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Multimorphisms Over Enumerated Sets

ANDRZEJ ORLICKI

Abstract The concept of a multimorphism over enumerated sets is a natu-
ral generalization of the classical concept of a morphism of enumerated sets.
Moreover, there are some connections between multimorphisms and binary
relations over enumerated sets (Orlicki [3]). These connections are presented
in the first part of the paper. In the second part the main results of the paper
are given. The third part shows us that multimorphisms are not "exotic" —
they appear in Recursion Theory.

0 Introduction and preliminaries The fundamental idea of the Theory of
Enumerations is the following: computability over arbitrary countable sets is real-
ized as a usual computability over natural numbers by using suitable enumera-
tions of the sets considered. An interesting philosophical interpretation of this
idea has been given by Ersov in the introduction to his famous monograph [2] —
in his opinion, Theory of Enumeration is a kind of modern version of pythag-
oreanism. Consequently, we get the well-known concept of a morphism of
enumerated sets: Let S, = <S,, *>/>(/= 1,2) be two (non-empty) enumerated sets
and let μ: S{ -• S 2 be an arbitrary function. We say that μ is a morphism from
S\ to S2 iff there is a general recursive function/ such that μv\ = v2f, i.e., there
exists an algorithm that "realizes" μ on the level of codes of elements of sets SΊ
and S 2. It is clear t h a t / cannot be an arbitrary general recursive function —it
must preserve kernels of suitable enumerations. But we do not assume that these
kernels are decidable (it is worth noting that in that case Ersov also gave an inter-
esting philosophical motivation). A mathematical practice gives us many impor-
tant examples of undecidable enumerations (Godel enumerations of partial
recursive functions, for instance). So, if we consider an arbitrary general recur-
sive function /, it may happen that we do not know whether / induces a mor-
phism of suitable enumerated sets. Nevertheless, we have an algorithm on codes
of elements of the considered sets. Does there exist "something computable"
defined on elements of these sets which corresponds in a natural way to that algo-
rithm? The concept of multimorphism over enumerated sets, introduced and dis-
cussed in the paper, is suggested as a possible answer to this question.
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We make free use of notation and definitions given in Ersov [1] and [2].
Moreover, we assume that the reader is familiar with [3]. Here we shall give only
such notation as will be necessary later. Let R <Ξ A X B be an arbitrary binary
relation. For every a E A by R(a) we denote the set {b;(a,b) E R]. If R is a par-
tial function then by Arg R and Val R we denote the set of arguments and the
set of values of R, respectively. The set of all natural numbers will be denoted
by N. We fix a general recursive bijection r: N2 -• N. By 6i we shall denote the
set of all partial recursive functions of arity 1. We fix a Gόdel enumeration K
of the set 6 ^ For every natural n we put φn := κ(n) and Wn := Arg φn. By
NSET we shall denote the category of enumerated sets. The enumerated set
(N,\N) will be denoted by N. Let vuv2 be two enumerations. By vx © v2 we
denote the direct sum of these enumerations. If A and B are two non-empty dis-
joint enumerated sets then by A ® B we denote the canonical NSET-coproduct
of A and B.

1 Multimorphisms and their connections with relations over NSET Let
Sj = <S7, *>/>(/= 1,2) be two non-empty enumerated sets.

Definition 1.1

(1) Let/ be an arbitrary general recursive function. We define the binary rela-
tion Rf c Si X S2 putting

Rf(a) :=v2{f{vϊ\a)))

for every a E Si (evidently it essentially depends on the enumerations v\
and v2);

(2) Let R <Ξ Si X 5 2 be an arbitrary relation. We say that R is a multimorphism
over <Si,S2> iff there exists a general recursive function/ such that R =Rf-
In this case we say that/ is a realization ofR over (Sι,S2). If Sλ = S2 =
S then we say that R is a multimorphism over S.

The following observations are immediate:

(a) For every α G Sj we have 0 < \R/(a)\ < | vϊι(a)\. (Using this observation
we easily obtain many examples of binary relations which are not multimor-
phisms.)

(b) Rf is a morphism of enumerated sets iff/ is <^1,^2)-^xtensional (i.e.,
v\(x) = vi(y) implies v2{f(x)) = v2(f(y)) for every natural x9y).

It should be stressed that the concept of multimorphisms is not a categorical one.
Consider the following.

Example 1.2 Let S := <7V, v), where the enumeration v is given by v (r (x, y)) :=
x for every natural x,y. Let R :=N x N. Evidently R is a multimorphism over
(S,N). Moreover, l^iN-^ S is an isomorphism of enumerated sets. But the
composition R ° 1N is not a multimorphism over TV (because it is not a function).
So, a composition of an NSET-isomorphism and a multimorphism need not be
a multimorphism. On the other hand: it is easy to see that if R is a multimor-
phism over <Si, S2> and μ:S2^> S3 is an NSET-morphism then the composition
μ °R is a multimorphism over <S!,S3>.
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In [3] the concept of a binary relation over the category NSET has been con-
sidered. Our multimorphisms are special binary relations too. So it is quite nat-
ural to compare these two concepts.

Proposition 1.3 Let So = <S0, *>o) be an arbitrary non-empty enumerated set.
The following conditions are equivalent:
(1) v0 is a positive enumeration;
(2) For every non-empty enumerated set S: ifR is a multimorphism over (Sθ9 S)

then R is a relation over (Sθ9S).

Proof:

(1) => (2) Let g be a general recursive function such that Wg{x) = pόι(vo(x)) for
every x (it exists because v0 is a positive enumeration). Take a non-
empty enumerated set S and let / be an arbitrary general recursive
function. Let A be a general recursive function such that WhM =
f(Wg{χ)) f° r every natural x. It is easy to see that Rf is a relation over
(So,S) via the function Λ.

(2) => (1) Let S :=7Vand/:= lN. TheaRf = i^ 1, i.e., Rf(vo(x)) = [n;po(n) =
vo(x)} for every natural x. Since Rf is a relation over (Sθ9S)9 there
exists a general recursive function h such that Rf(v0(x)) = Wh(x) for
every natural x. So, we have Wh{<x) = [n; vQ(n) = vo(x)} for every nat-
ural x. Therefore v0 is a positive enumeration.

Remark 1.4 If So is an enumerated set such that p0 is not positive then VQ1

is an example of a multimorphism over (S0,N) which is not a relation over
<S0,N>.

Theorem 1.5 Let So = (S09VQ) be an arbitrary non-empty enumerated set
such that the following conditions hold:
(a) VQ is a positive enumeration;
(b) I voι(a)\ = K0/or every a G So

Let S = (S,v) bean arbitrary non-empty enumerated set and let R^Sox S be
a binary relation such that R(a) is a non-empty set for every a E So. The fol-
lowing conditions are equivalent:
(1) R is a multimorphism over (Sθ9S);
(2) R is a relation over (Sθ9S).

Proof (sketch): The implication (1) => (2) follows from Proposition 1.3. We shall
prove the inverse implication. Assume that R is a relation over (Sθ9S). There-
fore we can choose a general recursive function t such that φtM is a general
recursive function and R(vo(n)) = *>(Val φt(n)) for every natural n. Since p0 is
positive, we can choose a general recursive function u such that φu(n) is a gen-
eral recursive function and Val φu{n) = {y\vQ(y) = vo(n)} for every natural n.
We shall define some computable sequence f0 ^fλ c . . . of finite functions. For
every x by Ax we shall denote the set of arguments of the function fx. The
sequence is defined step by step using the following procedure:

Step 0: Put Ao := 0 and/ 0 := 0 .

Step x + 1: Let n9m be the natural numbers such that x = τ(n9m). Letp :=
min{k;φ u W (k) £ Ax] (it exists because the set Val </>w(/ί) is infinite while Ax is
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a finite set). Put a :=ΦU(n)(P), b := ΦHn)(m), Ax+ι :=AXU [a] emdfx+l :=
ΛU{<α,6».

Now, let

f:=Ulfx;χeN).

It is a matter of easy technical considerations to show that/ is a general recur-
sive function and R = Rf. So, R is a multimorphism over (S0,S).

Relations over NSET have a nice "lifting property"—see [3], Proposition 2.6.
Our multimorphisms have the same property, too.

Proposition 1.6 Let S be a set such that 0 < | S | < Ko and letR^SxSbe
a relation such that R (a) Φ 0 for every a(Ξ S. Then for every enumeration v of
the set S there exists an enumeration v* such that v < v* and R is a multimor-
phism over (S9v*).

Proof: The proof is a modification of the proof of Proposition 2.6 from [3].
Fix a family [ωn: S-> S; n G TV} of functions such that R(a) = {ωn(a); n E N]
for every a G S. Let v be an arbitrary enumeration of the set S. For every natu-
ral n let vn:7V-> 5 be the function given by vn(τ{k9m)) := ω^{v(m)) for every
natural k9m (of course ω£ = 1^). We define v* putting v*{τ{n,x)) := vn(x) for
every natural n,x. Evidently v < v*. Let / be the general recursive function
defined by

f(r(n,τ(k,m)) := τ(n,τ(k + l,m))

for every natural n,k,m. Then R is a multimorphism over <S,J>*> via the func-
tion /.

Similarity between relations over NSET and multimorphisms gives rise to the
following notions:

Definition 1.7 Let S, = <SZ, *>/> (/ = 1,2) be two non-empty enumerated sets
and let R Q S{ x S2 be an arbitrary relation. We say that R is a strong multimor-
phism over (Sι9S2y iff there exists a general recursive function/ such that
v2l(R(a)) =/(ϊ'Γ1(tf)) for every a G S\. In this case we say that/ is a strong
realization of R over (§ι,S2). If Si = S2 = S then we say that i? is a strong
multimorphism over S (compare [3], Definition 2.8). Moreover, if R is a func-
tion then we say that R is a strong morphism from S\ to S2.

Observe that if R is a strong multimorphism over <5Ί,S2> then | ̂ (^(f f)) ! ^
I vΓι(a)\ for every α G Si (using this observation we easily obtain many exam-
ples of multimorphisms which are not strong).

It is straightforward to see that we have the following proposition.

Proposition 1.8
(1) The class of all strong multimorphisms is closed under the composition of

relations. Moreover, iffis a strong realization ofR and g is a strong real-
ization of T then gf is a strong realization ofT<>R;

(2) Strong morphisms constitute a subcategory of the category NSET.

Contrary to the concept of strong relations, the definition of strong multi-
morphisms is not "symmetrical". It follows from the following simple example.
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Example 1.9 Let Sλ := <[ a, b}, vx >, where aΨbyvx (0) := a and vx (x + 1) := b
for every natural x. Moreover, let S2 •=<{*}, v2) be the one-point enumerated
set and let μ: Si -> S2 be the unique NSET-morphism from Si to S2. Evidently
the relation μ~ι is a strong multimorphism over <S2,Si>. But (μ"1 )~* = μ is not
a strong morphism from SΊ to S2 (because | v^ι{a)\ < \v2

ι (μ{a))\).

Observe that Proposition 1.3 and Theorem 1.5 remain true if the words
"multimorphism" and "relation" are replaced by "strong multimorphism" and
"strong relation", respectively. We leave to the reader the easy modification of
the appropriate proofs.

As could be expected, for strong multimorphisms the analog of Proposition
1.6 is not true. To prove it, we start from the following proposition.

Proposition 1.10 If R is a strong multimorphism over {SUS2) then R~ι is
a relation over (S2,Sλ).

Proof: Let/ be a strong realization of R over <S1,S2>. Choose a general recur-
sive function g such that Wg{<x) =f~1(x) for every natural x. It can readily be
seen that R~ι is a relation over <S2,Si> via the function g.

Remark 1.11 Let S\, S2 and μ be the same as in Example 1.9. Then μ"1 is a
strong relation over {S2ySχ) while μ is not a strong morphism from S\ to S2.

Now, we can prove the following theorem.

Theorem 1.12 There exist a set S with \S\ = Ko and a function μ:S-+S such
that for every enumeration v of the set S the function μ is not a strong morphism
from(S,v) to(S,v).

Proof: Let S := TV U {a} U {bn; n G TV), where a,bOibu... are different ele-
ments and they are not natural numbers. Let Z = {zo < Z\ < . . . } be a fixed not
arithmetical set of natural numbers. We define the relation R ς= S x S by R :=
{<α,0>f<α,α» U {(n,n + 1>; n G N] U i<zn,bn); n G N). Put μ := R~ι. Evi-
dently μ is a function. Let v be an arbitrary enumeration of the set S. Repeat-
ing the proof of Theorem 2.5 in [3], we obtain that R is not a relation over <S, v).
So, from Proposition 1.10 it follows that μ is not a strong endomorphism of the
enumerated set <S,^>.

We end this section with some fundamental information about strong mor-
phisms.

Proposition 1.13 Let μ: S\ -> S2 be a strong morphism between two non-
empty enumerated sets.
(1) If μ is an injection then <SΊ,μ> is an e-subobject of S2;
(2) If μ is a surjection then μ is a factorization.

Proof: Let S, = <S,, *>/>, / = 1,2. Let/ be a strong realization of μ.

(1) Assume that μ is an injection. Let /: Val μ -> S2 be the identity embedding
and let v := μ^!. It is known that <Si, μ> and «Val μ, v), /> are equivalent (as
two subobjects of S2). But from the property of the function/ we obtain
that î ""1 (Val μ) = Val/ and v = v2f Therefore «Val μ, v), ι> is an e-sub-
object of S2. So, <SΊ,μ> is an e-subobject of S2, too.
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(2) Assume that μ is a surjection. Denote by Ker μ the kernel of the function μ,
i.e., Ker μ := {<#,&>; μ(a) = μ(b)}. Let η :S\ -*ίS1/Ker μ be the canonical
factorization induced by the equivalence relation Ker μ. Moreover, let
a : §ι /Ker μ -+ S2 be the unique NSET-morphism such that μ = aη. From
the property of the function / we obtain that f(N) = f(v{~x(Sι)) =
^ ( V a l μ) = ^ 1 ( S 2 ) = N. Using this observation we easily obtain that a is
an isomorphism in the category NSET. Therefore μ is a factorization.

Example 1.14 Let S = (N,v) be the same as in Example 1.2. Evidently
1N: N-+ S is an NSET-isomorphism. Therefore it is a factorization and (N, lN)
is an e-subobject of S. But 1^ is not a strong morphism from N to S (because
| 1 * (*)| < \p-ι(lN(a))\ for every αG TV).

Example 1.15 Let S = <5, *>> be a non-empty enumerated set, let A be a non-
empty denumerable set, and let μ: S-»^4 be an arbitrary injection. Take an arbi-
trary enumeration a0 of the set A Wai μ. Put a := (μι>) © a0 and 4 := <^4,α>.
It is clear that μ: S -> 4 is a strong morphism.

2 Minimal multimorphisms and selectors Let S, = <SZ, *>/> (/ = 1,2) be
two non-empty enumerated sets and let R be an arbitrary multimorphism
over <5i,S2>. By M(Sι,S2,R) we shall denote the set of all multimorphisms
Γover (Sι,S2) such that T^R. Frequently we shall use the same notation
to denote the partial order <M(SΊ,S2,i?),^>. If SΊ = S2 = § then we simply
write M(S,R).

Definition 2.1 Let μ: Si -»S2 be a morphism in the category NSET. We say
that μ is a selector for R (abbreviated μ is an R-selector) iff μ Q R.

Evidently every /^-selector is a minimal element in the partial order
M(SUS2,R).

We can say that, in a sense, multimorphisms are non-deterministic mor-
phisms. So, a complexity of the structure of the poset M(§ι,S2,R) can be inter-
preted as a measure of non-determinism of R. From this point of view the
problem of existence of minimal elements in M(§ι,S2,R) and, in particular, the
problem of existence of selectors are quite natural.

Let S = <5, v) be an arbitrary non-empty enumerated set. Evidently the rela-
tion v~x is a strong multimorphism over <5,7V> (this observation was already
used in the proof of Proposition 1.3). The following two Propositions will be
fundamental for our further considerations.

Proposition 2.2 If Tis a minimal element in M(S9N,v~ι) then Tis av~x-
selector.

Proof: Let Γbe minimal and suppose that Γis not a selector, i.e., Γis not
a function. Let / be a realization of T over (S,N). Choose a G S such that
\T(a)\ > 2 and fix two different elements m,n from the set T(a). We define the
general recursive function g putting for x E TV:

g(x) := if f(x) = m then n else/(x).

It is clear that Rg = 7Λ{<α,m». Thus Γis not minimal, a contradiction.
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Proposition 2.3 The following conditions are equivalent:
(1) The enumeration v is decidable;
(2) The morphism v:N-+Sisa split epi in NSET;
(3) The multimorphism v~x has a selector,
(4) The partial order M( S,N,v~ι) has a minimal element.

Proof: The equivalence (1) <=> (2) is obvious. Let μ: S -» N be an NSET-mor-
phism. Then μ is a v~x -selector iff vμ = 15. So, we have the equivalence (2) o
(3). From Proposition 2.2 we obtain the equivalence (3) <=> (4).

Lemma 2.4 Assume that the following objects are given:
(a) two non-empty enumerated sets A = (A,a) and B = (B9β) such that

AΠB= 0;
(b) a multimorphism R over (A9B);
(c) an NSΈT-morphism μ:B-+B.
Consider the relation R U μ c (A U B) x (Λ U 5) . fFe Λtft e:
(1) RU μ is a multimorphism over A ® B;
(2) i/i? α/ίd μ are strong then RΌ μ is also strong;
(3) The partial orders M(A,B,R) andM(A ®B9RUμ) are isomorphic. More-

over, the suitable isomorphism preserves and reflects selectors.

Proof: Let/,g be realizations of R and μ9 respectively. We define the general
recursive function h by h(2x) := 2f(x) + 1 and h(2x + 1) := 2g(x) + 1 for every
natural x. It is easy to see that h is a realization of R U μ over A® B. Moreover,
iff and g are strong realizations then h is a strong realization, too. Now, we
define the function

ξ:M(A9B,R)-*M(A ®B9RUμ)

putting ξ(T) :=TU μ for every ΓG M(A,B,R). It is not difficult to show that
£ is well-defined and that the following statements are true:

(i) ξ is a bijection (we have ξ~ι(P) := P\μ for every suitable P);
(ii) £ is an isomorphism of suitable partially ordered sets;

(iii) £ preserves and reflects selectors.

We omit technical details of the proof. However, one remark must be given here:
the conditions "A Π B = 0 " and "μ is a function" are important for the proof.

Theorem 2.5 Let S be a set such that \S\ = Ko. There exist 2K° enumera-
tions v of the set S with the following property: There exist Ko strong multimor-
phisms R over <5, v) for which theposet M«S, v),R) has no minimal elements.

Proof: Without loss of generality we can assume that S = So U N where
I So I ̂ 2 and S0Π N = 0 . Let v0 be an arbitrary undecidable enumeration of
the set So. Put v := v0 ® 1N. Take an arbitrary general recursive function/. Put
R := VQ

X \jf. From Lemma 2.4 we obtain that R is a strong multimorphism
over <S, v) and that the posets M((Sθ9 vo),N, PQ1 ) and M((S9 v)9R) are isomor-
phic. But M((Sθ9vo)9N9v^1) has no minimal elements (see Proposition 2.3).
Therefore M((S9v)9R) has no minimal elements either.
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Lemma 2.6 Let So be a set such that \S0\ = Ko. There exist 2X° enumera-
tions v0 of the set So with the following property: There exists a strong multi-
morphism P over ((Sθ9vo)9N) for which the following conditions hold:
(1) P has a selector;
(2) Theposet M « 5 0 , v$)9N9P) has a minimal element which is not a selector.

Proof: Without loss of generality we can assume that So = I a} U N, where a£N.
Take an arbitrary non-recursive set A of natural numbers. We define the enu-
meration v0 putting

vo(τ(n9x)) := if xGA then n else a

for every natural n9x. Let T := ({a} x N) U l y. It is easy to see that Γis a
strong multimorphism over ((So,vo),N) v * a the general recursive function/
given by/(r(«,x)) := n for every natural n. We shall prove that

(*) M«Sovo>,N9T) = [T).

Suppose that To is an element of M((Sθ9vo)9N9T) and To Φ T. Then there
exists a set No of natural numbers such that 0 Φ No Φ N and To = {{a9n)\
n ENo] U 1N. Fix an arbitrary natural number mQ from the set N\N0. Let g be
a realization of To over ((S0,p0),N). Using the definition of the enumeration
ί>0, the property of the number m0 and the property of the function g we obtain
that for every naturalΛ:the following equivalence holds: xGA iff g(τ(mo,x)) =
m0. Thus A is a recursive set, a contradiction. So, the observation (*) is proved.
Now, let μ: <50, v0} -+Nbe the morphism of enumerated sets given by μ(x) := 0
for every x e So. Put P := Γ U μ. Fix a natural number t from the set A and let
Λ be the general recursive function given by

h(τ(n,x)) := if x = t then 0 else n

for every natural nyx. It is easy to see that h is a strong realization of P over
((So,voy,Ny. Evidently μ is a P-selector. From the observation (*) we obtain
that Γis a minimal element in M((So,vo)>N>P) Evidently Γis not a selector (it
is not a function).

Theorem 2.7 Let S be a set such that \S\ = Ko. There exist 2*° enumera-
tions v of the set S with the following property: There exist Ko strong multimor-
phisms R over (S,v) for which the following conditions hold:
(1) R has a selector;
(2) The poset M((S9 v)9R) has a minimal element which is not a selector.

Proof: Without loss of generality we can assume that S = So U N where
I So I = #o aβd So Γ) N = 0 . Let vo,Pbe an enumeration of the set So and a
strong multimorphism over ((Sθ9voy9Ny obtained by applying Lemma 2.6 to
our set So. Let v := v0 ® l v Take an arbitrary general recursive function/ and
put R := PΌf Using Lemma 2.4 it is not difficult to show that R has the
required properties.

Proposition 2.8 Let S = (S,v) be α non-empty enumerated set such that v is
a decidable enumeration. Then every multimorphism over S has a selector.
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Proof: L e t / be the general recursive function defined by f(x) := min{«;
μ(n) = v(x)\ for every natural x. Then for every general recursive function g the
function h := gf is ^-extensional and μ := Rh is an /^-selector.

The methods from the proofs of Theorems 2.5 and 2.7 have "constructive
counterparts" in the case S := Q{. For example, we shall give a sketch of the
proof of the constructive analog of Theorem 2.7.

Proposition 2.9 There exist Ko computable enumerations v of the set (2>ι with
the following property: There exist Ko strong multimorphisms R over (<2>ι, v) for
which the following conditions hold:
(1) R has a selector-,
(2) Theposet M(((2>ι, v},R) has a minimal element which is not a selector.

Proof (sketch): Fix two non-empty enumerated sets <Fo,γo> and <F,γ> such
that the following conditions hold:
( i ) F o U F = e Λ { 0 } a n d F 0 Π F = 0 ;

(ii) γo and y are computable bijections.

(a) Take an arbitrary recursively enumerable non-recursive set A of natural
numbers. We define the computable enumeration v0 of the set Fo U { 0 }
putting

ι>o(τ(n,x)) := if x G A then yo(n) else 0

for every natural n,x. Let T := ({0} X F) U (776"1) and P : = Γ U
(Fo X {7(0)}). Then T and P are strong multimorphisms over
«F oU{0},^o>,<F,7».

(b) Let v be the computable enumeration of the set βi defined by v :=
*>o Θ 7. Take an arbitrary general recursive function/ and put R :-
P U (yfγ~ι). Then R has the required properties.

Observe that part (a) of our proof is a counterpart of the proof of Lemma
2.6 while part (b) is a counterpart of the proof of Theorem 2.7.

For the important enumerated set (<3ι, K) we can prove the following weak
analog of Theorem 2.5:

Proposition 2.10 There exists a multimorphism R over (βχ9κ) such that the
poset Af «βi,κ>,Λ) has no minimal elements.

Proof: Let u be a general recursive function such that φU(X)(n) = x for every
natural x,n. We define the relation R c Q1 x Qλ by R := {(φx,φu(x)>; xGN}.
Evidently R is a multimorphism over <6i,κ> and u is its realization. Let
Te M((euκ),N,κ~ι). We define the relation Γ ς e ^ βi putting T*(ψ) :=
(ΦMU);* E ^(Ά)} f° r every partial recursive function ψ. It is easy to see that T*
is an element of M«C1,/c>,JR) (if/ is a realization of Γthen the composition uf
is a realization of T*).

Now, let P e M((euκ),R). We define the relation P° Q βλ X TV putting
P°(ψ) := {x;φM(Λ:) G P(φ)} for every partial recursive function ψ. Let g be a
realization of P over (Q{, κ> and let Λ be the partial recursive function given by
h (x) := φg(X) (0) for every natural x. Since PQR, the function A is total. More-
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over, h is a realization of Pϋ over ((G\,κ),N). Using the above considerations
we can define the function

ξ:M«euκ>9N9κ-ι)-+M«euκ>9R)

putting ξ(T) := T* for every suitable T. It is clear that ξ is a bijection (we have
ζ~ι{P) := P° for every suitable P) and that it is an isomorphism of the suitable
partial orders. So, from Proposition 2.3 we obtain that M«Ci,κ>,7?) has no
minimal elements.

3 Some important examples In this section we shall give three examples of
multimorphisms which are related to some fundamental and important construc-
tions from Recursion Theory. These multimorphisms have no selectors. So, our
examples are non-trivial. In our opinion, these examples give us a good motiva-
tion to consider the concept of multimorphisms over enumerated sets.

Throughout this section / 0 will denote a fixed general recursive function
such that

Val/o = {*; φx is a non-empty function}.

By κ0

 w e shall denote the computable enumeration of the set Q\\ [ 0 ) defined
by κ0 := κf0. Moreover, let K be a fixed recursively enumerable not recursive set
of natural numbers.

Let p be a partial recursive function such that for every natural number x the
following assertion holds: if Wx is non-empty then x G Arg p and/?(x) G Wx.
Put t -=pfo. Evidently t is a general recursive function. Denote by Ex the multi-
morphism over «G!\ { 0 },κo),N} induced by t, i.e., Ex := Rt.

Proposition 3.1 The multimorphism Ex has no selectors.

Proof: Let β: TV3 -+ N be a general recursive function such that for every nat-
ural numbers x9m,n the following conditions hold:

(i) ifxeKfheaφβiX9m9Λ) = {<m,l>,</i,l»;
(ii) if x£ iΓthen φβix,m,n) = K " U »

(we consider functions of arity 1 as sets of ordered pairs). Thus Φβ(Xfmfn) is a
finite non-empty function for every natural x,m,n. Therefore we can define the
general recursive function h:N3 -+ N putting h(x,m,n) := min{z;/oU) =
β(x,m,n)} for every x9m,n.

Now, suppose that μ: (<Bλ\ { 0 },/co> -> N is an Eλ-selector. Then μκ0 is a
general recursive function and μ(ψ) G Arg ^ for every non-empty partial recur-
sive function ψ. Consider the following two cases:

Cose 0:μ({<0,l>,<l,l>})=0.

Then for every natural number x the following equivalence holds:

xeJΠff μκoh(x,\,O) =0;

Cβse 7: μα<<U>,<l,l>}) = L

Then for every natural number x the following equivalence holds:

x€JΠ f f μκoΛ(*,O,l) = 1.
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Thus in the both cases we obtain that AT is a recursive set, a contradiction. So,
Ex has no selectors.

Now, let g be a general recursive function such that for every natural num-
ber x. Val Φg(X) = Wx and if Wx is non-empty then Φg(X) is a general recursive
function. Denote by E2 the multimorphism over (G\,κ) induced by g, i.e.,
E2:=Rg.

Proposition 3.2 The multimorphism E2 has no selectors.

Proof: Suppose that μ:<G1,/c>-^<C1,/c>isan 2f2-selector and let h be a gen-
eral recursive function such that μκ = ah. Observe that for every natural x the
function μ(κo(x)) is total, μ(κo(x)) = ΦHMX) a n d V a l μ(*o(*)) = Arg κo(x).
Therefore, if we put

μ*(κoM) := (μ(κo(x)))(O)

then we obtain the NSET-morphism μ* :(Qι\[0]9κo) -+ N which is an Ex-
selector, a contradiction. So, E2 has no selectors.

Our third example is strictly related to the s -w-H-theorem. Denote by C 2 the
set of all partial recursive functions of arity 2. By λ we shall denote a fixed Gόdel
enumeration of the set (32. Let s be a general recursive function such that for
every natural number x the following conditions hold:

0 ) ΦS(x) is a general recursive function;
(2) λ(x)(a,~) = Φφs(x)(a) for every natural a.

Denote by E3 the multimorphism over <<(B2,λ>,<Ci,κ» induced by s, i.e.,

Proposition 3.3 The multimorphism E3 has no selectors.

Proof: Suppose that μ: <C2,λ> -> <6i,κ> is an ^-selector and let h be a gen-
eral recursive function such that μλ = Kh. So, for every γ G C 2 and every aSN
we have γ(tf,-) = Φμ(7)(fl). Let c:N2-+Nbe a fixed general recursive function.
Choose a general recursive function / such that

λ (/(*)) = if x G AT then c else 0

for every natural x. Observe that:

(a) ifxGKthen φhf(x) = μ(c)\

( b ) i f * £ t f t h e n φ v u ) = μ ( 0 ) .

Take an arbitrary natural number a. We have:

Φμ(c)(a) =C(α,-) ^ 0(ff,-) = Φμ(0)(a)

So, μ(c)(#) ^ /x( 0)(α) for every natural #. Using this observation and the above
assertions (a) and (b) we obtain that for every natural number x the following
equivalence holds:

xGKiϊfφhΆx)(O) = μ(c)(O).

Therefore K is a recursive set, a contradiction. So, E3 has no selectors.
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