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Reduction and Tarski’s Definition
of Logical Consequence

Jim Edwards

Abstract  In his classic 1936 paper Tarski sought to motivate his desmiof
logical consequence by appeal to the inference fdPi@), P(1),..., P(n),...
thereforevnP(n). This is prima facie puzzling because these inferences are
seemingly first-order and Tarski knew that Godel had showat-dirder proof
methods to be complete, and becatisdP(n) is not a logical consequence of
P, P(D), ..., P(n),... by Taski’s proposed definition. An attempt to resolve
the puzzle due to Etchemendy is considered and rejectedcahdattempt due
to Gomez-Torrente is accepted as far as it goes, but it isedrghat it raises

a further puzzle of its own: it takes the plausibility of Tkiis claim that his
definition captures our common concept of logical consecgién depend upon
our common concept being a reductive conception. A furth@rpretation of
what Tarski had in mind when he offered the example is prayasging mate-
rials well known to Tarski at the time. It is argued that thiterpretation makes
the motivating example independent of reductive defingiamich take natural
numbers to be higher-order set theoretic entities, andadt @plains why he did
not regard the distinction between defined and primitiventeas pressing, as
was the distinction between logical and nonlogical terms.

1 Introduction
In his classic 1936 papet J] Tarski sought to motivate acceptance of his definition
of logical consequence by discussion of an example. He wrote

Some years ago | gave a quite elementary example of a theach whows
the following peculiarity: among its theorems there ocawtssentences as:

Ag. 0possess the given property P
A1. 1possess the given property P

and, in general, all particular sentences of the form
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An. n possess the given property P

where 1’ stands for any symbol which denotes a natural number in engiv
(e.g., decimal) number system. On the other hand, the ggilvsentence,

A. Every natural number possesses the given property P

cannot be proved on the basis of the theory in question by snefahe normal
rules of inference. This fact seems to me to speak for ithe$hows that the
formalized [i.e., proof-theoretic] concept of consequenas it is generally
used by mathematical logicians, by no means coincides Wweghcommon
concept. Yet intuitively it seems certain that the univessamtenceA follows

in the usual [i.e., pretheoretic] sense from the totalitpafticular sentences
Ag, A1, ..., An,.... Provided all these sentences are true, the sentdnce
must also be true. {f], pp. 410-11)

As Tarski in effect goes on to note, the above fact “speakst$eif” only in the
light of Godel's incompleteness result. For we might conjeethat we could close
the proof-theoretical gap by adding a further rule of infexe, what Tarski called
“the rule of infinite induction according to which the senterA can be regarded
as proved provided all the sentencks A1, ..., An, ... have been proved” (],

p. 411). He summarily dismissed the rule of infinite inductan the grounds that
it is objectionably infinitistic—its application would ra@e an infinite set of sub-
proofs to provide the requisite premisedarski then considered adding to the base
theory T an infinite series of finitistic proof ruleBg, Ry, ..., R, ... such that the
premise ofRg is the arithmetization of the provability &%g, A1, ..., An, ... inthe
theoryT, and the conclusion i8, and the premise dR; is the arithmetization of the
provability of Ag, A1, ..., An, ... in the theory{T U Ry}, and the conclusion i#,
and the premise dR; is the arithmetization of the provability &g, A1, ..., An, ...

in the theory{T U Ry U Ry}, and the conclusion i&—and so on througRs, Ry, etc.
Tarski invoked Goédel to refute the conjecture that such @adaces can close all the
proof-theoretical gaps.

By making use of the results of K. Gédel we can show that thigemture is
untenable. In every deductive theory (apart from certadoties of a particu-
larly elementary nature), however much we supplement ttimary rules of
inference by new purely structural rules, it is possibledaostruct sentences
which follow, in the usual sense, from the theorems of thétlg, but which
nevertheless cannot be proved in the theory on the basig eftitepted rules
of inference. (1.2], pp. 412-13)

Tarski then proceeds to introduce his own model-theoretimdion of logical con-
sequence:

Thesentence Xollows logically from the sentences of the cld§s$f and only
if every model offall the sentences inhe class K is also a model of the
sentence X ([17], p. 417, Tarski's italics)

Prima facie, Tarski’s dialectic is puzzling. It looks as & thought

(i) “[IIntuitively it seems certain that the universal senteA follows in the
usual [i.e., pretheoretic] sense from the totality of matér sentences
Ao, A1, ..., An, .... Provided all these sentences are true, the sentAnce
must also be true.”

(i) Godel has shown that proof-rules cannot capture alhsoferences.

Hence we are motivated to accept his model-theoretic cdiocepf logical conse-
quence. So we seem entitled to expect
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(iif) Such inferences come out valid by Tarski’s model tregmr definition of log-
ical consequence.

This is puzzling for two reasons:

(iv) The inferenceAo, A1, etc. thereforeA is not valid according to Tarski’'s
proposed definition. If we standardly take ‘0, ‘1’, ‘2’, etas proper names
and therefore as nonlogical constants it is easy to find nsoitelvhich
Ao, A1, ..., A, ... are all true butA false. Consider, for example, a model
M of Ag, A1, etc. andA whose domain is the natural numbers, where ‘natural
number’ has its usual interpretation, but ‘0’, ‘1’, ‘2’, etare all assigned
0, and the extension assigned’‘is {0}. Obviously, Ag, A1, etc. are all
true-in-M, andA is not true-inM.

(v) Such examples are seemingly first-order. But as TarkeikrGodel had
shown that proof-theoretic consequence and model-theaehsequence
coincide for first-order structures.

In this paper we will resolve these puzzles, along with a sgbsnt puzzle which
arises from the solution to the first puzzles.

2 Two Attempts to Resolve These Puzzles

I will consider two attempts to resolve these puzzles: oretduEtchemendy (],
[2]) and the other due to Gomez-Torrentd.[ | shall reject Etchemendy’s “solu-
tion” as not consistent with Tarski's text and clear intens. | shall accept Gomez-
Torrente’s solution as far as it goes, but | shall argue tvatises a further puzzle of
its own: it takes the plausibility of Tarski’'s definition addical consequence to pre-
suppose logicist reductions of arithmetic terms to logteains, which restricts the
scope of Tarski’s definition. Etchemendy’s and GOmez-Tdg's respective “solu-
tions” are polar opposites; my own will occupy a place betwiem.
First we consider Etchemendy. He notes that the inferenoe fo, Az, etc. toA
comes out valid, model-theoretically, if we include in [thet of logical con-
stants] the expression “every natural number” as well asctilection of
numerals ‘0", ‘1’, ‘2’, .... | assume this is why Tarski doestrconsider
his account subject to precisely the same criticism he @iracthe [proof-
theoretic] definition. (¢], p. 85)
Of course, if ‘every natural number’ and ‘0, ‘1’, ‘2’, etcralogical constants then
A is indeed a Tarskian logical consequence®af Az, etc. However, this solution
would lead to disaster for Tarski's project. Etchmendy s@tisewhere:
Godel sentences are a hit trickier, due to their potentigetya all that we
can really say is that they will indeed come out as consedsenf their
corresponding theories if we treat all expressions in timguage as logi-
cal constants. Unfortunately, this involves a certaindtization of Tarski's
Analysis. For with this choice of logical constants, a treatence is a logical
consequence of any set of sentences whatsoeugrp([73)
Actually, it's a complete trivialization, in Tarski’'s ownew. If all the primitive terms
of the language are counted as logical constants, then,rski Taought, Tarskian
logical consequence collapses into material consequsongthing he pointed out
himself in the same paper in which he offered his definitiotogfcal consequence:
In the extreme case we could regard all the terms of the layegaa logical
[i.e., as logical constants]. The conceptfofmal [= logical] consequence
would then coincide with that ofmaterial consequence. The sentenge



52 Jim Edwards

would in this case follow from the clads of sentences if eitheK were
true or at least one sentence of the cléiswere false’ ([12], p. 419, Tarski’'s
italics)

Tarski closes the paper by remarking that the distinctiaween logical and non-
logical constants is the next big unsolved problem. If Etobedy were right it
would have been solved. Goédelianinferences require that there are no nonlog-
ical constants!—well, except perhaps in those deductigerigs “of a particularly
elementary nature” to which Godel’s result does not apply.

I regard it as incredible that Tarski, in the same paper, lshiwave raised the issue
of inferences fromAg, A1, etc. to A, used it to dismiss proof-theoretic conceptions
of logical consequence, proposed his model-theoreticratee, and not thought
that it could meet the challenge. But | regard it as equaltyedible that he should
have thought that his model-theoretic conception met tlalatige in a way that, in
his view, collapsed logical consequence into material equence, especially as, in
that same paper, he is explicitly aware of the danger, andplcily regards the
division between logical and nonlogical constants as am opestion.

As Etchemendy reads Tarski, ‘natural number’ and ‘0, ‘2’, 'etc. are all logical
constants. As Gémez-Torrente reads Tarski, none are.

The solution suggested by the textual evidence is that whaeiMes his moti-
vating example Tarski is not thinking of the arithmeticabesssions as prim-
itives, but as defined terms; defined, that is, with the helpgital constants,
within the framework of a sufficiently powerful logical thio ([4], p. 136)

GOmez-Torrente takes his cue from the first sentence of tesage from Tarski
quoted above: “Some years ago | gave a quite elementary deafrgptheory which
shows the following peculiarity.” Tarski was there refagito his [L3]. In the formal
language discussed ind], ‘natural number’, ‘0", ‘1’, ‘2’, etc. do not appear. The
language in which the theory is expressed contained theitprensentential func-
tions negation and material implication, the universalmiifi@r, and nothing else
except variables. The variables were sorted into types.s Tk, ‘ x3, *x3', etc.
were all first-order variables whose values were individdiadm the domain. And
‘2, *x2, 'x2', etc. were all second-order variables whose values weiseagen-
dividuals from the domain. And so on for variables of all #nitrders. Any of
these variables could be quantified over. An atomic opereserttook the form
xi”“(xjf‘). In addition to the primitive signs—’, * —', and ¥, he introduced as de-
fined signs¥', ‘ v','&’," «’, and '=". The theory defined on this language was a set
of standard axioms—propositional and quantification axpptus axioms of com-
prehension and extensionality for each type, and an axionfiafty for the objects

of lowest type—and the consequences of these axioms unbstitstion, detach-
ment, universal introduction, and elimination. The termattiral number’, ‘0’, ‘1’,

‘2’, etc. did not appear in this language as primitives, tjftothey may be introduced
as defined terms. So, as Gomez-Torrente reads Tarski, ahatumber’, ‘0’, ‘1’,

‘2, etc. in [17] are definedterms. As such they are not, pace Etchmendy, logical
constants, but are to be eliminated fra¥g, A1, ..., An, ... and A before Tarski's
definition is applied to see whethéris a logical consequence 8h, A1, etc. Tarski
draws our attention to “the necessity of eliminating any ridi signs which may
possibly occur in the sentences concerned, i.e., of regldbem by primitive signs”
([12), p. 415). Once ‘natural number’, ‘0’, ‘1’, ‘2’, etc. have be eliminated fromA
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and Ag, A1, etc., Gomez-Torrente argues, the puzziesand(v) above may be re-
solved. Puzzle (iv) is resolved. The numerals ‘0’, ‘1’, etnd the predicate ‘natural
number’ are not primitive signs and so have been eliminatgdvor of basic vo-
cabulary before the definition of logical consequence idie@pSo, “since the only
extra-logical constants subject to reinterpretation anttst for logical consequence
will appear, if there are any, in the predicaé ([4], p. 136), A will be a logical
consequence g, A1, etc. by Tarski's definition. Puzzle (v) is also resolvédand
Ap, A1, etc., once primitives have been eliminated, are reveaddgher-order; to
them Godel's completeness result does not apply.

However, it is worth noting, to avoid exegetical confusitimt the relation be-
tween Tarski's 12] and his [L3] is more complex than has been revealed so far.
In his [13], Tarski drewparticular consequences from the theory described and he
showed, in the light of those consequences, that the theasyconsistent but not
w-complete. But these particular consequencesarthe example Gomez-Torrente
takes Tarski to have in mind asand Ao, Ay, etc. in his [L7.* The particular con-
sequences discussed irf] take the following forms’

Bo  WxZ(Vxi-x2(x}) — Ixi-x2(x})

Br  Vx2@AxIVxIOZ(x3) — x3 = x}) — IxI-x3(x}))

Bn  WXZ@EX]...3xivxl,  (x(xt, ) —

1 1 1

— _ vl 120yl
Xy = X7 VooV X = Xp)) = 3IXTXT(XY))

Tarski [13] showed that whereas each of the above is a proof-theo@igeguence
of the axioms, the following is not:

B WXZ(WXA(VXaVX3((YX1=Xx3(x]) v (x3(x3) & IxTVx3 (X5 (x3) <
x2(x3) v x] = xH))) = x3(x2) — x3(x3)) — IxI-xZ(x)).

B andBg, Bs, ..., Bp, ... would not have served Tarski’'d §] purpose since they
are not examples dhandAg, A1, ..., An, ..., evenwhen ‘0’, ‘1, etc. and ‘natural
number’ have been eliminated by definition from the latter By, B1, ..., By, ...

did not exhibit a common logical form. Rather, a string oftfiosder existential
guantifiers grew by one each time as the series progressédharmatrix which
they governed changed in tandem to provide a further argupiece. In effectBg
stated of the empty lowest-order set, that there is somgthithe domain which is
not a member of it.B; stated of each lowest-order set with at most one member,
that there is something in the domain which is not a member éfiid By, stated of
each lowest-order set with at mastmembers, that there is something in the domain
which is not a member of it. The supposed analogue of the asiwei A would have
been of quite a different form again, involving a third-ordeantifier.

B WX2(WXA(VX3VX3((YXi—x3(x}) v (x3(x3) & IxTVxI(X3(x3) <

(x2(x3) v x] = xH)) = x3(x2) — x3(x3) — IxI-xZ(x})).
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The content oB is hard to read straight off. Its structure can be simplifeed t
Vx2(Vx3p (X2, x3) — Ixf-xZ(x})

where the conditiotyx3p(x2, x3) ensures thak? has at most a finite number of
members. Thu$B states in effect that no finite lowest-order set containghel
members of the domain. Tarski shows that, relative to hisobébgical axioms
and rules of inferenceBy, B1, etc. are all proof-theoretic theorems, itis not.
However, B and By, B1, etc. are not of the form# and Ag, A1, etc. even after
we have eliminated ‘0, ‘1", etc. and ‘natural number’ frofand Ag, A1, etc. by
standard definitions. So we need to 8eand By, B;, etc. aside as a red herring,
from the point of view of 7], as understood by Gomez-Torrente.

3 A Further Puzzle

Puzzlement resolved? Not really. As Gomez-Torrente acledyes, the examples
he describes carry a commitment to the reductive definitafnrsumeric terms fa-
vored by logicists.

If the predicate ‘to be a natural number’ and the numerals10’‘2’, etc. are
defined in the logicist fashion within the framework of an agguiate logical
theory, A will follow from Ag, A1, etc. according to Tarski's definition. . . .
(141, p- 136)

Those definitions identify numbers as higher-order setritesal entities—for ex-
ample, 0= {x : x # x}, 1 = {0}, 2 = {0, 1}, etc. A number of such definitions were
current at the time. If such were thaly examples Tarski had in mind, then he would
have been committed to holding that our intuition tiafollows from Ag, Az, etc.
is accounted for by his definitioanly if we accept that numbers are higher-order
set-theoretic entitiesCertainly such was the view of many, including Tarski hitf)se
at the time—he spoke of such reductions being “one of thedgstrachievements
of recent logical investigations” (Tarsk®], p. 81). However, it would be surpris-
ing if Tarski thought his definition of logical consequentself presupposed such
a reduction, as distinct from being merely consistent wlthm. After all, Tarski
expected that Godel would agree that, intuitivelyfollows from Ag, Az, etc. And
Tarski hoped that Godel too could accept his definition ofdalgconsequence as
capturing such intuitions. But Tarski also recognized thaherals are primitives in
the language of Godel'sS] and in the deductive systef which Godel expressed
using that language. He wrote of the formal language3hfdjomparing it to that of
his own [L1]:

Apart from certain differences of a “calligraphical” natuthe only distinc-

tion lies in the fact that in the systef, in addition to the logical constants,

certain constants belonging to the arithmetic of the naturebers also oc-

cur. ([11], p. 247-48, ft. 1)

Since the only arithmetic constants in the language on wRighdefined are ‘0’ and
‘s, the successor function, Tarski himself was reading ttessprimitive symbols,
and asonrlogical constants of the language in which the®rys written. | shall set
out systenP shortly, but it is easy to see—from axioms 11 —13, and rulenéience
R1 below—that the natural numbers, 0 and all its succesamrshe denizens of the
lowest-orderdomain and so cannot be defined in that language in a logiskidn as
higher-order entities. Tarski certainly thought his deifam of logical consequence
applicable to the sentences of Godel's formal language-#foot it would be an
obvious and grave defect. And it is reasonable to supposélénsaki thought that
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logicians who took Gddel's formal language as ontologichksic and who read
A and Ag, Az, etc. in terms of that language, would have agreed #attuitively
follows from Ag, A1, etc. and would have expected this intuition to be honored by
satisfactory definition of logical consequence. We haveyrbseen how to do this.
This is the further puzzle.

4 The Last Puzzle Resolved

To resolve this puzzle, | shall argue that when drawing diendibn toA andAg, As,
etc. Tarski had examples in mind other than those descrige@dmez-Torrente.
These other examples retain at least some arithmetic tespsmitive. We require
that these additional examples show the following features

1. The examples are higher-order once defined termsand Ag, A1, etc. are
replaced by primitive vocabulary, thus avoiding Gédel'shgdeteness result
for first-order theorie$.

2. However, some arithmetic terms appear as primitives,ratdral numbers
are the urelements of the lowest-order domain.

3. Itis intuitive that the counterpart & (i.e., A once defined terms have been
eliminated) is a logical consequence of the counterpart8fA;, etc. in
these examples.

4. The counterpart oA is a logical consequence of the counterpartd@fAs,
etc. according to Tarski’s own definition of logical conseque, given a plau-
sible distinction between logical and nonlogical constant

5. The counterparts dfg, A1, etc. are all proof-theoretic consequences of some
presupposed theory, bitis not.

6. Godel's result can be used to show that proof-theoretibaus cannot cap-
ture all such inferences.

| shall develop an example satisfyind) (to (6), an example which Tarski might
plausibly also have had in mind since it draws on feature$ kmelwn to him at the
time.

Of course Godel himself provided an example closéAtand Ag, A1, etc., an
example employing, according to Tarski, ‘0’ argl &s arithmetic primitives and of
the following form:

Co F(©O
C1  F(s0)
Co F(s9)
etc.

C VX F(x)

Godel showed that each 6%, C1, etc. is a proof-theoretic consequencedobut C

is not. But this is not the example we are looking for. Becahseajuantifier olC is

unrestricted, conditiond] is not met:C is not a logical consequence @6, C1, etc.
according to Tarski’'s own semantic conception of logicalseruencé. As Gomez-
Torrente notes:

If the arithmetical expressions are not logical constaritemthey are primi-
tives of our formalization of arithmeti€ will not be declared a logical conse-
quence of the set of sentendgg, C1, etc. by Tarski’'s definition. ], p. 136,
transposed to my notation)
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However, it is easy to construct an example satisfyindd (6) using Godel’C and
Co, C1, etc. as atemplate. We merely need to restrict the quantifi@to the natural
numbers. The language in which Godel franfedC andCop, C4, etc. was higher-
order with primitive open sentences of the foph1(x"). The language contained
just five primitive constants:—’, * V', * V', ‘0’, and ‘s’. Gddel availed himself of the
defined signs: ‘&’, ="', ‘ «’, * ', * ='. In this higher-order language we can define
‘natural number’ as follows.

Definition 4.1
(Df) ylis a natural numbet df Vx2((x?(0) & Yx1(x2(x1) — x2(sx1)) — x2(yh).

Df ensures thay® is a member of the smallest set which contains 0 and contaéns t
successor of any member. Subject to the comments in the aeagraph, that just
is the set which contains 0, its successyrits success®0, etc. and nothing else.
This is the set of natural numbers.

Df ensures thay! is a member of the smallest set which contains the natural
numbers in the domain o¥x?’. To ensure that the set contains nothing else besides
the natural numbers we require that the domain¥* be the powerset of the
domain of ¥x1'. Otherwise the smallest set which contains 0 and all iteessors
may contain other entities too—there being no smaller séténdomain of ¥x2'.

In so-called Henkin models (which][calls “general models”) the domain ofx?’

is required to be onlgomeset of subsets of the domain ofx}—and in general
the domain of ¥x'’ is someset of subsets of the domain ofx'~'. In Henkin’s
semantics we cannot suppose that, in all models, the smabésontaining the
bearers of ‘0", 80’, ‘s, etc. contains nothing else besides@ s, etc. By
contrast, in so-called full models, the domain ¥k? is the “full” powerset of the
domain of ¥x!" and in general the domain o¥&'’ is the powerset of the domain of
‘vx=1". Hence for Df to define the natural numbers we require thatsémantics
of the language be given in terms of full models, not in terte more general
notion of Henkin models.

Tarski did not have the distinction between Henkin models fufi models to
hand in [L7]. So a question arises regarding his proposed definitioogital conse-
guence:

The sentenc is a logical consequence of the sentences of the &ld@éand
only if every model in which all the sentences of the clKsare true is also a
model in whichX is true.

Can we properly attribute to him a semantics of full models® d&h, for two rea-
sons. Firstly, he commits himself to a semantics of full meder the higher-order
language of his13). He definesx| = x’ asVx; "™ 04 (x}) — X7 ()). For this
definition to assign the identity function te=' requires that the domain ofrxi 1
be the powerset of the domain providing the valuesxbf and ‘x,’. Secondly, he
commits himself to a semantics of full models when he takedebtd have shown
that Godel's theoryP is proof-theoretically incompleteP is a higher-order system
with second-order Peano axioms. And Henkin showed that systems are proof-
theoreticallycompletewith respect to Tarski's definition of logical consequencd a
a semantics of Henkin model§][ If we were to read Tarski's definition of logical
consequence in terms of Henkin models, there would be no geanwvhere coun-
terparts ofA, Ag, A1, etc. are higher-order, where itri®t the case thafo, Az, etc.
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Fp A, and yetA isa logical consequence 8§, A1, etc. on Tarski's proposed defini-
tion.? But clearly Tarski thinks there are such examples. So weldhead Tarski’s
proposed model-theoretic definition of logical conseqeasreferring to full mod-
els, not to Henkin models, when applied to higher-order laggs. Hence we can
take the semantics of the language upon whitaks defined to be a semantics of full
models, and we can take Df to be a definition of natural number.

We can now at last give an example which satisfies conditibns((6) above.
Taking Godel'sC andCy, C1, etc. as our template, consider the following related
sentences:

Do F(0
D1 F(s0)
D, F(sD)
etc.

and

D wyr(Wx2((x2(0) & Yx1(x?(x1) — x2(sx1))) — x2(yh) — F(yh).

Conditions () to (6) are met byD andDg, D1, D2, etc. By inspection,1) to (4) are
satisfied.
1. D andDg, D3, etc. are higher-order once defined termé&iand Ag, Az, etc.
are replaced by primitive vocabulary.

2. ‘0’ and ‘s’ are arithmetic primitives in the language Bf and Dg, D1, etc.,
and natural numbers are the urelements of the lowest-oodeaih.

3. Itis intuitive thatD is a logical consequence &fp, D1, etc. in these exam-
ples. We can glosB informally as: ‘For all natural numbengt, F(yl)—
which is of the form of Tarski'sA. And we can glos®o, D1, etc. informally
as ‘F(0y, ‘ F(1)’, etc., which are of the form of Tarskidg, A1, etc.

4. D is a Tarskian logical consequence®f, D1, etc.—taking models to be full
models. We can see this because the only nonlogical coasten{0’ and &',
and the antecedent &f selects the elements of the domain which belong to
the smallest set containing the bearer of ‘0’, the values6f,‘the value of
‘sq)’, etc. Thus every full model in which the sentend&s D1, etc. are all
true is a model in whiclD is true also. Thu® is a logical consequence, by
Tarski's definition, when we read ‘model’ as full model,B§, D4, etc.

It remains to show the following:
5. Do, D1, etc. are all proof-theoretic consequences of some preseppthe-
ory, butD is not.

6. Godel's result can be used to show that proof-theoretibaus cannot cap-
ture all such inferences.

We can show thatd] is satisfied relative to Godel's theoB. The axioms ofP are
given as open sentences or schemas:
| 1 —=(sxt=0

2 (sxt=syh) - xl=yh

3 (X3(0) & VxI(x2(x1) = x2(sx1))) — vxI(xZ(xby)
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pvp—p
p—pvq
pvg—qvp
(P—>qQ—>TVvVp—>rva
Vx"(A) — A(c/xM)
where ¢’ is any sign of the same type as™ and ‘c’ does not contain
any variable that is bound iA at a place wherex™ is free.
2 vVx'(B Vv A) — B v VYx"A(x") provided X" is not free inB.
v IxMHLvx"(x"1(x") < A)) provided X1 does not occur free im.
\V; VXn(Xn+1(Xn) N yn+1(xn)) s Xn+1 — yn+1'
The rules of inference d? are:

R1 FromA, we may infevv A, wherev is any variable of any order.
R2 From—AuvB and A we may inferB.

Given that ‘F’ is Gédel's predicate, we have immediatelyt thg, D1, etc. are proof-
theoretic consequencesBfsince they are identical Gy, C1, etc. which Gddel has
shown to be proof-theoretic consequence®oflit remains to show thaD is not a
proof-theoretic consequence Bf

P N w NP

Proof Suppose for reductio th& is a proof-theoretic consequenceffWe have
as theorems ofP:
L VYR WX(((0) & VXM (xh) — xP(sxh)) — x2(yh) — F(yh)
ie.,D
2. VxIx3(xhy) — x3(yh From axiom 1111
3. ((X3(0) & YxL(x3(x}) — x%(sx1))) — vxL(x2(x1))) —
((X2(0) & ¥x*(x(xh) — x2(sxh) — x(yh)
From (2), axiom 114, and def. of>’, by R2
4. (x%(0) & Vx1(x2(xh) — x3(sxb))) — x2(yhH
From (3), axiom I3, and def. of>’, by R2
5. Wx2((x2(0) & VxI(x3(x1) — x2(sx1))) — x2(y1)
From (4), by R1
6. VX2((x2(0) & Vx1(x2(x1) = x2(sxh))) — x2(yh)) — F(yh
From (1), axiom IlI1, and def. of>’, by R2
7. Fiyh From (5), (6), and def. of*>’, by R2
8. wylFyh From (7), by R1
But Gddel has proved that (8) i@t a proof-theoretic consequencef if P is w-

consistent. ThereforB, that is, (1), is not a proof-theoretic consequenc® pif P
is w-consistent. O

Since Do, D1, etc. are proof-theoretic consequencesabut D is not, if P is w-
consistent, condition (5) is satisfied.
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It follows that condition (6) is also satisfied: the exampéngralizes to block a
proof-theoretic account of logical consequence. We canite® more fully as

D Vyr(vx2((x2(0) & Vx:(x2(x1) — x2(sx1))) — x2(yH)) — —Prow (yt, m))

where m’ codes for Yyl=Provp(y1, m)’. Gddel has shown that whatever recur-
sively specifiable set of axioms we addRao form an extended systeRi*, we can
construct an object language sententg-=Provp: (y1, m*)’, where ‘m*’ codes for
this sentence, which is not a proof-theoretic consequeh& oif P* is consistent.
From this we can construct an example:

Dy —Prove«(0, m*)

DI —Provp«(s0, m¥)

D3 —Provp:(s0, m*)

etc.

and

D*  VyL(WxZ(x2(0) & VXL (x2(x1) — x2(sx1))) — x2(y1)) = —Prove« (y1, m*)).

The arguments to show th&t and Do, D1, etc. satisfy conditions (1) to (5) apply
to D* and D, D7, etc. Hence our final condition (6) is also satisfied: the exam
D andDg, D3, etc. generalizes to block a proof-theoretic account oicklgconse-
quence’

5 Conclusion

The exampleD and Do, D3, etc. and others of the ilb* and Dj, D], etc. are all
constructed from material Tarski was thoroughly familidathyand it would have
been clear to him that they satisfied conditions (1) to (6)clsarity requires that in
drawing our attention té\ and Ag, A1, etc. he had such examples in mind as well as
those described by Gomez-Torrente. Charity requires #iaiise the motivation he
offers for his definition of logical consequence is then peledent of any personal
commitment to identifying numbers as higher-order sebtbtcal objects. It thus
complements Gémez-Torrente’s account by explaining whigki@ould claim to be
explicating the concept of logical consequence common themaatical logicians—
whether or not they made such identifications. Charity neguihis also because it
explains a further feature of Tarski's§4]. The application of Tarski’s definition of
logical consequence to a senternXeand a set of sentencés depends upon two
parameters: which terms, if any, X and the members df are defined terms as
against primitive terms, and, having eliminated definethgwhich, if any, of the
remaining primitives are logical constants as against oginal constants? Each
parameter may affect the output of the definition. Thus,ngkd’, ‘1’, etc. and
‘natural number’ as primitives but nonlogical constarAss not a Tarskian logical
consequence g, A1, etc., but taking them as logical constants (Etchemendy3 or
defined terms (Gémez-Torrentd) js a Tarskian logical consequenceAy, A, etc.
Tarski was exercised by the need to determine more prediselglivision between
logical and nonlogical constants. He flagged the topic uplii) &s the next big
problem and returned to it in his posthumously publisheq.[ But he does not
seem to have felt that the division between primitive andefiterms was similarly
urgent. He allowed that in some languages ‘0’, ‘1", etc. wake=n as primitive and
in others as defined. Perhaps that was because, as far aadtad iciferences of the
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grammatical if not logical formA andAg, A1, etc. were concerned, it didn’t matter to
the output of his definition whether ‘0’, ‘1’, etc. (or ‘0’s’) were taken as primitive
or defined, so long as ‘natural number’ was taken as a defimed te

1.

Notes

Interestingly, Tarski was aware that if the axiomsTofare the Peano axioms, thén
and the rule of infinite induction is proof-theoreticallyrmaplete: “In the case of certain
elementary deductive sciences, [the enlargement of theythy the addition of the rule
of infinite induction] is so great that the class of theorerasdmes a complete system
and coincides with the class of true sentences. Elementanper theory provides an
example, namely, the science in which all variables reptas@mes of natural or whole
numbers and the constants are the signs from the sentemtigdradicate calculi, the
signs of zero, one, equality, sum, product, and possiblgrogigns defined with their
help” ([11], pp. 260-61).

Tarski conceived of a model as mathematicians do: a modelseft af sentencek

is a structure such that all memberskfreceive the value true. Nowadays logicians
standardly conceive of a model of a set of senteces a structure providing a domain
and interpreting the members Kf in such a way that, in general, a memberkofmay
receive the value true or alternatively the value false.ddehe standard formulation of
Tarskian logical consequence has become: The senténgea logical consequence of
the sentences of the claksif and only if every model in which all the sentences of the
classK are true is also a model in whicK is true. There is also an issue of whether
in [12] Tarski considered allowing the domains of models to vasyha did in his {0].
This issue will not concern us here.

Logical consequence collapses into material consequemgafdarski does not allow

the domain to vary when we regard all the terms of the langw@esglgical. This is

another controversial point in exegesis of Tarski's paptmwever, it is not one we are
concerned with here. Itis well discussed in Hodggsahd Gomez-Torrente].

. I thank a referee for making this point clear to me.

I've transcribed Tarski's notation, and will later Gddelisto something more familiar.

. Tarski wrote in a passage quoted above:

In every deductive theory (apart from certain theories ohtigularly ele-
mentary nature) ... {[2], pp. 412-13).
It is reasonable to suppose that by “certain theories of tcpéarly elementary nature”
he meant first-order theories.

Godel did not need to restrict the quantifier@nbecause, as we shall shortly see, his
theory P incorporates second-order Peano axioms. Such a theoryegocial: all
models are isomorphic to the natural numbers.

. On the intended interpretation of the language upon wiicis defined,C codes for

the metalinguistic statemen€'is not provable inP’. Clearly, in Henkin models in
which Cq, C1, etc. are all true bu€ false, C is not equivalent to that metalinguistic
statement. In some Henkin models, extra elements in theleshalet containing the
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natural numbers prevent the object language arithmetictifom ‘Provp (x, m)'—where
m codes for ¥yl—Provp (y, my'—coding for the provability inP of C.

We could generate other examples somewhat closaraind Ag, A1, etc. In the passage
first quoted Tarski speaks afi“in An being ‘any symbol’ in any numeral system. We
could take ‘0’ to ‘9’ to be the nonlogical primitives, togethwith a primitive multiadic
function symbol taking us from, for examplél’, ‘0’, ‘7’ ) to the number 107. We
would have to bring the definition of ‘natural number’ intodi with this number system
to complete our example.
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