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Belief Revision and Verisimilitude

MARK RYAN and PIERRE-YVES SCHOBBENS

Abstract  TheEgli-Milner power-ordering isused to define verisimilitude or-
derings on theories from preference orderings on models. The effects of the
definitions on constraints such as stopperedness and soundness are explored.
Orderings on theories are seen to contain more information than orderings on
models. Belief revision is defined in terms of both types of orderings, and con-
ditions are given which make the two notions coincide.

1 Introduction Belief revision and verisimilitude involve very similar notions. In
both cases we wish to select a theory according to some notion of ‘closeness to a
given theory. In the case of belief revision, we are given a sentence, and the selec-
tion is from &l the theories that contain the sentence. In the case of verisimilitude,
the given theory represents the truth, and we are directly given the family of theories
from which to select. But the criterion is the same: we seek atheory in the family of
theories which is closest to the given theory.

From atechnical perspective, however, the two topics have received different
treatments. Our aim in this paper is to formalize the intuitive relations between the
two topics by providing maps which define one concept in terms of the other. Wewill
also consider the topic of preference relations in our analysis. Preference relations
(cf. Shoham [[17], Kraus, Lehman, and Magidor [[5], and Makinson [8]) were defined
to give a semantics to default reasoning. Since the relationship between default rea-
soning and belief revision is so close (cf. Makison and Gardenfors [[10]), preference
relations are also relevant for belief revision.

The formal relationships we will describe are summarized in the following dia-
gram.

belief revision
functions
?/ E
preference B3l verisimilitude

relations 4] relations
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The nodes show the three topics which we interrelate. The arrows represent the defi-
nitions used to transl ate between the concepts, and are labelled by the definition num-
ber in the paper. For example, Definition R.4lshows how to define a belief revision
function from a preference relation.

The paper explores the properties of the transdations. Firstly, we study how the
postulates typically imposed on the three concepts fare under the translation mecha-
nisms. Secondly, we examine under what conditions the above diagram commutes.
For example, suppose we obtain abelief revision function from a preference relation
by passing through averisimilitude relation, using DefinitionsB.3land[3.7] Do we get
the same result if we proceed directly, using Definition2.47

We do not attempt a thorough review of any of the three relevant fields, such
reviews being readily available el sewhere (e.g., Gardenfors 4], Fuhrmann and Mor-
reau [IB] for belief revision, Brink [[L], Kuipers[[6] for verisimilitude, and [[8] for pref-
erencerelations). A brief introduction to verisimilitude is given in Section 3.

The paper is structured as follows. Section 2 discusses belief revision and pref-
erencerelations. Section 3 introduces verisimilitude. Section 4 givesthe results con-
cerning the interrel ationships between the conditions which can be imposed on pref-
erence relations and verisimilitude relations. Section 5 discusses under which cir-
cumstances the diagram commutes by exploring the compositions of the definitions.
Finally, Section 6 draws conclusions.

Preliminaries We assume alanguage £ which has the usual boolean connectives,
aclass M of interpretations of the language, and arelation = in M x L. We as-
sume that = behaves classically with respect to the connectives. If A C L isaset
of sentences, Mod(A) = {me M |V e AmE=vy). If NC M, Th(N) = {p €
L]IVme Nml=¢}. For g € £Lor me M, we will write Mod(g) and Th(m)
instead of Mod({¢}) and Th({m}). Theset N € M of interpretations is closed if
Mod(Th(N)) = N. Theset A C L of sentencesisclosed if Th(Mod(A)) = A. A
closed set of sentencesis aso caled atheory. The set of theories over L is 7. If
Ae T,Ctg(A) ={Be 7| AC B} (thetheories containing A). A theory Aiscom-
pleteif p € Aor —¢ € Aforeach ¢ € L;itisconsistent if o & Aor —¢ ¢ Afor each
¢ € L. The set of complete and consistent theoriesis denoted C7 .

Wewill need to make use of thefact that me Mod(Th(n)) iff Th(m) = Th(n) iff
n e Mod(Th(m)). Thisisproved asfollows. First assumeme Mod(Th(n)); then, for
adlge L,nE=gpimpliesm= ¢, so0Th(n) € Th(m). Now supposen (= ¢; son = —g,
SO M = =g, SO M k& @. Thus, Th(m) € Th(n). Thisisthe only place in the paper at
which we appeal to the classical behaviour of =. Now suppose Th(m) = Th(n); then
Nk ¢ impliesm = ¢, so me Mod(Th(n)). The other half is proved similarly.

If <isarelationontheset X andY C X, theny € Y issaid to be <-minimal in
YifVy eY (Y <y=y=<Y). WededineMin.(Y) ={y e Y| yis<-minima in
Y}. Wedefine |_.Y ={xe X |IdyeY¥Yx<yl,andt.Y={XxeX|IyeYy=<x.
Asusua, X < ymeansx < yand y £ X. -

2 Belief revision via preference relations The classical preference relations ap-
proach to default reasoning works asfollows. Suppose T is some default information
expressed as sentences of the language L. We assume some procedure for deriving
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from T arelation =1 € M x M which measureshow nearly aninterpretation msatis-
fiesthedefault information. By convention, m E+ n meansthat m satisfiesthe default
information as well as n does; we say mis preferred to n. Thereisastrong intuition
that such preference relations should be transitive, though thisis not always assumed
in the literature. We will assumeit. Asto whether they are reflexive or not, this may
be taken as a matter of convention for one can always close under reflexivity or take
the strict (irreflexive) counterpart of arelation. We will assume reflexivity.

Definition 2.1 A preferencerelation C isaternary relation = € M x 7 x M such
that, for all T € 7, the binary relation Ct isreflexive and transitive.

There are severa properties of preference relations which we will sometimes
need. Some, such as stopperedness, are well known in the literature. Others, like the
soundness property below, arise because we have made the parameter T explicit.

Definition 2.2 A preference relation C

1. issound if for any satisfiable T, misCr-minimal in M iff m=T.

2. isstoppered if for all A< £ and m e Mod(A) thereisn € Minz, (Mod(A))
withn St m.

3. isabstract if Th(m) = Th(n) impliesmCt nandn C+ m.

4. preservesclosed setsif, for all T € £ and closed N € M, the sets Ming, (N)
and |- Nand 1N are closed.

5. isstrongly abstract if for all N € M and me Mod(Th(N)) wehavedn, n, €
NniEr mCEr ny.

Theintuition behind the soundness property isthat nothingis* closer” to satisfy-
ing T thanitsmodels. Stopperednessiswell known in the default reasoning literature
and tells us that we can find minimal models of any theory. Abstractness means that
the preference of an interpretation isdetermined only by the sentencesthat it satisfies.
The property of preservation of closed sets just tells us that certain useful operations
on closed sets of interpretations return closed sets. Strong abstractness says that the
preference order cannot make distinctions beyond the granularity of thelogic. It rep-
resents an easy way to check whether the properties of abstractness and preservation
of closed sets are satisfied, as the following lemma shows.

Lemma?2.3 If Cisstrongly abstract, it isabstract and preserves closed sets.
Proof:  Abstractness:

Th(m) = Th(n)= me Mod(Th(n))
= NnCt mCy n(by strong abstractness).

Preservation of closed sets:  Suppose T € £ and N € M isclosed. We prove that

1. Minz, (N) isclosed. Suppose n € Mod(Th(Minz, (N))); we will prove that
n e Minz, (N). By strong abstractness, thereareny, np € Ming, (N) such that
N1 Tt N E7 ny. Since ny and ny are both minimal and n; =1 ny, we also have
that n, Tt ny. But ny T n, so by transitivity n, T+ n, i.e., they are all equiv-
dent, son € Minz, (N).

2. |, Nisclosed. Supposen € Mod(Th({, (N))); weproven e | (N). By
strong abstractness, thereareny, Nz € |- (N) suchthat n; Tt nC1 np. Since
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N2 € |, (N), we have n, Tt mfor some m e N; by transitivity, n ©+ mand
sone |- (N).
3. P, Nisclosed: similar.

In the standard account of preferencerelations, T isleft implicit, and afixed or-
dering C isassumed. This more general account presents T as a parameter. In other
work the authors and colleagues have described two preference structures; one based
on the notion of “natural consequence” (asin Ryan [[12]) and one based on distances
between models (as in Ryan, Sernadas, and Sernadas [[13]). In [[15], Schobbens de-
fines a preference structure for predicate logic based on correspondences.

Given apreferencerelation, we may defineaninferencerelation. Let Aand T be
sets of sentences and ¢ asentencein L. Theinferencerelation ~ C P(L) x T x L
is defined asfollows:

AT ¢ = Minz, (Mod(A)) € Mod(g).

We will write ¥ b1 ¢ instead of {y/} 1 ¢. The preference relations framework
hasits originsin circumscription (cf. Lifschitz [7]). Extensive work relating proper-
ties of T to properties of |~ can be found in the accounts of Makinson [[9], Kraus,
Lehmann, and Magidor [[B], and Schlechta [[14].

The connection established between default reasoning and belief revision re-
ported in [[10] seemsto be essentially the following. The statement that ¥ ~1 ¢ cor-
responds to the statement that ¢ € T * 1, i.e., that revising the information T with
will result in atheory that includes ¢. In [[10], the authors show that the relationship
between the standard postulates for |~ and for x correspond very closely under this
translation. Thus, a preference relation can be used to define a belief revision opera-
tor.

Definition 2.4 (x interms of C)
T = ¢ := Th(Ming, (Mod(y))).

Thissaysthat to revise T with v, we look at the models of » which are closest to T;
then we take the theory of those models.

This definition isthefirst of the four definitions promised by the diagram in the
introduction. Noticethe notation: wewrite x= for the belief revision function defined
in terms of the preference relation C.

3 Verisimilitude via power orderings The topic of verisimilitude concerns the
measurement of closeness of theoriesto the truth. The ideais to define aternary re-
lation on theories:

A <7 Bif Aisascloseto T as Biis.

Thus, the “truth” is represented as atheory. The actual truth is of course a complete
theory (that is, for all ¢ € L, either ¢ € T or —¢ € T), but many of the definitions
in the literature do not require this. Van Benthem’s [[18] constitutes a very readable
survey of approaches as well as an analysis of the relations between verisimilitude
and conditionals. We will again assume reflexivity and transitivity.
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Definition 3.1 A verisimilituderelation < isaternary relationin 7 x 7 x 7 such
that, for all T € 7T, the binary relation <t isreflexive and transitive.

Theternary relation allows usto select, from agiven range of theories, onewhich
isclosest tothetruthinan obviousway: if thefamily { A; | i € |} of theoriesconsists of
the candidates at hand, then aparticular A; isclosesttothetruthifitis<y-minimal in
{Ai|iel},ie, A eMin., ({A |iel}). Of coursetherecan beseveral incompatible
theories among the candidates, all minimally close.

3.1 History of verisimilitude The first formal definition of this relation is due to
Popper [II]: for theories A, B, and T, he definesthat A <{” Biff BN T < Aand
A — T C B. (The superscript (P) stands for Popper.) Since T contains only true
sentences, the first condition in the definition can be thought of as saying that A has
all thetrue sentencesthat B has. If T isindeed complete, thenitscomplement consists
entirely of false sentences, in which case the second condition means that A has no
more false sentencesin it than B has. If T is not complete then the second condition
isnot so intuitive.

Another definition of the same relation, due to Miller and Kuipers, is A <!
B if Mod(B) N Mod(T) € Mod(A) and Mod(A) — Mod(T) € Mod(B). We can
paraphrase the two conditions as: any model in B which might have been the true
situation must also be amodel in A (so A does not lose any models); and any model
in A which could not have been the true situation must be a model in B (so A does
not introduce any bad models).

We have that

A <P Bimplies A <{ B,

but the converse implication is false. It turns out that both Popper’s definition and
Miller and K uiper’sboth have undesirabl e consequences. Thefollowing observations
are due to Tichy and Miller:

Proposition 3.2
1. A<P BimpliesACT.
2. If T is complete and Mod(B) N Mod(T) = Mod(A) = @ then A <{ B.

The first means that <™ cannot strictly order “false” theories (that is, theories with
at least one false sentence in them). Since that was the whole purpose of the enter-
prise, it seems sufficient reason to reject <P, The second item in the proposition
saysthat the contradictory theory A (with no models) isan improvement on any the-
ory B which shares no models with T. It is counterintuitive that the contradictory
theory should be an improvement on anything. A proof of the first item is givenin
Schurz and Weingartner [[LE], p. 49; the second istrivial to demonstrate. It should be
noted that the second item is not seen as grounds for complete rejection of <K); itis
still widely discussed.
A survey of approachesto verisimilitude can be found in [[I].

3.2 Power-ordering approach to verisimilitude The power-ordering approach to
verisimilitude proceedsin the following way. We assumethat L is propositional, and
that the truth isasingle interpretation t in 4, or equivalently, that it is the complete
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theory Th(t). By convention, wetaket to be the interpretation in which every propo-
sition is assigned true (we just rename the propositions to arrange this). The set M
of interpretations has anatural order onit, given by m = niff for all propositions p,
n &= pimpliesm = p; which says, of course, that misasneartotasnis.

Thus, we have anatural order on inter pretations which shows how they approx-
imate the truth. We want an order on theories. Since atheory T may be viewed as a
set of interpretations (namely Mod(T)), we may use atechnique well known in com-
puter science called the power-ordering or Egli-Milner ordering; it tellsus how to lift
arelation on pointsto sets of points. It says. if Risarelation on X then R" isarela
tionon P(X), defined by XRTY iff ¥x € X3y € Y XRyAVy € Y Ix € X XRy. Thus,
Brink and Heidema define, for theories A, B,

A<{ B Vme Mod(A)3dne Mod(B) mC;nA
vn e Mod(B) dm e Mod(A) mC; n.

Further details and motivation are givenin [].

This approach is easily generalized. We need not assume that the “truth” is a
complete theory (thus represented by a single model t), nor the particular ordering
T given above. Indeed, we can start with any preference relation C and compute a
corresponding verisimilitude relation:

Definition 3.3 (< interms of C)

A <% B Vme Mod(A) 3ne Mod(B) mEt nA
vn e Mod(B) dm e Mod(A) mCt n.

The intuition behind this definition isthe following. Thetheory Aisascloseto T as
Bisif every model of Aisascloseto T assomemodel of B and also every model of
Bisasfar from T assomemodel of A. Thus, Aisas close because it can match any
model of B with one of its models, and moreover, any of its models matches some B
model.

Conversely, starting with a verisimilitude relation (i.e., aternary relation < on
theories) we can derive afamily of relations on M viathe “singleton embedding” of
arelation in its power-relation.

Definition 3.4 (C interms of <)
MCET n:< Th(m) <7 Th(n).

Theintuition hereissimple. Every interpretation mgives us atheory, namely Th(m).
If we're able to compare theories for closenessto T, then that fact allows usto com-
pare interpretations too.

Proposition 3.5

1. If C isa preference relation, then <& isa verisimilitude relation.
2. If <isaverisimilitude relation, then C= is a preference relation.

Proof: 1. We just check that the power-relation of a pre-order is again a pre-order,
aresult known from the literature on power structures. Reflexivity is easy. For tran-
sitivity, suppose A <t B <t C; wewill prove A <t C. Suppose m e Mod(A); since
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A <7 Bthereexists m € Mod(B) with m' T+ m. Using this m" and the fact that
B <71 C,wefindn e Mod(C) withn Ct m'. By transitivity of T, m =+ n. The proof
of the other half is similar.

2. Reflexivity and transitivity of <+ follow immediately from thereflexivity and

transitivity of Cr.

3.3 Conditionson verisimilituderelations A great many conditionson verisimili-
tude relations have been studied; for example, see[[18]. However, the conditionsthat
we will describe here seem to be yet more. The following conditions will be used in
the remainder of the paper.

Definition 3.6 A verisimilitude relation <

1

is sound if for any satisfiable theory T, the theory Ais <t-minimal in 7 iff

T C A. Thisisthe analogue of soundness for preference relations; it says the

best theories are those that include the truth (and possibly more).

is stoppered if for all A € L and B € Ctg(A) there is a satisfiable C €

Min-, (Ctg(A)) with C <7 B; thisisthe natural analogue again.

respects completetheoriesif, forall Ac 7and Be C7, B € Min., (Ctg(A) N

CT) implies B € Min<, (Ctg(A)). This means that a complete theory which

isminima among the complete extensions of A isalso minimal among all the

extensions.

is elaboration tolerant if, for A, B,C € 7, B € Min-, (Ctg(A)) and B< C

imply C € Min-, (Ctg(A)). It saysthat if B isclosest to T among the theories

that contain A, then so is any elaboration of B.

satisfies split if

(@ A<t Band Mod(A) = | J;c, Mod(A;) for some | implies that there is
afamily {B}ic| such that Mod(B) = | J;., Mod(B;) and A; <t B;. This
saysthat if A < Band A can be split into components A;, then B can be
similarly split and each of the component pairs are related by <t. Thus,
averisimilitude relation can be “split” into components.
(b) A<t BandMod(B) = J;., Mod(B;) for some | impliesthat thereisa

family { Ai}iei suchthat Mod(A) = | J;., Mod(Aj) and A; <7 B;. Thisis
similar to (a).

. satisfiesjoin if Mod(A) = |J;., Mod(A;) and Mod(B) = | J;., Mod(B;) and

A <t Bjforeachi € |, then A <t B. Thisisthe converse of split; it takesthe
components of averisimilitude relation and “joins’ them together.

. isstrongly abstract if for all sets of interpretations N € M and complete and

consistent theories A such that Mod(A) € Mod(Th(N)), there exists B, By,
complete, consistent, such that B; <t A <t B, and Mod(B;j) € N. Thisisa
“literal trandlation” of strong abstractness for C. It's a rather technical condi-
tion which we will need only once.

The analogues of the properties of preferencerelations are natural desideratafor

verisimilitude. Notethat thereisno analogue of abstractness; every verisimilitudere-
lationtrivially hasthe property that Mod(A) = Mod(B) implies A <t Band B <t A.
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The other conditions given above may seem less natural, but it will be seen that they
arise naturally from seeing verisimilitude in terms of the power-ordering construc-
tion.

3.4 Belief revision fromverisimilitude Wehave so far defined abelief revision op-
erator in terms of a preference relation (slightly generalizing the standard way; Def-
inition[Z4), and we have shown how to define verisimilitude in terms of preference
and vice versa (Definitions[3.3land[3.4). We now complete the diagram in the intro-
duction by giving adefinition of belief revision in terms of verisimilitude.

To revise T with ¢, we look at the theories which contain v and pick among
those the ones which are closest to T.

Definition 3.7 (x in terms of <)
T+ ¢ = (") (Min<, (Ctg(y)))

Remark 3.8 The similarity in structure between Definitions2.4land BZlmay be
seen by the following:

o Tx=y = {pe L|Minz, (Mod(y)) € Mod(p)};
o Tx=y={pe L|Min, (Ctg(¥)) < Ctg(p)}.

We now have the following definitions to enable us to inter-define preference
relations, verisimilitude relations and belief revision operators.

5 e

[3.4]

The remainder of the paper will explore properties of these definitions. First, in
the next section, we examine the relations between the constraints given for prefer-
ence relations and verisimilitude relations. We answer such questions as. what con-
ditions must be imposed on < in order to guarantee that = is stoppered? Then, in
the following section, we explore the round trips. what happens if we begin with a
preference relation, convert it into a verisimilitude relation, and then back again into
a preference relation? How do the two preference relations relate? The same ques-
tion can be asked about the other way around, starting with a verisimilitude relation
and doing around trip viaapreference relation. We al so examine under what circum-
stances the two ways of defining belief revision coincide, i.e., when %= = x&.

4 Interrelating the conditions In this section we examine how the conditions
given for preference relations and verisimilitude relations translate using the defini-
tionsof C= and <E.

We start with alemma about Definition[3.3which will be used often in this and
the next section. It says that, in the power-ordering approach to verisimilitude, the
theories closest to T selected from the family of theories containing B are precisely
those whose models are closest to being models of B.
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Lemmad4.l |If Cisstoppered and preserves closed sets, then
Be Min§$ (Ctg(A)) <= Mod(B) < Minz, (Mod(A)).

In other words, the best theories are those with the best models, “best” being relative
to agiven constraint.

Proof: Let < be<E.

= Suppose Mod(B) Z Minz, (Mod(A)). Then either Mod(B) £ Mod(A), i.e.,
B ¢ Ctg(A), andwearehome; or B € Ctg(A) and3n € Mod(B) — Minz, (Mod(A)).
Inthat casewewill provethat Th(| . Mod(B) N Minc; (Mod(A))) <1 B, thusprov-
ing that B ¢ Min<, (Ctg(A)).

1. We show <t. If m e Mod(Th({,Mod(B) N Minz, (Mod(A)))) then, since
the sets | - Mod(B) and Minc, (Mod(A)) and hence their intersection are all
closed, m € |- Mod(B). Therefore, 3n € Mod(B) m C1 n asrequired. On
theother hand, if n € Mod(B) thenn = A, so by stopperednesswecanfindme
Minz, (Mod(A)) with m E1 n; and moreover, m € | Mod(B) asrequired.

2. Weshow #7. Itissufficient to show that thereis some n = B such that, for all
m = Th(] -, Mod(B) N Minc, (Mod(A))), nZt m. Takeany n € Mod(B) —
Minz, (Mod(A)).

< Suppose B € Min<, (Ctg(A)). Theneither B ¢ Ctg(A), soMod(B) £ Mod(A),
or Mod(B) € Mod(A) and C <7 Bfor some C € Ctg(A). Intheformer case we are
home. In the latter, we must find n € Mod(B) — Ming, (Mod(A)). We have

1. VcE=C3dbEBcCy b;
2.Vb=B3ick=CcLCt b; and
3. 3c=CVbEBbZycvabEBYcECbhbZyC

If we have the first digunct of 3, take thisc. By 1, find b; ¢ Ct b, so by 3 again
cCtbandsob ¢ Minz, (Mod(A)). If we had the second disjunct of 3, take this b.
Take c fromline 2. Again, c Ct b. Therefore, b ¢ Minz, (Mod(A)), so Mod(B) &
Minc, (Mod(A)).

Now we give our main result for this section, relating the properties of C and <.

Proposition 4.2

Lo

If C preserves closed sets, then <& satisfies split.

<E satisfiesjoin.

If C isabstract, then <= respects complete theories.

If C issound, stoppered and preserves closed sets then <= is sound.

If C isstoppered, then <= is stoppered and elaboration-tolerant.

If C isstrongly abstract, then sois <.

If < issound and respects complete theories, then == is sound.

If <isstoppered, elaborationtolerant, and satisfies split, then == isstoppered.
C= isabstract.

If <isstrongly abstract, then soisC=.
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Proof:
1.
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If A<t BandMod(A) = [, Mod(A)) then define B; = Th(1-,Mod(A) N
Mod(B)). First we show Mod(B) = (;.; Mod(B), i.e.,

Mod(B) = _JMod(Th(1c,Mod(A) N Mod(B))).
iel

C: If b Bthenthereexistsa = Awitha "t b. Leti be suchthat a
Mod(Ay). Thenb € 1-_Mod(Aj) "Mod(B), sob € Mod(Th(1c.Mod(Aj) N
Mod(B))) for that i.
2: Foranyiwehavethat 1= Mod(Aj) "Mod(B) € Mod(B), and therefore
Mod(Th(tc.Mod(A) N"Mod(B))) € Mod(Th(Mod(B))) = Mod(B), prov-
ing the result.
Next we prove that A <t B;. Suppose a € Mod(A)); then a € Mod(A), so
pick b € Mod(B) suchthat a Tt b. Then b € 1-_Mod(A)) N Mod(B). On
the other hand, suppose b € Mod(B;); then since Mod(A;) and Mod(B) are
closed and C preserves closed sets, TETMod(Ai) N Mod(B) isclosed. Hence,
b € 1., Mod(A)) "Mod(B), sotake a € Mod(A;) suchthat a Ct b.
Suppose Mod(A) = |, Mod(A;) and Mod(B) = | J;., Mod(B;) and Aj <t
Bi for eachi € |. Wewant to prove that A <t B. Supposea € Mod(A); then
a < Mod(A) for somei, andsince Aj <t Bj thereisab € Mod(B;) € Mod(B)
withaCt b. Similarly, givenb € Mod(B) wecanfinda € Mod(A) withaC+
b.
Suppose Ac TandBe CT,Be Minig(Ctg(A) NCT). Wewill show B €

Min_c (Ctg(A)). Suppose not. Clearly, B € Ctg(A); suppose C <= B. Our
reasoning now is similar to the proof of Lemmal4.1] we have

(8 VcECabE=BcCtb;
(b) Vb =B3cECcCy b;and
(c) IcECVbEBbZrcvibeEBYcECbZrc.

Fromthesefactswefind c Ct b for someb = B, ¢ = C, and hence, employing
abstractness, Th(c) <$ Th(b). Since B iscomplete, B = Th(b) and therefore,
B¢ Min§$ (Ctg(A) N CT), acontradiction.
C sound < Mod(T) = Minz, (M)

= VA (Mod(A) € Mod(T) < Mod(A) € Minz, (M))

& VA(AeCy(T) ¢ Ae Min_c(Clg(2)))

& Ctg(T) = Min5$(‘I)

& <& sound.
In going from the second line to the third, we use Lemmal4.1]
<E isstoppered:  Suppose B € Ctg(A). WewantaC € Mini% (Ctg(A)) with
C <3 B. Put C = Th({,Mod(B) N Ming, (Mod(A))). C is satisfiable be-
cause |- Mod(B) N Minz; (Mod(A)) # <. The fact that C 5% B follows
easily; to prove C e MinS% (Ctg(A)), use Lemmal[4.1]
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<E elaboration-tolerant: Suppose A, B, C theories with B € Minf$(Ctg(A))
and B € C. Wewant to prove C € Min§$ (Ctg(A)).

B € Min_c (Cig(A)) ABCSC
& Mod(B) € Minz, (Mod(A)) A Mod(C) € Mod(B)  (LemmalZT]
= Mod(C) € Minc, (Mod(A))
& CeMin_c(Cig(A) (Lemmal4T].

6. Suppose N and A are given as in the definition of strong abstractness for <.
Pick me Mod(A). Using the fact that C is strongly abstract, pick ny, n, with
N Tt mCt npandng, np € N. ThenTh(ny) <3 A <5 Th(ny), sinceTh(m) =
A. Since C isabstract, Mod(Th(n;)) € N.

7. TCBs BeMin, (7) < sound
= (T € Th(m) & Th(m) € Min-, (7)) in particular
= (T € Th(m) & Th(m) € Min, (CT)) respects complete theories
= (me Mod(T) & me Minz=(M)) def. of C=

8. Let A be aset of sentences such that m = A. We require that n =+ m with
ne Min <(Mod(A)) Th(m) € Ctg(A), so since < is stoppered wecanflnda
satisfiable B e Min<, (Ctg(A)) with B < Th(m). Pick any n = B. By elabo-
ration tolerance, Th(n) € Min<, (Ctg(A)). Moreover, since Mod(Th(n)) <
Mod(B) we have Mod(B) = Mod(Th(n)) U Mod(B). Using this fact and
B <t Th(m), split Mod(Th(m)) into two subsets, Mod(A;) and Mod(A,)
with Th(n) <t A;. But A; is either Th(m) or £, since Th(m) is complete.
The latter situation is impossible because of the case | = @ of split, and so
we have Th(n) <t Th(m), i.e, n E% m. A similar argument shows that n
Ming(MOd(A)).

9. Suppose m, n € M such that Th(m) = Th(n). Then Th(m) <t Th(n) (reflex-
ivity), omE3F n.

10. If m € Mod(Th(N)), then Mod(Th(m)) € Mod(Th(N)). Pick By, B, by
strong abstractnessof <. Pick ny, npinMaod(B;), Mod(B,) respectively. Then
ni € N and Th(n)) = B;, eachi, son; £ mE3 n,.

5 Composing thedefinitions In thissection welook at whether the diagram given
in the introduction commutes. First we consider around trip: suppose we begin with
apreferencerelation, calculate the verisimilitude rel ation according to Definition[3:3]
and return to a preference relation via Definition[3.4] Intuitively we expect to arrive
back at the same preference relation, since the verisimilitude relation contains much
more structure than a preference relation. A verisimilitude relation contains infor-
mation about partial, incomplete situations whereas a preference relation just orders
(total) models. Going from C to < freely generates a particular “ canonical” ordering
of theories, which from the point of view of T contains alot of redundancy. Going
the other way forgets this extra structure.

Indeed, it is sufficient to impose the relatively benign condition of abstractness
on C in order to guarantee that the round trip preserves the preference relation.
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Proposition 5.1  If C isabstract, =~ = L.

Proof:
mE%E n < Th(m) <% Th(n)
< VM ETh(m3an' =Th(n) mMCErn' A
vn' = Th(n) dm = Th(m)y m' Ct n'.

From the Introduction, m" = Th(m) implies Th(m') = Th(m), which, since C is ab-
stract, meansthat m' =+ n’ iff mC+ n’. By asimilar argument, thisreducestomC+ n,
and the result is proved.

The other round-tripislesswell behaved. If wego from averisimilituderelation
to apreferencerelation and then back again, thereisno guarantee that we will recover
the original verisimilitude relation. The intuitive reason has already been stated: the
verisimilitude relation containsalot of structure, which isjettisoned by Definition3.4]
and then acanonical version of whichisfreely generated by Definition[3.3] However,
we should expect that the round-trip will preserve the relation for complete theories.

Proposition 5.2 If A, B are complete and consistent theories and < is abstract,
A <5 Biff A<t B.

Proof: Since < isabstract, soisC=. Since A iscomplete and consistent, it isequal
to Th(m) for some m (indeed, any m € Mod(A)). Similarly, B = Th(n) for some n.

A<S B & vm =Thm) 3n = Thn)m =5 n’
AVN = Th(n) 3m' = Th(m) m' £ n/
& mCIn
<  Th(m) <7 Th(n)
< A<t B

Thereasoning from the second formul ation to the third usesthefact that == isabstract
in asimilar way to the proof of the previous proposition.

We may formulate some conditions on < which will guarantee that the round-
trip viaapreference will return exactly the same verisimilitude relation. These condi-
tions are rather strong, forcing < to order incomplete situations in away compatible
with the way it orders complete ones. Thisistherole of the conditions split and join
in the following proposition. The requirement of strong abstractness is there for the
technical reason that it guarantees that certain sets are closed.

Proposition 5.3  If <isstrongly abstract and satisfiessplit andjoin, then <&~ = <.

Proof: Notethat == is strongly abstract (Proposition[£.2]) and therefore it is ab-
stract and preserves closed sets (Lemmal2.3). We want to show A <t Biff: Va e
Mod(A) 3b € Mod(B) Th(a) <t Th(b) and Vb € Mod(B) 3a € Mod(A) Th(a) <t
Th(b).

«: Let | bethedigoint union of Mod(A) and Mod(B). If i issomeain Mod(A),
let A = Th(a) and B; = Th(b) where b isthe b which comes from a using the RHS.
Similarly, if i issome b in Mod(B), let Bi = Th(b) and A; = Th(a) wherea isthea
which comesfrom b using the RHS. Then Mod(A) = J;., Mod(A;) and Mod(B) =
Uici Mod(B;) and Aj <t Bj, sobyjoin A <t B.
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=: Wehave A <7 B, and want to show the RHS. For thefirst part of the RHS: we
suppose a € Mod(A), and want to find b € Mod(B) with Th(a) <t Th(b).

Consider Mod(B) = UneMod(B){n}; by split, find the family { A, | n € Mod(B)}
which covers A, i.e,, Mod(A) = UneMod(B) Mod(An). Since a € Mod(A), pick b
such that a € Mod(Ap). By the use of split we have A, <t Th(b).

Now use split again, this time writing Mod(Ap) = Umemod(a,) tM}, to find
the family {Bn} such that Mod(Th(b)) = UmeMod(Ab) Mod(By,) and for each m €
Mod(Ay), we have Th(m) <t Bpy. In particular, Th(a) <t Ba. But each such By, is
equal either to Th(b) or to £, since Mod(B,) is asubset of the models of Th(b) all
of which are satisfaction-equivalent. Thus, either Th(a) <t Th(b) or Th(a) <t L.
The latter case is ruled out by the special case | = @ of split, so we are left with
Th(a) <7 Th(b).

The second part of the RHS is similar.

Finally, we ask: when do = and *= coincide? This is the other aspect of the
question of whether the diagram commutes.

<

Proposition 5.4  If C is stoppered and preserves closed sets then & = %=".

Proof:  We show that Minz, (Mod(v)) € Mod(g) iff Min<, (Ctg(y)) € Ctg(e).
=: Suppose C € Min-, (Ctg(y)). We need to prove C € Ctg(¢). By Lemmal4.1]
Mod(C) € Ming, (Mod(v)), so Mod(C) € Mod(g), so C € Ctg(y).

<: Suppose N € Minz, (Mod(y)). We need to prove N € Mod(¢). Let B =
Th(N). Then, since Minz, (Mod(y)) is closed, Mod(B) < Minc, (Mod(v)), so
by Lemmal4.1] B € Min_, (Ctg(A)). Therefore B € Ctg(¢), so N = Mod(B) <
Mod(g).

The conditions required for this proposition are relatively weak, as one might expect,
in view of the fact that verisimilitude relations potentially contain more information
than preference relations, but those verisimilitude relations which are generated from
a preference relation do not contain any surprises. The conditions required in the
next proposition are stronger, because we have to constrain the verisimilitude rela-
tion more.

Pr oposition 5.5 If < respects complete theories and is elaboration-tolerant then

%= = x5,

Proof: It is sufficient to prove Min<, (y) € Ctg(e) iff Min- (Ctg(y) N CT) <
Ctg(¢) N CT.

= Thisfollows easily from the fact that < respects complete theories.

«: Suppose C € Min<, (Ctg(y)). We want to prove that Mod(C) € Mod(B).
Take m |= C. By the fact that < is elaboration-tolerant, Th(m) € Min-, (Ctg(A));
so Th(m) € Ctg(B), i.e.,, m= B.

6 Conclusions and outlook  We have given an intuitive definition of belief revi-
sion in terms of verisimilitude and shown close connections between the preferential
models approach to belief revision and the power-ordering approach to verisimili-
tude. The connection may be succinctly summarized as follows.
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Preference relations order models according to how closethey areto somegiven
theory, whereas verisimilitude relations order theories according to the same crite-
rion. We have shown how to extract a verisimilitude relation from a preference rela
tion and vice-versa, and we have shown sufficient conditionsto prove that the notions
areinter-definable. In general, verisimilitude relations contain more information than
preference relations because they say how to order partial theories as well as total
models. Moving from a verisimilitude relation to a preference relation discards this
extrainformation, whereas moving in the opposite direction freely generates acanon-
ical version of it.

Further work will complete the triangle of Section 1 by finding definitions of a
preference relation and verisimilitude relation in terms of an arbitrary belief revision
operator. Of course, a definition of C in terms of x already exists in the literature,
by going via the non-monatonic inference operator i~ and using the representation
theorems of [[5] and others. Therefore, we can aso construct < by applying Defini-
tion[2:3] but more likely, there is a more interesting way of constructing < directly
from x which exploits the extra freedom of a verisimilitude relation.
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