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Reduction and Tarski’s Definition
of Logical Consequence

Jim Edwards

Abstract In his classic 1936 paper Tarski sought to motivate his definition of
logical consequence by appeal to the inference form:P(0), P(1), . . . , P(n), . . .

therefore∀n P(n). This is prima facie puzzling because these inferences are
seemingly first-order and Tarski knew that Gödel had shown first-order proof
methods to be complete, and because∀n P(n) is not a logical consequence of
P(0), P(1), . . . , P(n), . . . by Taski’s proposed definition. An attempt to resolve
the puzzle due to Etchemendy is considered and rejected. A second attempt due
to Gómez-Torrente is accepted as far as it goes, but it is argued that it raises
a further puzzle of its own: it takes the plausibility of Tarski’s claim that his
definition captures our common concept of logical consequence to depend upon
our common concept being a reductive conception. A further interpretation of
what Tarski had in mind when he offered the example is proposed, using mate-
rials well known to Tarski at the time. It is argued that this interpretation makes
the motivating example independent of reductive definitions which take natural
numbers to be higher-order set theoretic entities, and it also explains why he did
not regard the distinction between defined and primitive terms as pressing, as
was the distinction between logical and nonlogical terms.

1 Introduction

In his classic 1936 paper [12] Tarski sought to motivate acceptance of his definition
of logical consequence by discussion of an example. He wrote,

Some years ago I gave a quite elementary example of a theory which shows
the following peculiarity: among its theorems there occur such sentences as:

A0. 0 possess the given property P,
A1. 1 possess the given property P,

and, in general, all particular sentences of the form

Received October 8, 2002; accepted May 29, 2003; printed April 16, 2004
2000 Mathematics Subject Classification: Primary, 03-03; Secondary, 01A60

Keywords: Tarski, logical consequence, reduction

c©2004 University of Notre Dame

49

http://www.nd.edu/~ndjfl
http://www.nd.edu


50 Jim Edwards

An. n possess the given property P,

where ‘n’ stands for any symbol which denotes a natural number in a given
(e.g., decimal) number system. On the other hand, the universal sentence,

A. Every natural number possesses the given property P,

cannot be proved on the basis of the theory in question by means of the normal
rules of inference. This fact seems to me to speak for itself.It shows that the
formalized [i.e., proof-theoretic] concept of consequence, as it is generally
used by mathematical logicians, by no means coincides with the common
concept. Yet intuitively it seems certain that the universal sentenceA follows
in the usual [i.e., pretheoretic] sense from the totality ofparticular sentences
A0, A1, . . . , An, . . .. Provided all these sentences are true, the sentenceA
must also be true. ([12], pp. 410–11)

As Tarski in effect goes on to note, the above fact “speaks foritself” only in the
light of Gödel’s incompleteness result. For we might conjecture that we could close
the proof-theoretical gap by adding a further rule of inference, what Tarski called
“the rule of infinite induction according to which the sentence A can be regarded
as proved provided all the sentencesA0, A1, . . . , An, . . . have been proved” ([12],
p. 411). He summarily dismissed the rule of infinite induction on the grounds that
it is objectionably infinitistic—its application would require an infinite set of sub-
proofs to provide the requisite premises.1 Tarski then considered adding to the base
theoryT an infinite series of finitistic proof rulesR0, R1, . . . , Ri , . . . such that the
premise ofR0 is the arithmetization of the provability ofA0, A1, . . . , An, . . . in the
theoryT , and the conclusion isA, and the premise ofR1 is the arithmetization of the
provability of A0, A1, . . . , An, . . . in the theory{T ∪ R0}, and the conclusion isA,
and the premise ofR2 is the arithmetization of the provability ofA0, A1, . . . , An, . . .
in the theory{T ∪ R0 ∪ R1}, and the conclusion isA—and so on throughR3, R4, etc.
Tarski invoked Gödel to refute the conjecture that such procedures can close all the
proof-theoretical gaps.

By making use of the results of K. Gödel we can show that this conjecture is
untenable. In every deductive theory (apart from certain theories of a particu-
larly elementary nature), however much we supplement the ordinary rules of
inference by new purely structural rules, it is possible to construct sentences
which follow, in the usual sense, from the theorems of this theory, but which
nevertheless cannot be proved in the theory on the basis of the accepted rules
of inference. ([12], pp. 412–13)

Tarski then proceeds to introduce his own model-theoretic definition of logical con-
sequence:

Thesentence Xfollows logically from the sentences of the classK if and only
if every model of[all the sentences in]the class K is also a model of the
sentence X.2 ([12], p. 417, Tarski’s italics)

Prima facie, Tarski’s dialectic is puzzling. It looks as if he thought

(i) “[I]ntuitively it seems certain that the universal sentenceA follows in the
usual [i.e., pretheoretic] sense from the totality of particular sentences
A0, A1, . . . , An, . . .. Provided all these sentences are true, the sentenceA
must also be true.”

(ii) Gödel has shown that proof-rules cannot capture all such inferences.

Hence we are motivated to accept his model-theoretic conception of logical conse-
quence. So we seem entitled to expect
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(iii) Such inferences come out valid by Tarski’s model theoretic definition of log-
ical consequence.

This is puzzling for two reasons:

(iv) The inferenceA0, A1, etc. thereforeA is not valid according to Tarski’s
proposed definition. If we standardly take ‘0’, ‘1’, ‘2’, etc. as proper names
and therefore as nonlogical constants it is easy to find models in which
A0, A1, . . . , An, . . . are all true butA false. Consider, for example, a model
M of A0, A1, etc. andA whose domain is the natural numbers, where ‘natural
number’ has its usual interpretation, but ‘0’, ‘1’, ‘2’, etc. are all assigned
0, and the extension assigned ‘P’ is {0}. Obviously, A0, A1, etc. are all
true-in-M, andA is not true-in-M.

(v) Such examples are seemingly first-order. But as Tarksi knew, Gödel had
shown that proof-theoretic consequence and model-theoretic consequence
coincide for first-order structures.

In this paper we will resolve these puzzles, along with a subsequent puzzle which
arises from the solution to the first puzzles.

2 Two Attempts to Resolve These Puzzles

I will consider two attempts to resolve these puzzles: one due to Etchemendy ([1],
[2]) and the other due to Gómez-Torrente [4]. I shall reject Etchemendy’s “solu-
tion” as not consistent with Tarski’s text and clear intentions. I shall accept Gómez-
Torrente’s solution as far as it goes, but I shall argue that it raises a further puzzle of
its own: it takes the plausibility of Tarski’s definition of logical consequence to pre-
suppose logicist reductions of arithmetic terms to logicalterms, which restricts the
scope of Tarski’s definition. Etchemendy’s and Gómez-Torrente’s respective “solu-
tions” are polar opposites; my own will occupy a place between them.

First we consider Etchemendy. He notes that the inference from A0, A1, etc. toA
comes out valid, model-theoretically, if we include in [theset of logical con-
stants] the expression “every natural number” as well as thecollection of
numerals ‘0’, ‘1’, ‘2’, . . . . I assume this is why Tarski does not consider
his account subject to precisely the same criticism he directs at the [proof-
theoretic] definition. ([2], p. 85)

Of course, if ‘every natural number’ and ‘0’, ‘1’, ‘2’, etc. are logical constants then
A is indeed a Tarskian logical consequence ofA0, A1, etc. However, this solution
would lead to disaster for Tarski’s project. Etchmendy notes elsewhere:

Gödel sentences are a bit trickier, due to their potential variety: all that we
can really say is that they will indeed come out as consequences of their
corresponding theories if we treat all expressions in the language as logi-
cal constants. Unfortunately, this involves a certain trivialization of Tarski’s
Analysis. For with this choice of logical constants, a true sentence is a logical
consequence of any set of sentences whatsoever. ([1], p. 73)

Actually, it’s a complete trivialization, in Tarski’s own view. If all the primitive terms
of the language are counted as logical constants, then, so Tarski thought, Tarskian
logical consequence collapses into material consequence,something he pointed out
himself in the same paper in which he offered his definition oflogical consequence:

In the extreme case we could regard all the terms of the language as logical
[i.e., as logical constants]. The concept offormal [= logical] consequence
would then coincide with that ofmaterial consequence. The sentenceX



52 Jim Edwards

would in this case follow from the classK of sentences if eitherX were
true or at least one sentence of the classK were false.3 ([12], p. 419, Tarski’s
italics)

Tarski closes the paper by remarking that the distinction between logical and non-
logical constants is the next big unsolved problem. If Etchemendy were right it
would have been solved. Gödelianω-inferences require that there are no nonlog-
ical constants!—well, except perhaps in those deductive theories “of a particularly
elementary nature” to which Gödel’s result does not apply.

I regard it as incredible that Tarski, in the same paper, should have raised the issue
of inferences fromA0, A1, etc. toA, used it to dismiss proof-theoretic conceptions
of logical consequence, proposed his model-theoretic alternative, and not thought
that it could meet the challenge. But I regard it as equally incredible that he should
have thought that his model-theoretic conception met the challenge in a way that, in
his view, collapsed logical consequence into material consequence, especially as, in
that same paper, he is explicitly aware of the danger, and he explicitly regards the
division between logical and nonlogical constants as an open question.

As Etchemendy reads Tarski, ‘natural number’ and ‘0’, ‘1’, ‘2’, etc. are all logical
constants. As Gómez-Torrente reads Tarski, none are.

The solution suggested by the textual evidence is that when he gives his moti-
vating example Tarski is not thinking of the arithmetical expressions as prim-
itives, but as defined terms; defined, that is, with the help oflogical constants,
within the framework of a sufficiently powerful logical theory. ([4], p. 136)

Gómez-Torrente takes his cue from the first sentence of the passage from Tarski
quoted above: “Some years ago I gave a quite elementary example of a theory which
shows the following peculiarity.” Tarski was there referring to his [13]. In the formal
language discussed in [13], ‘natural number’, ‘0’, ‘1’, ‘2’, etc. do not appear. The
language in which the theory is expressed contained the primitive sentential func-
tions negation and material implication, the universal quantifier, and nothing else
except variables. The variables were sorted into types. Thus ‘x1

1’, ‘ x1
2’, ‘ x1

3’, etc.
were all first-order variables whose values were individuals from the domain. And
‘ x2

1’, ‘ x2
2’, ‘ x2

3’, etc. were all second-order variables whose values were sets of in-
dividuals from the domain. And so on for variables of all finite orders. Any of
these variables could be quantified over. An atomic open sentence took the form
xn+1

i (xn
j ). In addition to the primitive signs ‘→’, ‘ ¬’, and ‘∀’, he introduced as de-

fined signs ‘∃’, ‘ ∨’, ‘&’, ‘ ↔’, and ‘=’. The theory defined on this language was a set
of standard axioms—propositional and quantification axioms, plus axioms of com-
prehension and extensionality for each type, and an axiom ofinfinity for the objects
of lowest type—and the consequences of these axioms under substitution, detach-
ment, universal introduction, and elimination. The terms ‘natural number’, ‘0’, ‘1’,
‘2’, etc. did not appear in this language as primitives, though they may be introduced
as defined terms. So, as Gómez-Torrente reads Tarski, ‘natural number’, ‘0’, ‘1’,
‘2’, etc. in [12] are definedterms. As such they are not, pace Etchmendy, logical
constants, but are to be eliminated fromA0, A1, . . . , An, . . . and A before Tarski’s
definition is applied to see whetherA is a logical consequence ofA0, A1, etc. Tarski
draws our attention to “the necessity of eliminating any defined signs which may
possibly occur in the sentences concerned, i.e., of replacing them by primitive signs”
([12], p. 415). Once ‘natural number’, ‘0’, ‘1’, ‘2’, etc. have been eliminated fromA
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and A0, A1, etc., Gómez-Torrente argues, the puzzles(iv) and(v) above may be re-
solved. Puzzle (iv) is resolved. The numerals ‘0’, ‘1’, etc.and the predicate ‘natural
number’ are not primitive signs and so have been eliminated in favor of basic vo-
cabulary before the definition of logical consequence is applied. So, “since the only
extra-logical constants subject to reinterpretation in the test for logical consequence
will appear, if there are any, in the predicateP” ([ 4], p. 136), A will be a logical
consequence ofA0, A1, etc. by Tarski’s definition. Puzzle (v) is also resolved.A and
A0, A1, etc., once primitives have been eliminated, are revealed as higher-order; to
them Gödel’s completeness result does not apply.

However, it is worth noting, to avoid exegetical confusion,that the relation be-
tween Tarski’s [12] and his [13] is more complex than has been revealed so far.
In his [13], Tarski drewparticular consequences from the theory described and he
showed, in the light of those consequences, that the theory is ω-consistent but not
ω-complete. But these particular consequences arenot the example Gómez-Torrente
takes Tarski to have in mind asA and A0, A1, etc. in his [12].4 The particular con-
sequences discussed in [13] take the following forms:5

B0 ∀x2
1(∀x1

1¬x2
1(x1

1) → ∃x1
1¬x2

1(x1
1))

B1 ∀x2
1(∃x1

1∀x1
2(x2

1(x1
2) → x1

2 = x1
1) → ∃x1

1¬x2
1(x1

1))

. . .

Bn ∀x2
1(∃x1

1 . . . ∃x1
n∀x1

n+1(x
2
1(x1

n+1) →

(x1
n+1 = x1

1 ∨ · · · ∨ x1
n+1 = x1

n)) → ∃x1
1¬x2

1(x1
1))

. . . .

Tarski [13] showed that whereas each of the above is a proof-theoretic consequence
of the axioms, the following is not:

B ∀x2
1(∀x3

1(∀x2
2∀x2

3((∀x1
1¬x2

2(x1
1) ∨ (x3

1(x2
2) & ∃x1

1∀x1
2(x2

2(x1
2) ↔

(x2
3(x1

2) ∨ x1
1 = x1

2)))) → x3
1(x2

2)) → x3
1(x2

1)) → ∃x1
1¬x2

1(x1
1)).

B and B0, B1, . . . , Bn, . . . would not have served Tarski’s [12] purpose since they
are not examples ofA andA0, A1, . . . , An, . . ., even when ‘0’, ‘1’, etc. and ‘natural
number’ have been eliminated by definition from the latter. For B0, B1, . . . , Bn, . . .

did not exhibit a common logical form. Rather, a string of first-order existential
quantifiers grew by one each time as the series progressed, and the matrix which
they governed changed in tandem to provide a further argument place. In effectB0
stated of the empty lowest-order set, that there is something in the domain which is
not a member of it.B1 stated of each lowest-order set with at most one member,
that there is something in the domain which is not a member of it. And Bn stated of
each lowest-order set with at mostn members, that there is something in the domain
which is not a member of it. The supposed analogue of the conclusionA would have
been of quite a different form again, involving a third-order quantifier.

B ∀x2
1(∀x3

1(∀x2
2∀x2

3((∀x1
1¬x2

2(x1
1) ∨ (x3

1(x2
2) & ∃x1

1∀x1
2(x2

2(x1
2) ↔

(x2
3(x1

2) ∨ x1
1 = x1

2)))) → x3
1(x2

2)) → x3
1(x2

1)) → ∃x1
1¬x2

1(x1
1)).
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The content ofB is hard to read straight off. Its structure can be simplified to

∀x2
1(∀x3

1ϕ(x2
1, x3

1) → ∃x1
1¬x2

1(x1
1))

where the condition∀x3
1ϕ(x2

1, x3
1) ensures thatx2

1 has at most a finite number of
members. ThusB states in effect that no finite lowest-order set contains allthe
members of the domain. Tarski shows that, relative to his setof logical axioms
and rules of inference,B0, B1, etc. are all proof-theoretic theorems, butB is not.
However, B and B0, B1, etc. are not of the formsA and A0, A1, etc. even after
we have eliminated ‘0’, ‘1’, etc. and ‘natural number’ fromA and A0, A1, etc. by
standard definitions. So we need to setB and B0, B1, etc. aside as a red herring,
from the point of view of [12], as understood by Gómez-Torrente.

3 A Further Puzzle

Puzzlement resolved? Not really. As Gómez-Torrente acknowledges, the examples
he describes carry a commitment to the reductive definitionsof numeric terms fa-
vored by logicists.

If the predicate ‘to be a natural number’ and the numerals ‘0’, ‘1’, ‘2’, etc. are
defined in the logicist fashion within the framework of an appropriate logical
theory, A will follow from A0, A1, etc. according to Tarski’s definition . . . .
([4], p. 136)

Those definitions identify numbers as higher-order set theoretical entities—for ex-
ample, 0= {x : x 6= x}, 1 = {0}, 2 = {0, 1}, etc. A number of such definitions were
current at the time. If such were theonlyexamples Tarski had in mind, then he would
have been committed to holding that our intuition thatA follows from A0, A1, etc.
is accounted for by his definitiononly if we accept that numbers are higher-order
set-theoretic entities. Certainly such was the view of many, including Tarski himself,
at the time—he spoke of such reductions being “one of the grandest achievements
of recent logical investigations” (Tarski [9], p. 81). However, it would be surpris-
ing if Tarski thought his definition of logical consequence itself presupposed such
a reduction, as distinct from being merely consistent with them. After all, Tarski
expected that Gödel would agree that, intuitively,A follows from A0, A1, etc. And
Tarski hoped that Gödel too could accept his definition of logical consequence as
capturing such intuitions. But Tarski also recognized thatnumerals are primitives in
the language of Gödel’s [3] and in the deductive systemP which Gödel expressed
using that language. He wrote of the formal language of [3], comparing it to that of
his own [11]:

Apart from certain differences of a “calligraphical” nature, the only distinc-
tion lies in the fact that in the systemP, in addition to the logical constants,
certain constants belonging to the arithmetic of the natural numbers also oc-
cur. ([11], p. 247–48, ft. 1)

Since the only arithmetic constants in the language on whichP is defined are ‘0’ and
‘s’, the successor function, Tarski himself was reading theseas primitive symbols,
and asnonlogical constants of the language in which theoryP is written. I shall set
out systemP shortly, but it is easy to see—from axioms I1 – I3, and rule of inference
R1 below—that the natural numbers, 0 and all its successors,are the denizens of the
lowest-orderdomain and so cannot be defined in that language in a logicist fashion as
higher-order entities. Tarski certainly thought his definition of logical consequence
applicable to the sentences of Gödel’s formal language—forif not it would be an
obvious and grave defect. And it is reasonable to suppose that Tarski thought that
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logicians who took Gödel’s formal language as ontologically basic and who read
A and A0, A1, etc. in terms of that language, would have agreed thatA intuitively
follows from A0, A1, etc. and would have expected this intuition to be honored bya
satisfactory definition of logical consequence. We have notyet seen how to do this.
This is the further puzzle.

4 The Last Puzzle Resolved

To resolve this puzzle, I shall argue that when drawing our attention toA andA0, A1,
etc. Tarski had examples in mind other than those described by Gómez-Torrente.
These other examples retain at least some arithmetic terms as primitive. We require
that these additional examples show the following features:

1. The examples are higher-order once defined terms inA and A0, A1, etc. are
replaced by primitive vocabulary, thus avoiding Gödel’s completeness result
for first-order theories.6

2. However, some arithmetic terms appear as primitives, andnatural numbers
are the urelements of the lowest-order domain.

3. It is intuitive that the counterpart ofA (i.e., A once defined terms have been
eliminated) is a logical consequence of the counterparts ofA0, A1, etc. in
these examples.

4. The counterpart ofA is a logical consequence of the counterparts ofA0, A1,
etc. according to Tarski’s own definition of logical consequence, given a plau-
sible distinction between logical and nonlogical constants.

5. The counterparts ofA0, A1, etc. are all proof-theoretic consequences of some
presupposed theory, butA is not.

6. Gödel’s result can be used to show that proof-theoretic methods cannot cap-
ture all such inferences.

I shall develop an example satisfying (1) to (6), an example which Tarski might
plausibly also have had in mind since it draws on features well known to him at the
time.

Of course Gödel himself provided an example close toA and A0, A1, etc., an
example employing, according to Tarski, ‘0’ and ‘s’ as arithmetic primitives and of
the following form:

C0 F(0)

C1 F(s0)

C2 F(ss0)

etc.

C ∀x F(x)

Gödel showed that each ofC0, C1, etc. is a proof-theoretic consequence ofP but C
is not. But this is not the example we are looking for. Becausethe quantifier ofC is
unrestricted, condition (4) is not met:C is not a logical consequence ofC0, C1, etc.
according to Tarski’s own semantic conception of logical consequence.7 As Gómez-
Torrente notes:

If the arithmetical expressions are not logical constants when they are primi-
tives of our formalization of arithmetic,C will not be declared a logical conse-
quence of the set of sentencesC0, C1, etc. by Tarski’s definition. ([4], p. 136,
transposed to my notation)
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However, it is easy to construct an example satisfying (1) to (6) using Gödel’sC and
C0, C1, etc. as a template. We merely need to restrict the quantifierin C to the natural
numbers. The language in which Gödel framedP, C andC0, C1, etc. was higher-
order with primitive open sentences of the formyn+1(xn). The language contained
just five primitive constants: ‘¬’, ‘ ∨’, ‘ ∀’, ‘0’, and ‘s’. Gödel availed himself of the
defined signs: ‘&’, ‘→’, ‘ ↔’, ‘ ∃’, ‘ =’. In this higher-order language we can define
‘natural number’ as follows.

Definition 4.1

(Df) y1 is a natural number= df ∀x2((x2(0) & ∀x1(x2(x1)→x2(sx1)))→x2(y1)).

Df ensures thaty1 is a member of the smallest set which contains 0 and contains the
successor of any member. Subject to the comments in the next paragraph, that just
is the set which contains 0, its successors0, its successorss0, etc. and nothing else.
This is the set of natural numbers.

Df ensures thaty1 is a member of the smallest set which contains the natural
numbers in the domain of ‘∀x2’. To ensure that the set contains nothing else besides
the natural numbers we require that the domain of ‘∀x2’ be the powerset of the
domain of ‘∀x1’. Otherwise the smallest set which contains 0 and all its successors
may contain other entities too—there being no smaller set inthe domain of ‘∀x2’.
In so-called Henkin models (which [7] calls “general models”) the domain of ‘∀x2’
is required to be onlysomeset of subsets of the domain of ‘∀x1’—and in general
the domain of ‘∀xi ’ is someset of subsets of the domain of ‘∀xi−1’. In Henkin’s
semantics we cannot suppose that, in all models, the smallest set containing the
bearers of ‘0’, ‘s0’, ‘ ss0’, etc. contains nothing else besides 0, s0, ss0, etc. By
contrast, in so-called full models, the domain of ‘∀x2’ is the “full” powerset of the
domain of ‘∀x1’ and in general the domain of ‘∀xi ’ is the powerset of the domain of
‘∀xi−1’. Hence for Df to define the natural numbers we require that the semantics
of the language be given in terms of full models, not in terms of the more general
notion of Henkin models.

Tarski did not have the distinction between Henkin models and full models to
hand in [12]. So a question arises regarding his proposed definition of logical conse-
quence:

The sentenceX is a logical consequence of the sentences of the classK if and
only if every model in which all the sentences of the classK are true is also a
model in whichX is true.

Can we properly attribute to him a semantics of full models? We can, for two rea-
sons. Firstly, he commits himself to a semantics of full models for the higher-order
language of his [13]. He defines ‘xi

j = xi
k’ as∀xi+1

1 (xi+1
1 (xi

j ) → xi+1
1 (xi

k)). For this

definition to assign the identity function to ‘=’ requires that the domain of ‘∀xi+1’
be the powerset of the domain providing the values of ‘xi

j ’ and ‘xi
k’. Secondly, he

commits himself to a semantics of full models when he takes Gödel to have shown
that Gödel’s theoryP is proof-theoretically incomplete.P is a higher-order system
with second-order Peano axioms. And Henkin showed that suchsystems are proof-
theoreticallycompletewith respect to Tarski’s definition of logical consequence and
a semantics of Henkin models [6]. If we were to read Tarski’s definition of logical
consequence in terms of Henkin models, there would be no examples where coun-
terparts ofA, A0, A1, etc. are higher-order, where it isnot the case thatA0, A1, etc.
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⊢P A, and yetA isa logical consequence ofA0, A1, etc. on Tarski’s proposed defini-
tion.8 But clearly Tarski thinks there are such examples. So we should read Tarski’s
proposed model-theoretic definition of logical consequence as referring to full mod-
els, not to Henkin models, when applied to higher-order languages. Hence we can
take the semantics of the language upon whichP is defined to be a semantics of full
models, and we can take Df to be a definition of natural number.

We can now at last give an example which satisfies conditions (1) to (6) above.
Taking Gödel’sC andC0, C1, etc. as our template, consider the following related
sentences:

D0 F(0)

D1 F(s0)

D2 F(ss0)

etc.

and

D ∀y1(∀x2((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1)) → F(y1)).

Conditions (1) to (6) are met byD andD0, D1, D2, etc. By inspection, (1) to (4) are
satisfied.

1. D andD0, D1, etc. are higher-order once defined terms inA andA0, A1, etc.
are replaced by primitive vocabulary.

2. ‘0’ and ‘s’ are arithmetic primitives in the language ofD and D0, D1, etc.,
and natural numbers are the urelements of the lowest-order domain.

3. It is intuitive thatD is a logical consequence ofD0, D1, etc. in these exam-
ples. We can glossD informally as: ‘For all natural numbersy1, F(y1)’—
which is of the form of Tarski’sA. And we can glossD0, D1, etc. informally
as ‘F(0)’, ‘ F(1)’, etc., which are of the form of Tarski’sA0, A1, etc.

4. D is a Tarskian logical consequence ofD0, D1, etc.—taking models to be full
models. We can see this because the only nonlogical constants are ‘0’ and ‘s’,
and the antecedent ofD selects the elements of the domain which belong to
the smallest set containing the bearer of ‘0’, the value of ‘s0’, the value of
‘ss0’, etc. Thus every full model in which the sentencesD0, D1, etc. are all
true is a model in whichD is true also. ThusD is a logical consequence, by
Tarski’s definition, when we read ‘model’ as full model, ofD0, D1, etc.

It remains to show the following:

5. D0, D1, etc. are all proof-theoretic consequences of some presupposed the-
ory, butD is not.

6. Gödel’s result can be used to show that proof-theoretic methods cannot cap-
ture all such inferences.

We can show that (5) is satisfied relative to Gödel’s theoryP. The axioms ofP are
given as open sentences or schemas:

I 1 ¬(sx1 = 0)

2 (sx1 = sy1) → (x1 = y1)

3 (x2(0) & ∀x1(x2(x1) → x2(sx1))) → ∀x1(x2(x1))
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II 1 p ∨ p → p

2 p → p ∨ q

3 p ∨ q → q ∨ p

4 (p → q) → (r ∨ p → r ∨ q)

III 1 ∀xn(A) → A(c/xn)

where ‘c’ is any sign of the same type as ‘xn’ and ‘c’ does not contain
any variable that is bound inA at a place where ‘xn’ is free.

2 ∀xn(B ∨ A) → B ∨ ∀xn A(xn) provided ‘xn’ is not free inB.

IV ∃xn+1(∀xn(xn+1(xn) ↔ A)) provided ‘xn+1’ does not occur free inA.

V ∀xn(xn+1(xn) ↔ yn+1(xn)) → xn+1 = yn+1.

The rules of inference ofP are:

R1 FromA, we may infer∀vA, wherev is any variable of any order.
R2 From¬AvB andA we may inferB.

Given that ‘F’ is Gödel’s predicate, we have immediately that D0, D1, etc. are proof-
theoretic consequences ofP since they are identical toC0, C1, etc. which Gödel has
shown to be proof-theoretic consequences ofP. It remains to show thatD is not a
proof-theoretic consequence ofP.

Proof Suppose for reductio thatD is a proof-theoretic consequence ofP. We have
as theorems ofP:

1. ∀y1(∀x2((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1)) → F(y1))

i.e., D

2. ∀x1(x2(x1)) → x2(y1) From axiom III1

3. ((x2(0) & ∀x1(x2(x1) → x2(sx1))) → ∀x1(x2(x1))) →

((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1))

From (2), axiom II4, and def. of ‘→’, by R2

4. (x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1)

From (3), axiom I3, and def. of ‘→’, by R2

5. ∀x2((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1))

From (4), by R1

6. ∀x2((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1)) → F(y1)

From (1), axiom III1, and def. of ‘→’, by R2

7. F(y1) From (5), (6), and def. of ‘→’, by R2

8. ∀y1F(y1) From (7), by R1

But Gödel has proved that (8) isnot a proof-theoretic consequence ofP, if P is ω-
consistent. ThereforeD, that is, (1), is not a proof-theoretic consequence ofP, if P
is ω-consistent. �

SinceD0, D1, etc. are proof-theoretic consequences ofP but D is not, if P is ω-
consistent, condition (5) is satisfied.
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It follows that condition (6) is also satisfied: the example generalizes to block a
proof-theoretic account of logical consequence. We can rewrite D more fully as

D ∀y1(∀x2((x2(0) & ∀x1(x2(x1) → x2(sx1))) → x2(y1)) → ¬ProvP(y1, m))

where ‘m’ codes for ‘∀y1¬ProvP(y1, m)’. Gödel has shown that whatever recur-
sively specifiable set of axioms we add toP to form an extended systemP∗, we can
construct an object language sentence ‘∀y1¬ProvP∗(y1, m∗)’, where ‘m∗’ codes for
this sentence, which is not a proof-theoretic consequence of P∗, if P∗ is consistent.
From this we can construct an example:

D∗
0 ¬ProvP∗(0, m∗)

D∗
1 ¬ProvP∗(s0, m∗)

D∗
2 ¬ProvP∗(ss0, m∗)

etc.

and

D∗ ∀y1(∀x2((x2(0) & ∀x1(x2(x1)→x2(sx1)))→x2(y1))→¬ProvP∗(y1, m∗)).

The arguments to show thatD and D0, D1, etc. satisfy conditions (1) to (5) apply
to D∗ andD∗

0, D∗
1, etc. Hence our final condition (6) is also satisfied: the example

D andD0, D1, etc. generalizes to block a proof-theoretic account of logical conse-
quence.9

5 Conclusion

The exampleD and D0, D1, etc. and others of the ilkD∗ and D∗
0, D∗

1, etc. are all
constructed from material Tarski was thoroughly familiar with, and it would have
been clear to him that they satisfied conditions (1) to (6). Socharity requires that in
drawing our attention toA andA0, A1, etc. he had such examples in mind as well as
those described by Gómez-Torrente. Charity requires this because the motivation he
offers for his definition of logical consequence is then independent of any personal
commitment to identifying numbers as higher-order set-theoretical objects. It thus
complements Gómez-Torrente’s account by explaining why Tarski could claim to be
explicating the concept of logical consequence common to mathematical logicians—
whether or not they made such identifications. Charity requires this also because it
explains a further feature of Tarski’s [12]. The application of Tarski’s definition of
logical consequence to a sentenceX and a set of sentencesK depends upon two
parameters: which terms, if any, inX and the members ofK are defined terms as
against primitive terms, and, having eliminated defined terms, which, if any, of the
remaining primitives are logical constants as against nonlogical constants? Each
parameter may affect the output of the definition. Thus, taking ‘0’, ‘1’, etc. and
‘natural number’ as primitives but nonlogical constants,A is not a Tarskian logical
consequence ofA0, A1, etc., but taking them as logical constants (Etchemendy) oras
defined terms (Gómez-Torrente),A is a Tarskian logical consequence ofA0, A1, etc.
Tarski was exercised by the need to determine more preciselythe division between
logical and nonlogical constants. He flagged the topic up in [12] as the next big
problem and returned to it in his posthumously published [14]. But he does not
seem to have felt that the division between primitive and defined terms was similarly
urgent. He allowed that in some languages ‘0’, ‘1’, etc. weretaken as primitive and
in others as defined. Perhaps that was because, as far as the crucial inferences of the
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grammatical if not logical formA andA0, A1, etc. were concerned, it didn’t matter to
the output of his definition whether ‘0’, ‘1’, etc. (or ‘0’, ‘s’) were taken as primitive
or defined, so long as ‘natural number’ was taken as a defined term.

Notes

1. Interestingly, Tarski was aware that if the axioms ofT are the Peano axioms, thenT
and the rule of infinite induction is proof-theoretically complete: “In the case of certain
elementary deductive sciences, [the enlargement of the theory by the addition of the rule
of infinite induction] is so great that the class of theorems becomes a complete system
and coincides with the class of true sentences. Elementary number theory provides an
example, namely, the science in which all variables represent names of natural or whole
numbers and the constants are the signs from the sentential and predicate calculi, the
signs of zero, one, equality, sum, product, and possibly other signs defined with their
help” ([11], pp. 260–61).

2. Tarski conceived of a model as mathematicians do: a model of aset of sentencesK
is a structure such that all members ofK receive the value true. Nowadays logicians
standardly conceive of a model of a set of sentencesK as a structure providing a domain
and interpreting the members ofK in such a way that, in general, a member ofK may
receive the value true or alternatively the value false. Hence the standard formulation of
Tarskian logical consequence has become: The sentenceX is a logical consequence of
the sentences of the classK if and only if every model in which all the sentences of the
classK are true is also a model in whichX is true. There is also an issue of whether
in [12] Tarski considered allowing the domains of models to vary, as he did in his [10].
This issue will not concern us here.

3. Logical consequence collapses into material consequence only if Tarski does not allow
the domain to vary when we regard all the terms of the languageas logical. This is
another controversial point in exegesis of Tarski’s paper.However, it is not one we are
concerned with here. It is well discussed in Hodges [8] and Gómez-Torrente [4].

4. I thank a referee for making this point clear to me.

5. I’ve transcribed Tarski’s notation, and will later Gödel’s, into something more familiar.

6. Tarski wrote in a passage quoted above:
In every deductive theory (apart from certain theories of a particularly ele-
mentary nature) . . . ([12], pp. 412–13).

It is reasonable to suppose that by “certain theories of a particularly elementary nature”
he meant first-order theories.

7. Gödel did not need to restrict the quantifier inC because, as we shall shortly see, his
theory P incorporates second-order Peano axioms. Such a theory is categorical: all
models are isomorphic to the natural numbers.

8. On the intended interpretation of the language upon whichP is defined,C codes for
the metalinguistic statement ‘C is not provable inP’. Clearly, in Henkin models in
which C0, C1, etc. are all true butC false, C is not equivalent to that metalinguistic
statement. In some Henkin models, extra elements in the smallest set containing the
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natural numbers prevent the object language arithmetic function ‘ProvP(x, m)’—where
m codes for ‘∀y1¬ProvP(y1, m)’—coding for the provability inP of C.

9. We could generate other examples somewhat closer toA andA0, A1, etc. In the passage
first quoted Tarski speaks of ‘n’ in An being ‘any symbol’ in any numeral system. We
could take ‘0’ to ‘9’ to be the nonlogical primitives, together with a primitive multiadic
function symbol taking us from, for example,〈‘1’, ‘0’, ‘7’ 〉 to the number 107. We
would have to bring the definition of ‘natural number’ into line with this number system
to complete our example.
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