
595

Notre Dame Journal of Formal Logic
Volume 35, Number 4, Fall 1994

Syntactic Refutations against Finite Models
in Modal Logic

TOMASZ SKURA

Abstract The purpose of the paper is to study syntactic refutation systems
as a way of characterizing normal modal propositional logics. In particular it
is shown that there is a decidable modal logic without the finite model property
that has a simple finite refutation system.

1 Introduction The concept of syntactic refutation is both simple and well known.
It consists in refuting a proposition by deriving from it a proposition that has already
been rejected. A syntactic refutation system is a device for refuting propositions by
proofs.

For instance we can prove that for any propositional formulaα, α is not a the-
orem ofCL (Classical Logic) iff there is a substitution instancee(α) of α such that
e(α) → p∧ ¬p ∈ CL. This theorem in fact describes a refutation procedure forCL
and it justifies the following refutation system:

Axiom: � p∧ ¬p (p∧ ¬p is rejected.)

Rules:

(rs)
� e(α)
� α

(If a substitution instance ofα is refutable thenα is refutable.)

(rmp)
� α → β � β

� α

(If α → β is provable andβ is refutable thenα is refutable.)
The above refutation rules were introduced by Łukasiewicz in [3]. Refutation

systems for nonclassical logics can be obtained by adding more axioms or more rules
to the above system (see Goranko [2], Scott [6], and Skura [8], [9], [10], and [11]).

A syntactic refutation system is similar to a semantic model in that both are refu-
tation devices. Semantic models are very useful for obtaining decidability results.
The crucial concept here is the finite model property. If a finitely axiomatizable logic
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has the fmp then it is decidable. However there are logics without the fmp, for in-
stance the remarkable modal logic given by Makinson in [4]. It is natural to ask
whether syntactic refutation systems can be useful in such cases. In this paper we
study syntactic refutation systems for normal modal logics. In Section 3 we construct
such systems for logics with the fmp, and in Section 4, using the results in [4], we
prove that there is a normal modal logic without the fmp that has a surprisingly sim-
ple refutation system. We also show that this logic is decidable.

2 Preliminaries We shall take the symbolFOR to denote the modal language
(FOR,¬,∧,�), whereFORis the set of all formulas generated from the setVAR=
{p, q, p1, p2, . . .} of propositional variables by the connectives¬,∧,�. The con-
nectives∨,→,≡,� are defined in the usual way. Ifαi ∈ FOR (1 ≤ i ≤ n) then∧{αi : 1 ≤ i ≤ n} = α1 ∧ . . . ∧ αn and

∧
∅ = p → p.

Letα ∈ FOR. For anyk ≥ 0 we define [α]k = ∧{�iα : 0≤ i ≤ k}, where�n is a
string ofnboxes. MoreoverSU B(α) is the set of all subformulas ofα, andVAR(α) is
the set of all propositional variables occurring inα. For anyβ ∈ SU B(α), k(β) is the
modal degree ofβ in α, i.e.,k(α) = 0 andk(γ) = k(δ) = k(γ ∧ δ) if γ ∧ δ ∈ SUB(α),
k(γ) = k(¬γ) if ¬γ ∈ SU B(α), andk(γ) = k(�γ)+ 1 if �γ ∈ SUB(α). Also m(α)

is the greatest natural number in{k(β) : β ∈ SUB(α)}. We write X ⊆ f Y instead of
X is a finite subset ofY.

Now a few definitions and facts about modal logics and modal algebras (for a
systematic exposition see Bull and Segerberg [1] or Makinson [5]). A normal modal
logic is a setL ⊆ FORsuch thatK ⊆ L (i.e., L contains the minimal normal modal
logic K) andL is closed under modus ponens, substitution and necessitation.S4 is
a normal modal logic that is especially important for it has the modal reduction law
�α ≡ ��α. In K we have the following replacement law:�k(p)(p ≡ q) → (α(p) ≡
α(q)), wherek(p) is the modal degree ofp in α, while in S4 we have its simplified
version�(p ≡ q) → (α(p) ≡ α(q)).

A modal algebra is an algebraA = (A,−,∩, l ), where(A,−,∩) is a Boolean
algebra andl satisfies the conditionsl1A = 1A, l (a∩ b) = la ∩ lb. An interior algebra
is a modal algebra withl such thatla ≤ a, la ≤ lla. An algebraA is trivial iff |A| = 1.

For anyα ∈ FORwe say thatα is valid in a modal algebraA (in symbolsα ∈
E(A)) iff for every valuationv : FOR→ A we havev(α) = 1A. It is known that
K = ⋂{E(A) : A is a finite modal algebra} andS4 = ⋂{E(A) : A is a finite interior
algebra}.

With every finite modal algebraA we associate a one-one functiongA : A →
VARand we define the description ofA as follows:

�A = ∧{px ∧ py ≡ px∩y : x, y ∈ A} ∧ ∧{¬px ≡ p−x : x ∈ A}
∧ ∧{�px ≡ plx : x ∈ A} where px = gA(x)(x ∈ A).

3 Logics with the finite model property First we construct refutation systems for
the logics determined by finite modal algebras.

Lemma 3.1 If A is a finite nontrivial modal algebra then for anyα ∈ FOR we
haveα �∈ E(A) iff there is a substitution e: FOR→ FORsuch that e(α) → ([�A]k

→ px) ∈ K for some k≥ 0 and some x∈ A− {1A}.
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Proof: (←) We let v be a valuation onA such thatv(pa) = a (a ∈ A). Then
v([�A]k → px) = x �= 1A. Hence [�A]k → px �∈ E(A). MoreoverK ⊆ E(A) and
E(A) is closed under modus ponens and substitution. Thereforeα �∈ E(A).

(→) Assume thatα �∈ E(A). Thenv(α) �= 1A for some valuationv on A. Let e
be a substitution such thate(u) = pvu (u ∈ VAR). We show that for anyβ ∈ SU B(α)

[�A]k → �k(β)(eβ ≡ pvβ) ∈ K

wherek = m(α). Indeed ifβ ∈ VARtheneβ = pvβ, soeβ ≡ pvβ ∈ K, �k(β)(eβ ≡
pvβ) ∈ K, and [�A]k → �k(β)(eβ ≡ pvβ) ∈ K. Proceed now by induction.

Case 1: β = �γ. Theneβ = �eγ, vβ = lvγ. By the definition of�A we have:

[�A]k → �k(β)(�pvγ ≡ pvβ) ∈ K.

Moreover

[�A]k → �k(γ)(eγ ≡ pvγ ) ∈ K

by the inductive hypothesis. Alsok(γ) = k(β) + 1. Hence

[�A]k → �k(β)(�eγ ≡ pvβ) ∈ K.

Cases 2 and 3: The cases whereβ = γ ∧ δ and whereβ = ¬γ are similar. Therefore

[�A]k → (eα ≡ pvα) ∈ K

whenceeα → ([�A]k → pvα) ∈ K.

In a similar way we can prove that:

Lemma 3.2 If A is a finite nontrivial interior algebra then for anyα ∈ FOR we
haveα �∈ E(A) iff there is a substitution e such that eα → (��A → px) ∈ S4 for
some x∈ A− {1}.

We say that a normal modal logicL has the finite model property iff, for some
setM of finite modal algebras,L = ⋂{E(A) : A ∈ M}.

For any finite nontrivial modal algebraA we define the following set of formu-
las:

R(A) = {[�A]k → px : k ≥ 0, x ∈ A− {1}}.
And for any finite nontrivial interior algebraA we define

r (A) = {��A → px : x ∈ A− {1}}.
Now we can prove the following theorem describing refutation procedures for

normal modal logics with the fmp.

Theorem 3.3 If L = ⋂{E(A) : A ∈ M} and M is a set of finite nontrivial modal
algebras then for anyα ∈ FOR we haveα �∈ L iff there is A∈ M such that eα →
χ ∈ K for some substitution e and someχ ∈ R(A).
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Proof: By Lemma3.1.

For normal extensions ofS4 with the fmp we have the following:

Theorem 3.4 If L = ⋂{E(A) : A ∈ M} and M is a set of finite nontrivial interior
algebras then for anyα ∈ FOR we haveα �∈ L iff there is A∈ M such that eα →
χ ∈ S4 for some substitution e and someχ ∈ r (A).

Proof: By Lemma3.2.

In other words Theorem3.3justifies the following refutation system for a logic
L = ⋂{E(A) : A ∈ M}, whereM is a set of finite modal algebras.

Axioms: � χ (χ ∈ R(A), A ∈ M)

Rules:rs, rmp.

(And for normal extensions ofS4 wewould haver (A) instead ofR(A).)
ComparingR(A) with r (A) we can see that the formulas inR(A) have uncom-

fortable strings of boxes and, what is more,R(A) is infinite whiler (A) is finite. We
can avoid these features and obtain uniform refutation systems for normal modal log-
ics by using sequential refutation systems. In order to introduce such systems we need
some definitions. A sequent is a pairX/α, whereX∪{α} ⊆ f FOR. Recall that every
setP of sequents determines a structural consequence relation�P defined as follows:
for anyX ∪{α} ⊆ f FOR, X �P α iff there is a finite sequenceϕ1, . . . , ϕn of formulas
such thatϕn = α and for each 1≤ i ≤ n eitherϕi ∈ X or for some substitutione and
someY/β ∈ P we haveeY⊆ {ϕ1, . . . , ϕi−1}, eβ = ϕi .

By a sequential refutation system we mean a pair(P, N), whereP, N are sets
of sequents. (Intuitively speakingP is a set of accepted inferences andN is a set of
rejected inferences.) A sequential refutation system(P, N) is finite iff both P andN
are finite.

We say that a formulaα is refutable in a refutation system(P, N) iff for some
substitutione and someY/β ∈ N we have

e(α), Y �P β.

Remark 3.5 In a general definition we would say thatX/α is refutable in(P, N)

iff for someY/β ∈ N, Y �P′ β, whereP′ = P∪ {X/α}, and our sequential refutation
systems are different from Goranko’s Gentzen-style refutation systems (see [2]).

Now we define the following set of sequents:

PK = {∅/ϕ : ϕ is an axiom ofK} ∪ {p, p → q/q} ∪ {p/�p}.

Remark 3.6 The consequence relation�PK is neither of the two which are usually
considered (one of them being a derivability in a logic given by a set of axioms with
rules modus ponens, substitution and necessitation, and the other the logical conse-
quence generated by modus ponens only).

Further for any finite nontrivial modal algebraA we define

NA = {�A/px : x ∈ A− {1}}.



SYNTACTIC REFUTATIONS 599

Note that for any finite modal algebraA the refutation system(PK , NA) is finite.
Moreover we say that a sequentX/α is valid in a modal algebraA (in symbols

X �A α) iff for any valuationv on A if v(X) ⊆ {1} thenv(α) = 1.

Lemma 3.7 If A is a finite nontrivial modal algebra then for anyα ∈ FOR wehave
α �∈ E(A) iff α is refutable in(PK , NA).

Proof: (←) Assume thatα is refutable in(PK , NA). Then for some substitutione
and somex ∈ A− {1}

eα,�A �PK px.

All sequents in{eX/eα : X/α ∈ PK , e is a substitution} are valid inA, so�PK ⊆�A.
Henceeα,�A �A px. Now supposeα ∈ E(A). Then�A �A px. On the other hand
v(�A) = 1, v(px) = x if v is a valuation onA such thatv(pa) = a, so�A ��A px.
This is a contradiction. Thereforeα �∈ E(A).

(→) By Lemma3.1.

Finally we have the following theorem describing uniform refutation systems
for normal modal logics with the fmp.

Theorem 3.8 If L = ⋂{E(A) : A ∈ M} and M is a set of finite nontrivial modal
algebras then for anyα ∈ FOR we haveα �∈ L iff there is A∈ M such thatα is
refutable in(PK , NA).

Proof: By Lemma3.7.

Thus we have presented a general way of constructing refutation systems for nor-
mal modal logics with the fmp. This construction involves certain formulas “describ-
ing” modal algebras characterizing a given logic so that such refutation systems are
not defined in a purely syntactic way. But when we deal with a specific logicL we can
try to find a genuine syntactic refutation system for it. One way of doing so is to look
for refutation rules of the form: If� α1, . . . ,� αn then� β. Such rules should on the
one hand be valid inL and on the other hand suffice to refute all nonvalid formulas
of L when added to the refutation system forCL. An interesting feature of such rules
is that they express a syntactic property uniquely characterizingL, being valid in no
proper extension ofL. However to findelegantrules of this kind is usually a difficult
formal problem. Goranko has recently given refutation rules for some of the most
important modal logics, in particular very elegant rules forK andKW (see his [2]).
Rules forS4 which are a bit simpler are presented in [9] andin [11].

4 A Logic without the fmp but with a Finite Refutation System In [4] Makinson
defined the Kripke frame(N, R), whereN is the set of natural numbers andxRyiff
x ≤ y+ 1.

Let M be the modal algebra corresponding to(N, R), i.e., M = (2N,−,∩, l ),
wherel (X) = {a : ∀b(aRb⇒ b ∈ X)} (X ⊆ N). We are going to consider the sub-
algebraB of M generated from the setC = {Ci : i ≥ 0}, whereCi = N − {i} (i ≥ 0).
Note thata ∈ B iff either a = ⋂

Y or a = −⋂
Y for someY ⊆ f C.

For any∅ �= Y ⊆ f C the symboli(Y) will denote the greatest natural number
in {i : Ci ∈ Y}. Moreover for anyY ⊆ f C we defineȲ as follows:∅̄ = ∅ andȲ =
{Ci : i ≤ i(Y) + 1} if Y �= ∅. Observe that for anyY ⊆ f C we havel (−⋂

Y) = ∅

andl (
⋂

Y) = ⋂
Ȳ.
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Remark 4.1 Wecould also say thatB is the set of finite and cofinite subsets ofN,
andl is defined thus:l (X) = {i : if j ∈ −X theni > j} if X is infinite andl (X) = ∅

if X is finite.

Now we define the following sequence of formulas:γ0 = p andγi = �i−1 p →
�i p (i ≥ 1). Further for anya ∈ B we define the formulaψa as follows:

• ψa = ∧{γi : Ci ∈ Y} if a = ⋂
Y, Y ⊆ f C

• ψa = ¬∧{γi : Ci ∈ Y} if a = −⋂
Y, Y ⊆ f C

Lemma 4.2 The logic E(B) does not have the fmp.

Proof: By the results in [4] andthe fact thatB is a subalgebra ofM we have that if
E(B) ⊆ E(A) andγ2 �∈ E(A) thenA is infinite. On the other handγ2 is refuted inB
by a valuationv such thatv(p) = C0.

It is not difficult to verify that the following formulas are valid inB.

(0) �α → α

(I) ��α → (�(α → �α) → �2α)

(II) ��α → ��2α

(III) �(α → �α)

(IV) ��α → ��α

(V) �(α ∨ β) → �(�α ∨ �β)

Theorem 4.3 For any α ∈ FOR wehaveα �∈ E(B) iff there is a substitution
e such that�eα → (�k+1��p → p) ∈ T′, where k = m(α) and T′ = T +
{I, I I , I I I , IV, V}.
Proof: (←) Since�k+1��p → p �∈ E(B).

(→) Assume thatα �∈ E(B). Then v(α) �= 1B = N for some valuationv on
B. Let e be a substitution such thate(u) = ψvu (u ∈ VAR). We show that for any
β ∈ SU B(α)

�k��p → �k(β)(eβ ≡ ψvβ) ∈ T′.

Weproceed by induction on the complexity ofβ.

(1) β ∈ VAR. Simple.
(2a) β = γ ∧ δ. Theneβ = eγ ∧ eδ. Let �k��p = λ. Thenλ → �k(β)(eβ ≡ eγ ∧

eδ) ∈ T′. By the inductive hypothesis we haveλ → �k(γ)(eγ ≡ ψvγ ) ∈ T′.
Also k(β) = k(γ). Hence

λ → �k(β)(eβ ≡ ψvγ ∧ ψvδ) ∈ T′.

Now we have the following cases:

Case 1: vγ = ⋂
Y1, vδ = ⋂

Y2. Thenvβ = ⋂
(Y1 ∪ Y2). Henceψvγ ∧ψvδ = ψvβ.

Thusλ → �k(β)(eβ ≡ ψvβ) ∈ T′.
Case 2: Sayvγ = ⋂

Y1, vδ = −⋂
Y2. Thenvβ = −⋂

(Y2 − Y1). Sinceγi ∧
¬γ j ≡ ¬γ j ∈ T (i �= j) wehaveψvγ ∧ ψvδ ≡ ψvβ ∈ T. Thusλ → �k(β)

(eβ ≡ ψvβ) ∈ T′.
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Case 3: vγ = −⋂
Y1, vδ = −⋂

Y2. Thenvβ = −⋂
(Y1 ∩ Y2).

Since¬γi ∧ γ j ≡ ¬(p → p) ∈ T (i �= j) we haveψvγ ∧ ψvδ ≡ ψvβ ∈ T.
Thusλ → �k(β)(eβ ≡ ψvβ) ∈ T′.

(2b) β = ¬γ. Simple.
(2c) β = �γ. Theneβ = �eγ, soλ → �k(β)(eβ ≡ �eγ) ∈ T′. By the inductive

hypothesisλ → �k(γ)(eγ ≡ ψvγ ) ∈ T′. Also k(β) + 1 = k(γ). Hence

λ → �k(β)(eβ ≡ �ψvγ ) ∈ T′.

Wehave the following cases:

Case 1: vγ = ⋂
Y. Thenvβ = ⋂

Ȳ. Now for everyi ≥ 0 wehave

��p → (�γi ≡ �i+1 p) ∈ T + {I, I I }
and

γ0 ∧ . . . ∧ γi ≡ �i p ∈ T

so
��p → (�ψvγ ≡ ψvβ) ∈ T′

�k(β)��p → �k(β)(�ψvγ ≡ ψvβ) ∈ T′.

Furtherk ≥ k(β), so

�k��p → �k(β)(�ψvγ ≡ ψvβ) ∈ T′

and
λ → �k(β)(eβ ≡ ψvβ) ∈ T′.

Case 2: vγ = −⋂
Y. Thenvβ = ∅, ψvβ = ¬(p → p).

Since for everyi ≥ 1

�¬γi ≡ ¬(p → p) ∈ T + I I I

it is easy to show that

�
∨

{¬γi : Ci ∈ Y, i ≥ 1} ≡ ¬(p → p) ∈ T + {I I I , V}.
Hence

�
∨

{¬γi : Ci ∈ Y} → ��¬p ∈ T + {I I I , V}.
Also

��p∧ ��¬p → ¬(p → p) ∈ T + IV

so
��p∧ �

∨
{¬γi : Ci ∈ Y} → ¬(p → p) ∈ T′

and
��p → (�ψvγ ≡ ¬(p → p)) ∈ T′

��p → (�ψvγ ≡ ψvβ) ∈ T′

λ → �k(β)(�ψvγ ≡ ψvβ) ∈ T′

λ → �k(β)(eβ ≡ ψvβ) ∈ T′.

Thereforeλ → (eα ≡ ψvα) ∈ T′, whereλ = �k��p.
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Now we have the following cases:

Case 1: vα = ⋂
Y: Sincevα �= 1, γi ∈ Y for somei ≥ 0. Henceeα → (λ →

γi ) ∈ T′ and�eα → (�λ → �γi ) ∈ T′. Further

��p → (�γi → �i+1 p) ∈ T′

so

�λ → (�γi → �i+1 p) ∈ T′.

Thus

�eα → (�λ → �i+1 p) ∈ T′

and

�eα → (�λ → p) ∈ T′.

Case 2: vα = −⋂
Y: Theneα → (λ → ∨{¬γi : Ci ∈ Y}) ∈ T′, so �eα →

(�λ → �
∨{¬γi : Ci ∈ Y}) ∈ T′. We have already shown that

��p → (�
∨

{¬γi : Ci ∈ Y} → ¬(p → p)) ∈ T′

so

�λ → (�
∨

{¬γi : Ci ∈ Y} → ¬(p → p)) ∈ T′.

Thus

�eα → (�λ → ¬(p → p)) ∈ T′

and

�eα → (�λ → p) ∈ T′

which completes the proof.

Now we define the sequential refutation system
 = (P, {��p/p}), whereP
is the set of the following sequents:

∅/ϕ (ϕ is an axiom ofT)
∅/��p → (�(p → �p) → �2 p)

∅/��p → ��2 p
∅/�(p → �p)

∅/��p → ��p
∅/�(p∨ q) → �(�p∨ �q)

p, p → q/q
p/�p.

Note that
 is finite.

Theorem 4.4 For anyα ∈ FOR wehaveα �∈ E(B) iff α is refutable in
.

Proof: (←) Since��p/p is not valid inB and all sequents inP are valid inB.
(→) By Theorem4.3.
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Therefore there is a normal modal logic without the fmp that has a very simple
refutation system. Now we show that this logic is decidable.

First let us introduce a few definitions. For anyα ∈ FORand any valuationv
on B we define the set

K(α, v) = {i(Y) + 1 : v(β) =
⋂

Y,∅ �= Y ⊆ f C, β ∈ SU B(α)}.
Note that|K(α, v)| ≤ |SUB(α)|. Moreover for any valuationv on B and anyk ≥ 0
we define the valuationvk thus:

vk(u) =
{ ⋂

Yk i f v(u) = ⋂
Y

−⋂
Yk i f v(u) = −⋂

Y
(u ∈ VAR)

whereYk = {Ci : Ci ∈ Y, i < k} ∪ {Ci−1 : Ci ∈ Y, i > k} (Y ⊆ f C).

Lemma 4.5 For any valuationv on B and anyα ∈ FOR we have if k �= 0, k �∈
K(α, v) then

vk(β) =
{ ⋂

Yk i f v(β) = ⋂
Y

−⋂
Yk i f v(β) = −⋂

Y
(β ∈ SU B(α))

Proof: By induction on the complexity ofβ.

(1) β ∈ VAR. Obvious.
(2a) β = γ ∧ δ. Then we have the following cases:

Case 1: vγ = ⋂
Y1, vδ = ⋂

Y2. Thenvβ = ⋂
(Y1 ∪ Y2). By the inductive hy-

pothesisvkγ = ⋂
Yk

1 . Hencevkβ = vkγ ∩ vkδ = ⋂
Yk

1 ∩⋂
Yk

2 = ⋂
(Yk

1 ∪
Yk

2 ) = ⋂
((Y1 ∪ Y2)

k).

Case 2: vγ = −⋂
Y1, vδ = −⋂

Y2. Then vβ = −⋂
(Y1 ∩ Y2). By the inductive

hypothesisvkγ = −⋂
Yk

1 . Hencevkβ = −⋂
Yk

1 ∩ −⋂
Yk

2 = −⋂
(Yk

1 ∩
Yk

2 ) = −⋂
((Y1 ∩ Y2)

k).

Case 3: Sayvγ = ⋂
Y1, vδ = −⋂

Y2. Thenvβ = −⋂
(Y2 − Y1). By the in-

ductive hypothesisvkγ = ⋂
Yk

1 , vkδ = −⋂
Yk

2 . Hencevkβ = ⋂
Yk

1 ∩
−⋂

Yk
2 = −⋂

(Yk
2 − Yk

1 ) = −⋂
((Y2 − Y1)

k).

(2b) β = ¬γ. Simple.
(2c) β = �γ. Then we have the following cases:

Case 1: vγ = ⋂
Y. Then vβ = ⋂

Ȳ. By the inductive hypothesisvkγ = ⋂
Yk.

Sincek �∈ K(α, v), k �= i(Y) + 1. Now if 0 < k ≤ i(Y) then i(Yk) =
i(Y) − 1, sovk(β) = lvkγ = l

⋂
Yk = ⋂{Ci : 0 ≤ i ≤ i(Y)} = ⋂

Ȳk.
And if k > i(Y) + 1 thenYk = Y andȲ = Ȳk, sovkβ = lvkγ = l

⋂
Yk =

l
⋂

Y = ⋂
Ȳ = ⋂

Ȳk.

Case 2: vγ = −⋂
Y. Thenvβ = ∅ = −⋂

∅. By the inductive hypothesisvkγ =
−⋂

Yk. Hencevkβ = lvkγ = l − ⋂
Yk = ∅ = −⋂

∅ = −⋂
∅

k.

Now we define the following finite subsets ofB:

An = {X : X =
⋂

Y or X = −
⋂

Y, Y ⊆ {Ci : 0 ≤ i ≤ n}} (n ≥ 0).
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Lemma 4.6 For anyα ∈ FOR and any valuationv on B we have ifv(α) �= 1B,

m > |SU B(α)| + 3 then there is a valuationv′ on B such thatv′(SU B(α)) ⊆ Am−1

andv′(α) �= 1B.

Proof: Assume thatvα �= 1B, m >| SU B(α) | +3. Then eithervα = ⋂
Y, Cj ∈ Y

for some j ≥ 0 or vα = −⋂
Y.

Case 1: vα = ⋂
Y, Cj ∈ Y: Sincem > |SUB(α)| + 3, there isk ≤ m such that

k �∈ K(α, v), k �= j, k �= 0. Let v′ = vk. By Lemma4.5 we havevkα = ⋂
Yk. If

k > j, thenCj ∈ Yk andvkα �= 1B. If k < j, thenCj−1 ∈ Yk andvkα �= 1B. Therefore
vkα �= 1B andv′α �= 1B. Also v′(SUB(α)) ⊆ Am−1 by Lemma4.5.

Case 2: vα = −⋂
Y: Let j be the smallest natural number in{i : Ci �∈ Y}. Then

there isk ≤ m such thatk �= 0, k �∈ K(α, v), k �= j. Hence by Lemma4.5, vkα =
−⋂

Yk, sovkα �= 1B. Let v′ = vk. Thenv′α �= 1B andv′(SUB(α)) ⊆ Am−1.

Lemma 4.7 For any α ∈ FOR and any valuationv on B we have ifv(α) �= 1B

then there is a valuationv′ on B such thatv′(α) �= 1B andv′(SUB(α)) ⊆ An, where
n = |SUB(α)| + 3.

Proof: By Lemma4.6.

Finally we can prove that the logicE(B) is decidable.

Theorem 4.8 For anyα ∈ FOR we haveα ∈ E(B) iff v(α) = 1B for every valu-
ation v on B such thatv(VAR(α)) ⊆ An, where n= |SU B(α)| + 3.

Proof: By Lemma4.7.

SinceE(B) is decidable, it has a recursive axiomatization. Whether it has a sim-
ple and finite one is another problem and will not be considered here.

Weend this section with some general remarks about refutation systems as a de-
cision method. It is clear that if a logic has a recursive refutation system then the set of
its nontheorems is recursively enumerable so that it is decidable as long as the set of its
theorems is also recursively enumerable. Hence refutation systems provide atheoret-
ical method of obtaining decidability results. Some general definitions and theorems
on that topic can be found in [7]. Moreover a morepractical decision method using
refutation rules of a certain kind is possible. Such rules have the following proper-
ties. First they are of the form: if� α1, . . . ,� αn then� β, whereβ is a formula in
normal form and allαi , after some simple reductions, are simpler (i.e., shorter or hav-
ing fewer variables) and are also in normal form. Second such rules are justified by
theorems of the following kind:� β iff for some 1≤ i ≤ n, � αi . Using such rules
for every formula we can construct either a proof or a disproof of it. This method was
in fact introduced by Scott in [6]. A system of this kind forS4 is presented in [10].
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