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Syntactic Refutations against Finite Models
in Modal Logic

TOMASZ SKURA

Abstract The purpose of the paper is to study syntactic refutation systems
as a way of characterizing normal modal propositional logics. In particular it
is shown that there is a decidable modal logic without the finite model property
that has a simple finite refutation system.

1 Introduction  The concept of syntactic refutation is both simple and well known.
It consists in refuting a proposition by deriving from it a proposition that has already
been rejected. A syntactic refutation system is a device for refuting propositions by
proofs.

For instance we can prove that for any propositional fornayla is not a the-
orem of CL (Classical Logic) iff there is a substitution instarefe) of « such that
e(x) > pA—pe CL. This theorem in fact describes a refutation procedur€for
and it justifies the following refutation system:

Axiom: A pA-p (pA —pisrejected.)

Rules:
= e(w)
(rs) Ta
(If a substitution instance af is refutable them is refutable.)
Fo— n
(rmp) #

(If « — Bis provable angB is refutable them is refutable.)

The above refutation rules were introduced by tukasiewicB]n Refutation
systems for nonclassical logics can be obtained by adding more axioms or more rules
to the above system (see Gorank$ Bcott [6], and Skural], [9], [0}, and [L1]).

A syntactic refutation system is similar to a semantic model in that both are refu-
tation devices. Semantic models are very useful for obtaining decidability results.
The crucial concept here is the finite model property. If a finitely axiomatizable logic
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has the fmp then it is decidable. However there are logics without the fmp, for in-
stance the remarkable modal logic given by Makinsorfih [it is natural to ask
whether syntactic refutation systems can be useful in such cases. In this paper we
study syntactic refutation systems for normal modal logics. In Section 3 we construct
such systems for logics with the fmp, and in Section 4, using the resu@, iweé

prove that there is a normal modal logic without the fmp that has a surprisingly sim-
ple refutation system. We also show that this logic is decidable.

2 Preliminaries  We shall take the symbdFOR to denote the modal language
(FOR —, A, O), whereF ORis the set of all formulas generated from the\é&tR=
{p,q, p1, P2, ...} of propositional variables by the connectivesA, 0. The con-
nectivesv, —, =, ¢ are defined in the usual way. ¢ € FOR (1 <i < n) then
Nai:l<i<n=aiA...Aanand Ao =p— p.

Leta € FOR Foranyk > 0 we ddine [¢]* = A{O'a: 0 <i <k}, whereO"is a
string ofnboxes. Moreove8U B(«) is the set of all subformulas of andV AR(«) is
the set of all propositional variables occurringinFor anyg € SU B(a), k(B) is the
modal degree g8 in ¢, i.e.,k(a) = 0andk(y) = k(8) = k(y A8 if yAS € SUB),
k(y) =k(—y) if =y € SUB(a), andk(y) = k(Oy) +1if Oy € SUB(a). Also m(x)
is the greatest natural number{k(g) : 8 € SUB(«)}. We write X C; Y instead of
X is a finite subset oY.

Now a few definitions and facts about modal logics and modal algebras (for a
systematic exposition see Bull and Segerb@jopf Makinson [E]). A normal modal
logic is a sel. € FORsuch thatk C L (i.e., L contains the minimal normal modal
logic K) andL is closed under modus ponens, substitution and necessit&dois.
anormal modal logic that is especially important for it has the modal reduction law
O« = D0a. In K we have the following replacement la®X® (p= q) — (a(p) =
a(q)), wherek(p) is the modal degree gf in «, while in $4 we have its simplified
versionO(p = q) — (a(p) = a(Qq)).

A modal algebra is an algebfa= (A, —, N, ), where(A, —, N) is a Boolean
algebra and satisfies the conditiod = 1,1 (anb) =Ilanlb. Aninterior algebra
is a modal algebra withsuch thata < a, la < lla. An dgebraA is trivial iff |A] = 1.

For anya € FORwe say thatv is valid in a modal algebra (in symbolse
E(A)) iff for every valuatiorv : FOR — A we havev(a) = 1a. Itisknown that
K= ){E(A) : Ais afinite modal algebjaand$4 = ({E(A) : Ais a finite interior
algebra.

With every finite modal algebré we associate a one-one functigp : A —

V ARand we define the description #fas follows:

Apn = AIPxAPy= Py % YeAIA A{=px=px:Xe A}
A A{Opx = pix : X € A} where py = ga(X)(x € A).

3 Logicswith the finite model property  First we construct refutation systems for
the logics determined by finite modal algebras.

Lemma3.l If Ais a finite nontrivial modal algebra then for any e FOR we
havea ¢ E(A) iff there is a substitution eFOR— FORsuch that éx) — ([Aa]¥
— px) € K forsome k= 0and some x A— {1a}.
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Proof: (<) We let v be a valuation orA such thatv(py) = a (a € A). Then
v([A A% — px) = X # 1a. Hence A a]% — px & E(A). MoreoverK € E(A) and
E(A) is closed under modus ponens and substitution. Therefer&(A).

(—) Assume that ¢ E(A). Thenv(a) # 14 for some valuation on A. Lete
be a substitution such thetu) = p,, (U VAR. We show that for ang € SU B(«)

[AA¢ — OXP (g8 = py) € K

wherek = m(a). Indeed if8 € VARthenes = p,s, soes = p,s € K, 0K (e =
pw) € K, and [AalK — OK® (g8 = pys) € K. Proceed now by induction.

Case 1: g = 0Oy. Thene8 = Oey, vB = lvy. By the definition ofA 5 we have:
[AA¢— OO (@py, = pyp) € K.
Moreover
[An = O ey = pyy) € K
by the inductive hypothesis. Alddy) = k(8) + 1. Hence
[AA]¢— OKP (Dey = pyg) € K.
Cases 2 and 3: The cases wheg= y A § and whered = —y are similar. Therefore
[AA]f — (ex = puy) € K

whenceexr — ([AA]% — puw) € K.
In a similar way we can prove that:

Lemma3.2 If Ais a finite nontrivial interior algebra then for any € FOR we
havea ¢ E(A) iff there is a substitution e such thate> (OAp — px) € A for
some x A— {1}.

We say that a normal modal logic has the finite model property iff, for some
setM of finite modal algebrad, = ({E(A) : A€ M}.

For any finite nontrivial modal algebra we define the following set of formu-
las:

R(A) = {[AA" > px:k=0,xe A—(1)}.
And for any finite nontrivial interior algebra we define
r(A) ={0Ap— px:Xe A—{1}}.

Now we can prove the following theorem describing refutation procedures for
normal modal logics with the fmp.

Theorem33 If L =(){E(A): Ae M} and M is a set of finite nontrivial modal
algebras then for ang € FOR we havea ¢ L iff there is Ae M such that e —
x € K for some substitution e and some= R(A).
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Proof: By Lemmd3.1]
For normal extensions &4 with the fmp we have the following:

Theorem34 IfL =){E(A): Ae M} and M is a set of finite nontrivial interior
algebras then for ang € FOR we havea ¢ L iff there is Ae M such that & —
x € $Afor some substitution e and sorges r (A).

Proof: By Lemmd32

In other words Theoref.3justifies the following refutation system for a logic
L= ){E(A) : Ae M}, whereM is a set of finite modal algebras.

Axioms: - x (x € R(A), Ae M)
Rules:rs, rmp.

(And for normal extensions d¥ we would haver (A) instead ofR(A).)

ComparingR(A) with r (A) we can see that the formulasR{A) have uncom-
fortable strings of boxes and, what is moR&,A) is infinite whiler (A) is finite. We
can avoid these features and obtain uniform refutation systems for normal modal log-
ics by using sequential refutation systems. In order to introduce such systems we need
some definitions. A sequentis a pXifa, whereX U {«} €+ FOR Recall that every
setP of sequents determines a structural consequence refagidefined as follows:
foranyXU{a} Cs FOR XFp «aiffthereis afinite sequenca, . . ., ¢, of formulas
such thatp, = @ and for each k i < neitherg; € X or for some substitutioe and
someY/B € Pwe haveeY C {¢1, ..., ¢i_1}, €8 = ¢j.

By a sequential refutation system we mean a pRirN), where P, N are sets
of sequents. (Intuitively speaking is a set of accepted inferences axds a set of
rejected inferences.) A sequential refutation sys¢&nN) is finite iff both P andN
are finite.

We say that a formula is refutable in a refutation syste@®, N) iff for some
substitutione and someY/B € N we have

e(a),Y Fp B.

Remark 3.5 In a general definition we would say théj« is refutable in(P, N)
iff for someY/B € N, Y Fp B, whereP’ = PU {X/«}, and our sequential refutation
systems are different from Goranko’s Gentzen-style refutation system&{see [

Now we define the following set of sequents:
P« ={9/¢: pisanaxiomofK} U{p, p— q/q} U {p/Cp}.

Remark 3.6 The consequence relatiérp, is neither of the two which are usually
considered (one of them being a derivability in a logic given by a set of axioms with
rules modus ponens, substitution and necessitation, and the other the logical conse-
guence generated by modus ponens only).

Further for any finite nontrivial modal algebrawe define

Na={Aa/px:xe A—{1}}.
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Note that for any finite modal algebrathe refutation systeriPx, Np) is finite.
Moreover we say that a sequeXit is valid in a modal algebra (in symbols
X Fa ) iff for any valuatiorw on Aif v(X) C {1} thenv(x) = 1.

Lemma3.7 If Aisafinite nontrivial modal algebra then for aaye FOR wehave
a & E(A) iff a is refutable in(Px, Na).

Proof: (<) Assume thatr is refutable in(Px, Na). Then for some substitutios
and somex e A — {1}
ex, Ap |—pK Px.

All sequents ifeX/ex : X/a € Pk, eis a substitutioh are valid inA, so-p, Cka.
Henceew, Aa a px. Now supposer € E(A). ThenAa Fa px. Onthe other hand
v(Aa) =1, v(px) = Xif vis avaluation orA such thatv(ps) = a, SOA A A Px-
This is a contradiction. Therefoteg E(A).

(—) By Lemmd3.1]

Finally we have the following theorem describing uniform refutation systems
for normal modal logics with the fmp.

Theorem3.8 If L =(){E(A): Ae M}and M is a set of finite nontrivial modal
algebras then for ang € FOR we havea ¢ L iff there is Ae M such thaty is
refutable in(Px, Na).

Proof: By Lemmd31

Thus we have presented a general way of constructing refutation systems for nor-
mal modal logics with the fmp. This construction involves certain formulas “describ-
ing” modal algebras characterizing a given logic so that such refutation systems are
not defined in a purely syntactic way. But when we deal with a specific logie can
try to find a genuine syntactic refutation system for it. One way of doing so is to look
for refutation rules of the form: ¥ «4, ..., 4 @, then— 8. Such rules should on the
one hand be valid i. and on the other hand suffice to refute all nonvalid formulas
of L when added to the refutation system @ik. Aninteresting feature of such rules
is that they express a syntactic property uniquely characterlzihging valid in no
proper extension df. However to findelegantrules of this kind is usually a difficult
formal problem. Goranko has recently given refutation rules for some of the most
important modal logics, in particular very elegant ruleskoand KW (see his[f)).

Rules for$4 which are a bit simpler are presented@) &ndin [[L1].

4 A Logic without the fmp but with a Finite Refutation System  In [[2] Makinson
defined the Kripke framéN, R), whereN is the set of natural numbers ar®yiff
X<y+1.

Let M be the modal algebra corresponding td, R), i.e., M = N, —.n, D,
wherel (X) = {a: Vb(aRb= b € X)} (X € N). We ae going to consider the sub-
algebraB of M generated from the s& = {C; : i > 0}, whereC; = N — {i} (i = 0).
Note thata € Biff eithera= ()Y ora= — ()Y for someY ¢ C.

For any@ # Y C; C the symboli(Y) will denote the greatest natural number
in {i : G € Y}. Moreover for anyY C C we defineY as follows: & = @ andY =
{Gi:i<i(Y)+1}if Y+# @. Observe that forany < Cwe havel(—(Y) =&
andl(OY) =Y.
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Remark 41 Wecould also say thaB is the set of finite and cofinite subsetsNf
and| is defined thust (X) = {i . if j € —Xtheni > j} if Xisinfinite andl(X) = &
if Xis finite.

~ Now we define the following sequence of formulag:= p andy; = o-1p—
O'p (i > 1). Further for anya € B we define the formula, as follows:

e Va=/A{yi:CeVYjifa=Y, Y C
e Ya=—A{yi:CGeYlifa=—-Y.YZ:C

Lemmad4.2 The logic EB) does not have the fmp.

Proof: By the results indJ andthe fact thatB is a subalgebra df1 we have that if
E(B) C E(A) andy, € E(A) thenAis infinite. On the other hang is refuted inB
by a valuatiorw such thaw(p) = Cy.

It is not difficult to verify that the following formulas are valid .

0) Oa — «
() 0 — (O(a — Oa) - T%)
() OO0 —» O0%
{m (e — Oa)
(V) C0a — OCa
(V) O(x v B) — (0w v OpR)

Theorem4.3 For anyax € FOR wehavea ¢ E(B) iff there is a substitution
e such thatDex — (OKt1oOp — p) € T/, where k= m(e) and T = T +
(L, v, Vi
Proof: (<) Sinceo*t1o0p — p & E(B).

(—) Assume thatr ¢ E(B). Then v(a) # 1g = N for some valuatiorv on
B. Let e be a substitution such thetu) = ¥, (u € VAR). We show that for any
B € SUB)

O*o0p — OKP (e = ) € T'.

We proceed by induction on the complexity gf
(1) B € VAR Simple.
(2a) B=y AS. TheneB = ey A es. Let OKCOp = A. Theni — OKA (g8 = ey A

es) € T'. By the inductive hypothesis we hawe— 0K (ey = v,,) € T'.
Also k(B) = k(y). Hence

r— OKP (g8 =y, AYs) € T

Now we have the following cases:
Case 1: vy = m Y1, v8 = m Ys. Thenvﬂ = ﬂ(Yl UvYs). Hencelpvy AYps = wvﬂ-
Thusi — OKP(eB=yp) € T,

Case 2:Sayvy = (Y1, v8 = —(Y2. Thenvg = —( (Y2 — Y1). Sincey; A
—yj=-y; €T (i # j) wehavey,, A ¥,s = Y5 € T. Thusa — OKB
(B=yup) eT.
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Case 3:vy=—(1Y,v6 =—()Y2. ThenvB= - (Y1 N Y2).
Since—yiAyj=—(p— p) €T (i# ) wehavey,, Ay =vpeT.
Thusi — OKP (g8 =) € T,

(2b) B = —y. Simple.
(2c) B = Oy. Thenes = Oey, sor — OXA) (e = Dey) € T'. By the inductive
hypothesis. — 0K (ey = v,,,) € T'. Alsok(B) + 1 = k(y). Hence

A — 0P (e8=0y,,) eT.
We have the following cases:
Case 1:vy =Y. Thenvg =Y. Now for everyi > 0 we have
COp— (O =0 p) e TH+{I, 11}

and ‘
YoA...Ay=0peT

SO
<>Dp — (Dwvy = wvﬂ) eT
ok® oo p— Dk(ﬁ)(DwUV = Wv/g) eT.
Furtherk > k(B), so
Dk<>|:|p — \:‘k(‘B)(Dl//vy = wvﬁ) eT

and
A= 0P (eB=y) eT.

Case 2:vy =—(Y. ThenvB =@, Y, = —(p — p).
Since for every > 1

O-yi=—(p—>p) T+ Il
it is easy to show that

OV~ :GeYi=l==(p— p eT+{II, V).

Hence

0\/{=%:CieY} > 00-peT+{lIl,V}.
Also
SO

<>DFJ/\D\/{—'M :CieYl>—(p—>peT
and

O0p— (Y, ==(p—> p)eT
COp— (O, =Yp) € T
2= 0P @Yy, =Yy eT
A= OP(eB=y) eT.
Thereforer — (ex = V,4) € T/, wherex = OkCOp.
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Now we have the following cases:

Case 1l:va = [Y: Sinceva # 1, y; € Y for somei > 0. Henceew — (A —
vi) € T'andDex — (OA — Oy;) € T'. Further

oO0p— (Oy — O lpeT

SO
Or — (Oy —» 0OFp) e T
Thus
Dex — (OA — O*lp)y e T/
and

Oex — (OL — p) e T'.

Case 2:va = —(Y: Thenex - (A — \/{~¥i : Ci € Y}) € T, soDex —
(Ox — OV{—y:GC €Y}) € T'. We have already shown that

o0p— @\/{-1:CeY)>—(p—>p)eT

SO
0> @O\/{-n:CeY)>~(p>p)eT.
Thus
Oex — (0L — —(p— pP)eT
and

Oeax — (OAL— p) e T

which completes the proof.

Now we define the sequential refutation systEma= (P, {¢Op/p}), whereP
is the set of the following sequents:

/¢ (¢is an axiom ofT)
@/o0p— (O(p— Op) — 0%p)
@/o0p — ©0%p
a/o(p—Up)
g/o0p — Odp
2/B(pvaq) — <>(@pvog)
p. p— /9
p/op.
Note thatX is finite.
Theorem 4.4 For anyx € FOR we havex ¢ E(B) iff « is refutable inXx.

Proof: (<) Since<¢Op/ pis not valid inB and all sequents iR are valid inB.
(=) By TheorentL.3]
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Therefore there is a normal modal logic without the fmp that has a very simple

refutation system. Now we show that this logic is decidable.
First let us introduce a few definitions. For amy= FORand any valuation
on B we define the set

K (c, v)={i(v)+1:v(5)=ﬂv,@;evgf C,B e SUB)}.

Note that|K («, v)| < |SUB(«)|. Moreover for any valuation on B and anyk > 0
we define the valuatiopy thus:

_ AY< if v(u) =Y
”"(“)_i—mvk it ww=-NY UeVAR

whereYK={Ci:Ci e V,i <kjU{C_1:C eY,i>k} (YZ;O).

Lemma4.5 For any valuationv on B and anyx € FOR we have if k# 0,k ¢
K(a, v) then

_ AY< if v(B) =Y
”"(ﬁ)_{—mvk if v =—NY

Proof: By induction on the complexity of.

(1) B € VAR Obvious.
(2a) B = y A 8. Then we have the following cases:

Case L:ivy = (Y1, v8 =) Y2. ThenvB = (Y1 U Y,). By the inductive hy-
pothesisy = M YK. HencewB = vy Nukd = (N YEN (N YK = N(Yf U
Y5) = N((Y1U Y2)b).
Case 2:vy =—(\Y1,v6 = —() Y2. ThenvB = — (Y1 N Y>). By the inductive
hypothesisky = — () YK. Hencewf = — N YEN — N YX = —N(YfN
Y5) = — NN Y2)¥).
Case 3:Sayvy = [\ Y1,v8 = —(\Y2. Thenvg = —((Y2 — Y1). By the in-
ductive hypothesisiy = N Y[, wd = — (N YX. Hencew = N YEN
—NYS =Nz = YH =-NY2-Y)h.
(2b) B = —y. Simple.
(2c) g = Oy. Then we have the following cases:

Case 1:vy = (Y. Then vB = Y. By the inductive hypothesisy = (0 YX.
Sincek ¢ K(a, v), k #i(Y) + 1. Now if 0 < k < i(Y) theni(Y¥) =
i(Y) =1, sow(B) = luy = INY =G : 0<i <i()} =Y~
Andif k> i(Y)+1thenYk=YandY =YX sonf=lyy=1NY=

(B € SUB))

INY=NY=NY~
Case 2:vy =—[Y. Thenvg = o = — () @. By the inductive hypothesigy =
—NOY< HencenB=lvy=1-NY<=o=-—No=-Nok

Now we define the following finite subsets Bf

An={X:X=[YorX=—[Y.YS({G:0<i<n} (n>0).
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Lemma4.6 For anya € FOR and any valuatiorv on B we have ib(«) # 1g,
m > |SUB(a)| + 3 then there is a valuation’ on B such that/(SUB(x)) € Aqn—1
andv'(a) # 1g.

Proof: Assume thava # 1g, m>| SUB(«) | +3. Then eithena = Y,Cj e Y
for somej > 0 orvae = —Y.

Case 1: va =(Y,Cj € Y: Sincem > |SUB(«)| + 3, there isk < m such that
k¢ K(a,v),k # j,k#0. Letv' = v. By Lemmd4.5lwe haveva = () YK. If
k> |, thenC; € Y<anduka # 1g. If k < j, thenCj_; € Y*andvka # 1g. Therefore
v # 1g andv'a # 1g. Also v/ (SUB(w)) € Am_1 by Lemmd4.g

Case 2: va = —[)Y: Let j be the smallest natural number{in: C; ¢ Y}. Then
there isk < msuch thatk # 0,k ¢ K(a, v), k # j. Hence by LemmbLE] v =
—N YK, sovga # 1p. Letv' = v. Thenv'a # 1g andv' (SUB(«)) € An_1.

Lemma4.7 For anya € FOR and any valuatiorv on B we have ib(«@) # 1g
then there is a valuation’ on B such that' («) # 1g andv' (SUB(a)) C A,, where
n=|SUBu)|+ 3.

Proof: By LemmdZd
Finally we can prove that the logiE(B) is decidable.

Theorem 4.8 For anya € FOR we havea € E(B) iff v(«) = 15 for every valu-
ationv on B such thab (VAR(«)) € An, where n= |[SUB()| + 3.

Proof: By LemmdZ.7]

SinceE(B) is decidable, it has a recursive axiomatization. Whether it has a sim-
ple and finite one is another problem and will not be considered here.

We end this section with some general remarks about refutation systems as a de-
cision method. Itis clear that if a logic has a recursive refutation system then the set of
its nontheorems is recursively enumerable so that it is decidable as long as the set of its
theorems is also recursively enumerable. Hence refutation systems proivicheet-
ical method of obtaining decidability results. Some general definitions and theorems
on that topic can be found ifY]. Moreover a morgractical decision method using
refutation rules of a certain kind is possible. Such rules have the following proper-
ties. First they are of the form: il a1, ..., 4 an thenH B, whereg is a formula in
normal form and all;, after some simple reductions, are simpler (i.e., shorter or hav-
ing fewer variables) and are also in normal form. Second such rules are justified by
theorems of the following kindt- g iff for some 1< i < n, F «;. Using such rules
for every formula we can construct either a proof or a disproof of it. This method was
in fact introduced by Scott ifg]. A system of this kind fors4 is presented in10).
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