component of a global B-environment
with 7 as first component, then the items assigned to first-order variables by p
must belong to the types already assigned by the composition of B with the
semantic type assignment determined by 7.

Next, we extend the assignment p to all terms in the expected way:

Definition 2.4.4 Let e = (7, p) be a global B-environment. The denotation
map Mp . is defined by recursion on the A expressions. We assume that all the
terms under consideration are properly typed relative to B.

(1) Mpe(x) =p(x) for x € W

@) Mg, (MN)) = Mg, o (M) (Mp, o (N))

(3) Mg (Ax € v.M) =Nd € T, (v).Mg easx) (M)

4) Mp(M[v]) = Mp (M)(T, (7))

(5) J“B’E(At.M) = )\d (S eo.d“B*,e*[d/t] (M).

B*, e[d/x], and e*[d/t] are variant syntactic type assignments and global B or
B*-environments, respectively. Details on these functions and the conditions on
them are to be had from [6].

It is nothing more than a quick inductive check to see that the assignment
Mg, remains compatible with the composition of T, and B:

Lemma 2.4.5 If B is a syntactic type assignment and e = {n, p) is a global
B-environment and the denotation function Mp . is defined as above, then for
each lambda expression M,

Mp, (M) € T, (B(M))

wherein B(M) is the syntactic assignment to M determined by B.

2.5 A soundness theorem At last, we can turn to evaluating over a struc-
ture the axioms and rules of PA. As one ought to expect, all the axioms of P\
come out true when interpreted in C, provided that we give = its “naive” inter-
pretation —as straightforward set-theoretic equality in C. Also, all of the infer-
ence rules of P\ preserve truth in C.



518 DAVID CHARLES McCARTY

Definition 2.5.1 Let C be a natural structure for PA.
(1) We say that

CF7=0[B,e]

or that C satisfies ¢ = 7 or that ¢ = 7 is true in C with respect to syntactic
type assignment B and global B-environment e, if and only if

Mg, (7) = Mp ((0).

2. Then, 7 = o is valid in @€ whenever 7 = ¢ is true in € for all (suitable) B and e.
3. Lastly, if C is a natural structure for P\ and if the collection of all equali-
ties valid in C constitutes a A theory, then C is a model of PA.

Theorem 2.5.2 (Soundness) Let C be a natural structure for P\. If 6 = 7 is
an instance of an axiom of P\, then o = 7 is valid in C. Also, if B and e are a
suitable type assignment and global B-environment, respectively, then if ® |- ¥
is an inference rule of P\ and the equalities of ® are true in C with respect to B
and e, then so are all the equalities of V.

Proof: First, since the formal equality sign of P\ is interpreted as “actual equal-
ity” in © and since formal application and abstraction are interpreted as func-
tional application and abstraction, respectively, it is clear that the rules of P\
preserve truth. As for the axioms, first-order axioms such as o are true in C—
their truth conditions coincide with those of the axioms of the original first-
order typed A calculus.

It remains only to consider the essentially second-order axioms: for B a syn-
tactic type assignment and e a global B-environment, the truth of 3,:

(At M) [p] = (p/t}M
in C reduces to an instance of the substitution principle:
{T,(p)/dYMp~ ex(ap) (M) = Mg .({p/t }M).

Expressions such as ‘{p/¢}’ stand for the obvious syntactic substitution opera-
tions. This principle of substitution is proved, in turn, via induction on the com-
plexity of term M.

We can verify Axiom 7, as follows. Assume that ¢ is not free in the AE term
M. Then, for suitable B and e,

Mp, (AL M[t]) = Nd € CocMp~, e*1asy) (M[2])
= Nd € CodMp= er1a/e) (M) [Ty ()]
=Nd € CoMp~, e*(a/r1 (M[d])
= Mp (M), since ¢ is not free in M.
The reader is referred to [6] for further details.

Corollary 2.5.3 If C is any natural structure for P\, then C is a model of P\.

3 Reynold’s theorem The highlight of [27] is a proof that there are no nat-
ural models of PA. As is readily discerned (cf. [24]), Reynold’s proof is not in-
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tuitionistically correct as it stands nor can it be easily converted into an
intuitionistic proof. Sadly, there is only one nonconstructive step in the argument
and it appears in the final sentence. At that stage, Reynolds has just shown that,
if @ is a natural structure for P, then there are nontrivial objects 4 and B €
Cy such that (A = B) = B is in one-to-one correspondence with A. In the last
sentence, he argues that, as these sets (A = B) = B and A “are well-known to
have different cardinalities, we have a contradiction” ([27], p. 155). He concludes
that there are no natural structures for PA.

All this is classically correct but the statement in italics is not intuitionisti-
cally “well known”. In fact, it is intuitionistically false. With all manner of tech-
niques, it is possible to construct nontrivial fixed points for functors such as
(X = B) = Bin models for intuitionistic set theory (cf. McCarty [18] for one type
of construction). The category C which we are about to describe, the category
of w stable subpartitions of w which allow apartness, will include many such fixed
points.

4 Apartness spaces Apartness is a subrelation of the inequality relation on
a set from which “positive” constructive information can be extracted in the
course of mathematical reasoning. The concept was first devised by Brouwer [5]
for use in analysis as a constructive “positivization” of the relation of inequal-
ity between real numbers. Two real numbers, represented by Cauchy sequences,
are unequal when it is not the case that the sequences are mutually convergent.
As Brouwer realized, “negative facts” such as inequality claims are (relatively
speaking) informationally inert. In other words, there is relatively little in the way
of constructive information that one can glean from them. By contrast, he said
that two real numbers stand in the apartness relation when there is some posi-
tive information about their separation, in particular, when there is a rational
number which separates the terms of the sequences cofinally. The apartness con-
cept was applied by Brouwer’s student and colleague Heyting ([12] and [13]) to
algebra and geometry. In each case, apartness played the role of an intuitionis-
tic “positive analogue” to the strictly negative concept of the nonidentity of el-
ements in an algebraic structure.

In truth, there are a number of apartness concepts. The one we define here
is known as “strict apartness”.

4.1 Definitions

Definition 4.1.1 A pair (A, #) is an apartness space whenever it satisfies the
four conditions

(1) # a binary relation on 4

R)yx=yecAiff -x#y

(3) if x # y then, for any z € A, either x # z or y # z, and

(4) if x # y then y # x.

Note 4.1.2 The background theory for our discussion of apartness will be one
of the standard extensional constructive set theories such as IZF, intuitionistic
Zermelo-Fraenkel. We will describe IZF following the definition of the Kleene
realizability structure V(K/). Because of the treatment of = in these theories, we
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can assume that each set 4 has a “built-in” extensional equality x =y € A de-
fined on it.

Definition 4.1.3 A set A admits apartness whenever there is a relation # such
that (A, #) is an apartness space. More generally, A4 is said to allow apartness
whenever equality on A is stable and it is not impossible (——) that A admits
apartness. The category of apartness spaces APS is the full subcategory of the
category 8 of all sets and set-functions in which each object is a set that allows
apartness.

Note 4.1.4 If a set A admits apartness, then equality on 4 must be stable or
closed under =, i.e., the statement

Va,be A(n—a=b—-a=0D>D)

is intuitionistically true. That equality on A is stable does not seem to follow from
the essentially weaker assumption that it is not impossible that A admit apart-
ness. At most, one can show that equality on A is “almost stable”:

aavx, yEA(Cx=y-o>x=Y).

Stability of equality is required for the construction of the natural structure C
which we are about to give. Therefore, stability is explicitly included in the def-
inition of allowing apartness.

Classically, apartness collapses into mere negation: every classical set 4 has
the relation —x = y € A4 as an apartness on it. Consequently, the classical sets
which allow apartness can only comprise a proper class; classically, APS is the
category of sets itself. A fortiori, there can be no limit on the cardinality of a
classical apartness space. Intuitionistically, things are very different. Brouwer was
able to give a “weak counterexample” to the claim that every two unequal reals
are apart: he showed by intuitionistic means that, if the claim holds, then the gen-
eral law of the excluded third would be valid. But more is true —as we shall see:
the sets which allow apartness are definitely limited in cardinality, so much so
that the category of such sets is equivalent to a certain small category.

The differences between the classical and the intuitionistic versions are not
marked, however, in the next two propositions, each of which holds either clas-
sically or constructively.

4.2 Properties of apartness spaces

Proposition 4.2.1 APS is closed under subsets, function spaces, and arbitrary
products— products indexed over any set whatsoever.

Proof: This is nothing more than a simple check. Every subset of a set which
allows apartness inherits an allowed apartness. Next, if (A4,#) is an apartness
space and B is any set, it is readily checked that the following definition of R
specifies an apartness on the collection of functions from B to A:

fRg iff, for some b € B, f(D) # g(b).

Lastly, an analogous definition will specify an apartness suitable to the product
of an arbitrary collection of sets, each of which allows apartness.
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Any category that is closed under products and equalizers is closed under ar-
bitrary limits and, hence, is complete. Any category that includes suitable prod-
ucts and exponential objects and has a terminal object is said to be cartesian
closed (cf. Schubert [29]). We now know that

Corollary 4.2.2 APS is Cartesian-closed and complete.
Proof: See [29].

Notably, APS cannot be cocomplete, at least if we cleave to intuitionistic
strictures. To use Brouwerian terminology, the statement that APS is cocomplete
has a weak counterexample. We can show that, if it is true, then so is a plainly
nonintuitionistic principle of mathematical reasoning.

Definition 4.2.3 A stable quotient on a set A is an equivalence relation R on
A such that R is closed under ——. That is, for any x and y from A4,

——xRy = xRy
is intuitionistically true.
Theorem 4.2.4 The statements that APS is closed under arbitrary sums and

that APS is closed under stable quotients each imply the general validity of non-
constructure principles of mathematics.

Proof: Let the principle of near testability be the claim
Ve (¢ v ).

That near testability fails of constructive correctness is clear; for one thing, the
Kleene realizability structure “V(KI) (v.i.) is a countermodel of it. The realiz-
ability of near testability would imply the classical solvability of the general halt-
ing problem.

Let ® be the set of propositions ¢ and let P be the set

{{0:¢):9 € @}.

For purposes of this proof, we will refer to the set {0: @} as ‘¢.” Note that, since
some propositions are true and others false, & € P and {0} € P. Assume that
P allows apartness #. From the definition of apartness relation, it follows im-
mediately that

——Q # {0}
and, hence, that
Ve ER(p# OV # D).
This is just to say that
TVe(Td v 11d),

which is the principle of near testability.
Now, the disjoint sum of singletons {0},

> (0},

xXEP
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each of which admits the empty apartness relation, is in one-to-one correspon-
dence with P. Therefore, if APS were closed under arbitrary sums, then near
testability would hold.

To obtain a weak counterexample for the second statement —that sets which
allow apartness are closed under stable quotients —we first define a stable quo-
tient on the set of natural numbers and show that the quotient set will allow
apartness only if

avn(¢(n) v 1 é(n)).

This is a nonconstructive instance of the principle of near testability. The truth
of this in V(K/7) would also imply the solvability of the halting problem.
For each natural number n, let ¢(n) be a proposition and define

n ~ m if and only if —¢(n) e —¢(m).

This quotient is clearly stable. Without loss of generality, we may assume that
¢(0) holds but ¢(1) does not.

If we now assume that the resultant quotient set allows an apartness #, it then
follows that

"an#men(ng(n) e né(m)).
Also, we know that
-0 # 1,
It now follows from the properties of apartness that
—=vn(0#nvl1#n).
By the definition of the quotient, we then have that
2vn(=¢(n) v 7é(n)).

Obviously, the set w of natural numbers allows apartness but the quotient
of w determined by ~ does not. Therefore, allowing apartness is not preserved
by taking stable quotients.

We now know that APS, as a category, is not constructively cocomplete:
APS is not closed under coproducts even where the index set itself admits
apartness.

5 Subcountability in the realizability universe

Definition 5.0.5 A set is subcountable when it is a quotient of a collection
of natural numbers.

Every collection of natural numbers is trivially subcountable. So, subcount-
ability cannot coincide, at least intutionistically, with countability, even if the
set in question has at least one element. For instance, if we look into the Kleene
realizability universe V(K/) for intuitionistic set theory (which we are about to
discuss), we see that the internal truth, in V(K/), of the claim that every inhab-
ited subcountable set is countable implies, among other things, that every prop-
erty of the natural numbers is recursively enumerable.
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5.1 A realizability universe

Definition 5.1.1 Let “V(K) be the Kleene number realizability universe as de-
fined either in Beeson [3] or in McCarty [17]. Briefly, the universe V(K7) itself —
as a domain for intuitionistic quantification —is the least fixed-point of the class
equation

X=0C(vXxXX)

wherein @ is the powerset operator and w is the standard set of natural numbers.
Roughly speaking, if 4 is a member of V(K/) (in other words, if A4 is a realiz-
ability set) and {(n,a) € A, we say that n realizes the fact that a € A or that n
is a realizability witness for a € A and write

nkFaegA.

Propositional combinations of set-theoretic formulas are interpreted over
V(KI) just as they were interpreted by Kleene in his original realizability article,
[15]. Unbounded set quantifiers receive a “null” or “generic” reading first intro-
duced by Kreisel and Troelstra in their realizability interpretation for second-
order arithmetic, cf. [32] and [33]. Finally, if ¢ is a sentence of set theory and
n realizes ¢, we say that V(K/) satisfies ¢ and write

V(KI) E ¢.
The set theory which holds sway over the Kleene realizability universe is IZF.

Definition 5.1.2 Intuitionistic Zermelo-Fraenkel set theory or IZF is a set the-
ory in the language of classical ZF and whose axioms are those of classical
Zermelo-Fraenkel formulated so as not to imply, in intuitionistic predicate logic,
the law of the excluded third.

Note 5.1.3 A full axiom of choice cannot be added to IZF, if we want to
avoid deriving the law of the excluded third, as the Scott-Diaconescu argument
shows (cf. Beeson [4]). Also, IZF is equiconsistent with classical ZF (cf. [17],
Grayson [10], or [4]).

The Kleene realizability universe is a model for IZF:

Theorem 5.1.4 V(KI) EIZF.
Proof: The argument is standard and is reported in full in [17], [3], and [4].

5.2 Subcountability and apartness In V(KI), APS is isomorphic to a small
category in virtue of the fact that V(K/) validates the principle SCAS (“Sub-
Countability of Apartness Spaces”), that every apartness space is subcountable.

SCAS is a direct generalization of the more familiar principles SCDS and
SCMS (for subcountability of Discrete and of Metric spaces), respectively, that
every set with decidable equality is subcountable and every metric space is sub-
countable.

Theorem 5.2.1 V(KI) E Every set which allows apartness is subcountable.
(This result, together with correlative results concerning SCDS and SCMS, first
appeared in McCarty [19]).
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Proof: We give a brief sketch; details abound in [19].

Assume that A is a realizability set of V(K/) which allows apartness. Let
n F a € A be the relation which defines membership for A internally. If we de-
fine B so that

nk{n,a) EBeonkFa€A,

then B is also a realizability set.
It is readily verified that B is, internally, functional —that

V(KI) E(n,ay EBA{n,bYyE B)—>a=b€EA.

To see this, first note that there is a partial recursive function I" such that, for
all internal @, b, and natural numbers n,m,ifnEa€ A, nEbE A, nEc€E A,
and m Fa # b, then I' (n, m) is defined and either

T'(n,m) =0AV(Kl)Fat#c
or
T(n,m)=1AV(KI)ED#c.

Working in V(K/), if we assume that (n, a) € B, that {n, b) € B, and that
mEa# b, then

nFa€eAAnEkEbeA.

If we replace c in the preceding paragraph by a, we see that I' (n, m) must be 1.
But, replacing ¢ by b, we find that ' (n, m) must be 0. Therefore, the assump-
tion that

mEa#b
is false, and, since equality is stable on A, V(KI) satisfies a = b.

With circumspection, we can conclude from this result on subcountability
that the category APS isomorphic to a particular small category, the category
of w stable subpartitions of w which allow apartness. Ordinarily, a subpartition
of w will be a set of pairs of natural numbers which comprise a partial equiva-
lence relation on w: as a relation-in-extension, the set of pairs is symmetric and
transitive. For our purposes, it is best to think of the pairs of the subpartition
as coded into individual natural numbers. So, we fix a primitive recursive pair-
ing and take Ax.x" and - to be fixed primitive recursive functions on the natu-
ral numbers. For each (coded) number pair {x, y),

Py =L{px):

x" hands you back the “reverse” of the pair coded by x. - acts on the primitive
recursive codes to effect relational composition:

(X, ) 4),2) =4x,2).
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Definition 5.2.2
(1) Aset A € wis w-stable iff vx € w(n—xEA—>x€EA).
(2) A is an w-stable subpartition of w just in case

* ACuw,

* VxEw(nxEA-XEA),

s Vv xeEAx"€ A and

s Vx,yEAXx-y€E A.

(3) The category € (our candidate for natural structure for PA) is the full sub-
category of 8 which has the collection of all w-stable subpartitions of « which
allow apartness as its set Gy of objects.

Corollary 5.2.3 In V(Kl), APS is isomorphic to the small category C.

Proof: We saw that in V(KI/) each set in APS is subcounted by a function Fj,
which is the obvious “internalization” of its realizability predicate:

Fy={nina)y:nkFaec A}.

The partitioned domain of F4 provides a member of C,. Specifically, for n,m €
w, we set {n,m) € Q4 just in case F4(n) = F4(m) € A. Q4 is clearly a parti-
tion(ing equivalence relation) on a subset of w. That it is w-stable follows directly
from the fact that = is stable on A. That it is isomorphic to 4 and allows apart-
ness is immediate.

6 Axioms of choice Before we can claim that € is a natural structure for
P, there is a small matter of the axiom of choice. Were we working within a
classical framework in which a global axiom of choice holds, no difficulty would
arise. From the above corollary, we might conclude directly that there are func-
tions = from Cy X Cg into €y and II from Cy = €, into €, which select specific
representatives of the exponential and product constructions — which we know
to exist from our earlier work. From the existential quantifiers hidden in the
statement that APS is isomorphic to C, we could use the axiom of choice to
“choose representatives” to fill the roles of canonical exponential objects and
products. As it happens, global choice is unavailable intuitionistically, as the
Scott-Diaconescu argument (presented in [4]) shows.

But all is not lost. In the intuitionistic setting, we can achieve the effect of
choice within the confines of the realizability universe for the sorts of sets we are
considering. In other words, we can show that, within V(K/), suitable choices
can be made locally, over the particular sets Cg and Cp = C,. To use Peter Ac-
zel’s terminology (from [1]), we prove that these sets are bases: they both sup-
port the realizability truth of local versions of the choice principle. When we
work over bases, then we can always choose suitable representatives.

6.1 Bases

Theorem 6.1.1 Where X is either Cy or Co = Cq and Y is any realizability
set, V(KI) satisfies the statement
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if Ix € Xvy € Y.®(x, y) then there is a function f: X = Y such that Vx €
X&(x, f(x)).

This is just another way of saying that Cy and C, = C, are both bases.

Proof: We begin with a technical lemma:

Lemma 6.1.2 Let A be a realizability set. Assume that there is a realizabil-
ity witness j € w, a partial recursive function I and a(n external) function f(x)
taking internal elements of A to internal elements of A such that,if mEa € A
and V(Kl), then

* I'(m) Fa=f(a),
e jEf(a) € A and
o V(KI)Ea=bonlyif f(a) = f(b) (as external sets).

Then A is, in V(Kl), a base.

Proof: Assume that the antecedent conditions of the lemma hold for 4 within
the realizability universe and assume that the antecedent of the choice principle
holds, namely, that

nkEvx € Aay.®(x,y).

If mFa € A, then—by assumption—I'(m) Fa = f(a) and j F f(a) € A. Given
the realizability interpretation of via, we know that there is a b such that
{n}(j) E®(f(a),b). Let O(n,j) be the partial recursive function {n} ().
At this stage, we can apply the axiom of choice in the metatheory. First, for
each internal member a of A, we choose as F(a) a realizability set such that
O(n,j) E®(f(a),F(a)). Second, we define the realizability set G to be

K0,{a, F(a)):3m.mEa € A)}.

Third, we check that G is an internal function and satisfies the conditions re-
quired to show that A is a base:

Assume that ¢ and b are internal elements of A and that k Fa = b, m E
{a,c) € G, and n F{b,d) € G. It follows that f(a) and f(b) are equal as exter-
nal sets and hence that g F ¢ = d, where ¢ is effectively and uniformly calcula-
ble from m and n. Therefore, G is an internal function. Assume further that
m Fa € A and that

nkvxe A3y.®(x,y).
As we have just seen, for b = F(a), 0 E{a,b) € G and
O(n,j) F®(f(a),b).

Since there is a function I'" such that I'(m) E a = f(a), there is a partial recur-
sive X(n, j, m) such that
L(n,j,m) E®(a,b).

We conclude that, under the conditions of the lemma, A is a base.
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[Returning to the proof of the main theorem.] It suffices to check that C, and
Gy = C, satisfy the antecedent conditions for being a base set down by the
lemma.

Assume that n F A € @. Let f(A) be the realizability set

Kk, ky:3m.mEk € A}.
It is readily seen that there is a partial recursive function I' such that
T'(n) EA = f(A).
Also, there is a fixed i € w—independent of A —such that
iEf(A) € C,.

Obviously, for 4 and B € 8, V(K!) E A = B iff f(A) = f(B) in the external
world. The lemma now entails that G is a base.

We turn at last to Cy = C. Let g € Cy = Cp. F(g) is defined to be the in-
ternal function

Km,(f(A), f(B)»:V(K]) Fg(A) =BamFAES].

Here, f is the external function carrying €, into itself which was defined above.
We have already seen that it fulfills the requirements of the lemma. It is straight-
forward to check that, regardless of g, there is a fixed j such that

jFF(g) EGO=GO.

Next, it is clear that, if V(K/) E g = h, then F(g) and F(h) are externally the
same.

Finally, suppose that m E g € Cq = C, and that n F (A, B) € g. Given the
properties of f, there is a partial recursive function ©(m, n) such that

O(m,n) E{A,B) € F(g).

For the converse, there is a partial recursive ¥ such that if {n,{ f(A), f(B))) €
F(g), then

Z(m,n) EC(f(A),f(B) € 8.

The conditions of the lemma are again satisfied and Cy = € is shown to be a
base.
Our proof that Cg is a natural structure for P\ is complete.

7 Relations with computability Because of the particular details of the
modest sets construction (cf. [16]), it has been suggested that there exists a log-
ical or intrinsic connection between the existence of natural structures for PA and
nonclassical computability axioms for the natural numbers. Specifically, crucial
properties of the category of modest sets seem to follow from the computabil-
ity axiom ECT,, or extended first-order Church’s Thesis. ECTj is the statement
that every function from an w-stable subset of w into w is Turing computable,
or, more precisely (and generally):

if S is w-stable and Vx € S3y € wo (X, y), then there is an index e such that,
for all x € S, {e} is defined on x and ¢(x,{e} (x)) holds.
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It is not difficult to see that the suggested logical connection does not exist.
If ECT, is involved in the intuitionistic fact that there are natural structures for
P\, that involvement does not amount to entailment. There are models V(G)
for intuitionistic set theory in which natural P\ structures exist but in which
ECT, fails.

7.1 Realizability over the graph model

Definition 7.1.1 G is the Scott-Plotkin “graph model” (Scott [30] and Plotkin
[25]) for the untyped A calculus, as described, e.g., in Barendegt [2]. In G each
subset X of w is treated as the set of codes of the graph of a ® (w)-continuous
partial function and application is interpreted as continuous function applica-
tion. V(Q) is the realizability universe constructed over G in complete analogy
with the method by which the Kleene universe was constructed over the natural
numbers.

In V(Q), realizability witnesses are, instead of natural number indices of Tur-
ing Machines, sets of natural numbers which “code” into their extensions the con-
cept of continuous function application. Over this model, we can locate natural
structures for the second-order polymorphic A calculus even though ECT,, fails
there.

Theorem 7.1.2 V(G) F ~ECT,.

Proof: Statements of elementary number theory are absolute with respect to
V(G). If ¢ is a sentence of first-order arithmetic, then

V(Q) k¢ if and only if ¢ is true.

This is proved by induction on the structure of ¢, making use of the fact that
every natural-number-valued function of natural numbers is representable in §
as a continuous function. Therefore, if V is a model of classical set theory and
V(G) has been constructed over V, then ECT) fails in both models.

Note 7.1.3 We need not adopt a classical metatheory in order to construct
a universe V to fulfill the requirements of the preceding theorem. We can con-
struct a model of classical mathematics even over V(K/) itself: intuitionistic
methods alone show that the universe of Heyting-valued sets with values taken
from the regular open subsets of the reals is Boolean and, hence, that classical
set theory holds there (cf. Grayson [11]).

7.2 Natural structures over the graph model
Theorem 7.2.1 V(G) EPN has a natural model.

Proof: If we follow the line of argument leading to our earlier conclusion that
the internal small category C is a natural structure for polymorphic lambda cal-
culus, we notice that nothing crucial depends upon the assumption that, in those
proofs, symbols such as ‘n’ and ‘m’ and such as ‘w’ refer to natural numbers and
to the set of natural numbers, respectively. All the mathematical tasks performed
by these symbols are still performed if we reinterpret them to refer to the mem-
bers of G and to G itself. We have only relied on the set of natural numbers as
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the domain of a suitable applicative structure over which realizability can be de-
fined. Any of a number of applicative structures would do equally well.

For example, assume that we are working within the universe V(G). Let Q
be the internal set

KX, X): X e G}

Q is our candidate for the G-analogue of the natural numbers. We say that a set
A is majorizable if there is a surjection from Q onto A. A is submajorizable if
there is a partial surjection from (a subset of) Q onto A.

Now, if we reinterpret reference to natural numbers as references to mem-
bers of G, then we can show —again, working within V(G) —that every set which
allows apartness is submajorizable. The argument is precisely that of our ear-
lier proof that, in “V(K/), every set which allows apartness is subcountable.

It remains to check that our results on bases and local axioms of choice con-
tinue to hold after a move into V(G). First, we note that the lemma spelling out
the conditions under which an internal set is a base remains true with respect to
V(G), provided again that we replace reference to natural numbers and partial
recursive functions with reference to members of the graph model and contin-
uous functions, respectively. Second, we can also prove that the category Sg is
a natural structure for P\ where Sg is the collection of Q-stable subpartitions of
Q which allow apartness. Just as above, the argument proceeds by applying the
lemma to 8g and showing that each such subpartition 4 can be identified with
a representative set

f(A) =X, X):3Y.YEX € A}.
Hence, (8g)o is seen to be a base. Parallel considerations prove that
(8g)o = (8g)o
is also a base.

8 Apartness and modest sets It remains to show that our construction is
really distinct from the modest set construction deriving from the work of Girard
and Troelstra ([9], [32], and [33]). Again, we apply —internally within “V(K/) —
Brouwer’s method of weak counterexamples.

Definition 8.0.2 A set is modest if and only if it is an w-stable subpartition
of w.

Theorem 8.0.3 The category of modest sets and set functions comprise a nat-
ural structure for P\.

Proof: See [16].

Theorem 8.0.4 In V(Kl), the set Cy of objects of C is a proper subset of the
collection of modest sets.

Proof: Working within V(K/), we exhibit an w-stable subpartition, a modest set,
which demonstrably fails to allow apartness. Note first that, in the Kleene realiz-
ability universe, each of the decidability principles

vn € w[am.T(n,n,m) v ~Im.T(n,n, m)]
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and
—vn € wlim. T(n,n,m)v —~3Im.T(n,n, m))]

fails. Here, T is the unary Kleene “T” computation predicate, as standardly ex-
pressed in arithmetic. The failure of these decidability principles is a consequence
of the unsolvability of the halting problem. (Thinking of V(K/) as a universe for
recursive mathematics, we might even say that they are expressions of unsolv-
ability.)

Second, since Markov’s principle holds in V(K/) (cf. [4]), the “halting predi-
cate” am.T(n,n, m) is w-stable:

vn € w[——Im.T(n,n,m) - Im.T(n,n, m)).
Now, we define the following equivalence relation over w:
n~me [Ip.T(n,n,p)<3iap.T(m,m, p)].

Thanks to the second fact we just mentioned, this equivalence relation is w-sta-
ble in V(K/). Without loss of generality, we can assume that 0 + 1 or that
=3Im.T(0,0, m) and am.7T(1,1, m).

For the sake of argument, assume that the ~-quotient of the natural num-
bers allows an apartness #. it follows that = —0#1. Given the definition of apart-
ness, it follows, in turn, that

avneEwln#0vni#l].
This entails the weaker decidability principle at once:
== [am.T(n,n,m)v ~3IAm.T(n,n, m)].

Therefore, our assumption that the ~-quotient of the natural numbers al-
lows apartness is false. The set of objects of C is, consequently, a proper sub-
set of the modest sets.
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