319

Notre Dame Journal of Formal Logic
Volume 36, Number 2, Spring 1995

NP-Completeness of a
Combinator Optimization Problem

M. S. JOY and V. J. RAYWARD-SMITH

Abstract We consider a deterministic rewrite system for combinatory logic
over combinatorss, K, I, B, C, S, B’, andC’. Terms will be represented by
graphs so that reduction of a duplicator will cause the duplicated expression to
be “shared” rather than copied. To each normalizing term we assign a weight-
ing which is the number of reduction steps necessary to reduce the expression
to normal form. A lambda-expression may be represented by several distinct
expressions in combinatory logic, and two combinatory logic expressions are
considered equivalent if they represent the same lambda-expressiornstgp to
equivalence). The problem of minimizing the number of reduction steps over
equivalent combinator expressions (i.e., the problem of finding the “fastest run-
ning” combinator representation for a specific lambda-expression) is proved to
be NP-complete by reduction from the “Hitting Set” problem.

1 Introduction The uses of the lambda-calculus (see Barendi@fhd combina-

tory logic (see Curry et all4],[E]) as notations for defining functions are well known.

As branches of mathematical logic they have been explored in great depth. In recent
years, however, both disciplines have been used in computer science as models for
the evaluation of functional programs. The lambda-calculus has served as a starting
point for, for instance, SECD machines (cf. Glaser e{d). dnd combinatory logic

for graph reduction machines (cf. Turn&g], [[L6)).

There is a “natural” correspondence between a lambda-expression and the func-
tion it represents, but to evaluate a function in such a form leads to complications.
This is due to the use in the lambda-calculus of variable names, which results in en-
vironments needing to be stored when recursively defined functions are called in or-
der to avoid clashes of local variable names. In combinatory logic no such variables
are used, so the evaluation of a function is simplified. However such a combinator
expression will probably not be easy to read. It is common practice to consider a
function as being initially a lambda-expression and then to apply an algorithm to the

Received December 12, 1988; revised August 3, 1990

320 M. S. JOY and V. J. RAYWARD-SMITH

lambda-expression to eliminate all the variables and introduce combinators. We as-
sume the reader is familiar with the fundamentals of the lambda-calculus and com-
binatory logic. A good introduction can be found in Hindley and Sel]niHaving
created such a combinator expression, it can be considered in a natural way as being
a gaph, and to evaluate the function it represents we can apply rewrite rules to the
graph until the graph becomes the required form representing “the answer.”

We shall consider the s€S, K, |, B,C, S, B/, C’} of combinators, partly be-
cause it is a set in common use, partly since it has known abstraction algorithms as-
sociated with it. The results we prove will be applicable to many sets of combinators,
but the details of the proof are valid only for this set.

A combinatory logic will often be augmented by extra primitives, such as in-
tegers, in order to improve its efficiency as a computer code. In order to simplify
our analysis we shall assume timatsuch extra primitives are used. If we assume a
small finite set of combinators in our combinatory logic, we can think of each as cor-
responding to a single “machine instruction” and can thus form a measure of time for
the function to evaluate as being the “number of instructions (reduction steps) exe-
cuted.” This metric is ri@e, but it will be sufficient for our purposes.

For simplicity in describing the result here, we shall assume that our combina-
tory logic is augmented by a (countable) set of variables. Variables and combinators
will be considered as “atomic” expressions.

Suppose we have a functiohwritten as a combinator expression. We con-
sider the sizeé f| of the combinator expression to be the number of occurrences of
atoms (combinators or variables) in it. Suppdsevaluates, using “normal order”
reduction, to “the answer” (that is, an expression in normal formyaduction steps
(assuming, of course, thdtis a function which evaluates in finite time). Then the
problem of minimizingr over equivalent combinatory logic expressions of gize
is NP-complete. We prove this by reduction from the “Hitting Set” problem.

Investigation into this result was motivated by recent techniques for the imple-
mentation of functional programming languages involving the use of combinatory
logic not just as a semantic domain, but with combinators implemented as primitive
machine instructions (cf. Clarke et dB][and Stoye[[3J]). Given a translation of a
functional program to such combinator code, itis often desirable to optimize the code,
and our result establishes an upper bound to the possibilities for such code improve-
ment techniques.

This result was proved first in Jofg]and was published (without proof) in Joy

et al. [L0J.

2 The optimization problem The main result of this paper is that the following
Optimization Problem (“OP") is NP-complete.

Optimization Problem (OP)

Instance: A combinator expressioi whose only atomic subexpressions are vari-
ablesxq, ..., Xm, and an integek.

Question: Does there exist an expressigf without variables, such that the expres-
sion (E'xq ... Xm) reduces, using a normal order reduction strategl, (or less) re-
duction steps t&?

NP-COMPLETENESS 321

E’ is a combinator expression equivalent to the lambda-expreésian. . . A xm. E).

We will establish OP= NP, and then the NP-completeness of OP will be proved
by exhibiting a polynomial transformation to OP from a known NP-complete prob-
lem. We choose to use the following problem proved to be NP-complete in Garey
and Johnsorid]

Hitting Set (HS)

Instance: CollectionC of distinct subsets of a finite s&such that; € C satisfies
|ci| = 2andS= UC, apositive integek < |S|.

Question: Does there exist a subsgtof Ssuch that

1. |S| <k and
2. foreachci e C, NS # @7

Before we can detail the transformation KSOP, we need to establish our notation
and prove some intermediate results. We do this in Sedflans{4] In SectiorElwe
return to the transformation and give the necessary detail.

3 Notations and assumptions

3.1 Combinator expressons A combinator expression is

1. avariablev, or
2. acombinator (an element ofS K, I, B,C, S, B, C'}), or
3. anapplication (L M) whereL andM are combinator expressions.

By default, parentheses may be omitted for clarity on the assumption of left-associa-
tivity, for example
Sw((lyz

is equivalent to
(((Sw) (1'y)) 2.

We adopt the convention that lower-case letters (with or without subscripts) denote
variables unless otherwise stated. We introcheextra atoms, such as numbers. The
above definition of a combinatory logic is still sufficiently rich to be equivalent to a
Turing Machine, that is, for any partial recursive function there exists an expression
in the combinatory logic which can be used to compute that function. In order to sim-
plify our calculation later on, we do not formally define the lambda-calculus. Instead
we include variables in our definition of combinatory logic. Gt denote the set of
all such combinator expressions.

Thesize of a combinator expression is given by:

|E| =1, if Eisan atom, elsgF G)| = |F| + |G|.

For instance|Sw x(I (1 y))| = 6.

Our plan of attack is to restrict our attention to a subset of lambda-expressions
which we know will reduce to normal form in a finite time after they have been
given the correct number of arguments. These are “proper combinators” of the shape
Av1. ... v .E, whereE contains no lambdas and, as atomic subexpressions, only

322 M. S. JOY and V. J. RAYWARD-SMITH

elements ofvy, ..., vm}. Thus they can be thought of as simple functions which re-
arrange, possibly with duplications, their argumenta If. . vy, are provided as ar-
guments such an function with lambdaswill reduce to normal form (vizE).

The conversion of such an expression withambdas to a combinator expres-
sion containing no lambdas and no variables is equivalent to aabsiact from CL
to CL, such that, for eack in CL,

1. abstract(E) contains no variables, and
2. (abstract(E) v1...vm) reduces tcE.

We use the symbol£" to mean “lexically equal to,” and the symbok" (as are-
lation between combinator expressions) to mean “are equivalent,” that is, represent
the same lambda-expression. Thus; éind F are combinator expressions such that
(Evy...vm) reduces to an expressi@containing only variables as atomic subex-
pressions, andHv; . .. vm) reduces tds also, thenE = F.

We use the symbol£” to denote “reduces to,” and>'x” to mean “reduces in
one X-reduction step to,” wher¥ is a combinator. The combinators used, originally
introduced by Turnedﬁ, have definitions as followsa(b, c, etc., are used here as
meta-variables):

Sabc >g ac(bo
Kab >k a
| a > a

Babc >g a(bo)
Cabc >c achb
Sabcd >g a(bd (cd
B abcd =g ab(cd)
C'abcd >¢ a(dc

The graph rewrite rules are given in diagrammatic form in Fifibelow; all lines

are directed downwards (the arrows are omitted for clarity). In each rule except those
for I and forK the root node of the redex averwritten. For thel andK rules the
pointer to the redex is redirected. Aror K reduction where the redex is the root of
the whole graph is handled as a special case.

We assume that reduction is normal order, that is, “leftmost-outermost.” This
strategy minimizes the number of reduction steps needed to reduce an expression to
normal form (as redexes are reduaetly if they are needed; cf. KIofiLp]).

Initially, before any reductions are applied to an expression, that expression is
stored either as a tree or as a graph in which the only nodes with in-degree greater
than 1 are atoms. This corresponds with the notion of a program being read in from
asource in a way which naturally implies a simple storage mechanism (knowledge
about code-sharing is itself a difficult problem).

The phrasecode-sharing will refer to nodes in a graph with in-degree greater
than 1, and our result depends on the code-sharing yielded I&ahdS combina-
tors (theduplicators). Thus

S(ab) (c(de) (xyz) > (ab(xyz (c(de) (Xy2))

will cause the subgraph whialx y z) represents to be shared after the reduction step
rather than copied.

NP-COMPLETENESS 323

>s /\ > a >k a
¢ /% boa /<\b
b a b C K a
S a
>B >C
c a/>\ C /<\b
b b c b a c
B a C a
>g >p
d d /{>\
c a c a pbc d
b b
S a b d B’ a
>cr
d C
c a
b b d
C’ a

Figure 1: The Graph Rewrite Rules

3.2 An almost optimal abstraction algorithm We describe an abstraction algo-
rithm, originally due to Turnerl4] (although we phrase it somewhat differently)
which produces code that in many cases is optimal. We shall prove the optimality
of the algorithm for some of our expressions.

The algorithm takes the form of a mabs from {variables ofCL }x CL —
CL. For notational convenience we writbs,(E) in preference t@bs((x, E)), and
absy y(E) as shorthand faabs, (absy (E)). E andF are here arbitrary combinator ex-
pressions, and is an arbitrary combinator expression which contains no variables.
The first possible of the following rules should be applied.

absy(x) = 1,

abs,(E x) = E, if x does not occur iffE,

abs,(E) = K E, if xdoes not occur ik,

abs,(k x F) = (Skabs,(F)), if x occurs inF,

absy(kx F) = (Ck F), if x does not occur irfF,

abs,(k E F) = (S k absc(E) abs(F)), if x occurs in bothE andF,
abss(k E F) = (C' kabs,(E) F), if xoccurs inE but notinF,
absy(k E F) = (B’ k E abs,(F)), if x occurs inF but not inE,
abs,(E F) = (Sabsy(E) abs,(F)), if x occurs in bothE andF,

324 M. S. JOY and V. J. RAYWARD-SMITH

abs,(E F) = (Cabsc(E) F), if xoccurs inE but notinF,
abs,(E F) = (B E absc(F)), if xoccurs inF but not inE.

Toillustrate this algorithm, considebs, y(y X X). The successive stages are as
follows:

absy y(y X X)
= abs(absy(y X X))
abs, (C (absy(y x)) X)
absy(C (C (absy(y)) X) x)
= abs(C (C 1 x) x)
= S C (absx(C I x)) (absk(x))
SC(ClI.

4 Intermediate definitions and results The construction of the transformation
HS oc OP relies on the use of combinator expressions of the ki, which we
now define. The functiong andV will also be used later on.

Let x, y andv be variablesn a positive integer, and andg combinator expres-
sions, then we define

Vo tg = ¥, and
Wr, f.g = (f l/fr_]_, f’g) if r > 0.

Thusyy s g= f'g, and ' =y, _q 1 1.
Let i = 16n, then we define, as illustrated in Figure 2 below,

V>r<1,y = _/n,l,v,x,y, where
Vimuxy = Vamizaxy@™ @™ y), if n>m> 1, otherwise
Vanuxy = @7 x@"My).

This is illustrated in Figure 2. Finally we define
Wy = (Vidy Vyi)-

We note thauVQX| = ni(n+ 1) 4+ 2n, which is polynomial inn.
Theleft-depth of a combinator expression is given by

left-depth(E, E) = O;
left-depth(E, (F G)) = O0if E does not occur irf,
otherwise 1+ left-depth(E, F).

For exampleleft-depth(x, (ab (c xd) e f)) = 2. We use the phrase “the left-depth
of E in F” as shorthand foteft-depth(E, F). Right-depth is defined similarly, with
(G F) replacing(F G) in the second clause.

NP-COMPLETENESS 325

Figure 2:V¢,

Thedepth of a combinator expression is given by

depth(E,E) = O0;
depth(E, (F G)) = O0if Edoes notoccuririF G),
else 1+ max(depth(E, F), depth(E, G)).

For exampledepth(x, (ab (cxd) e f)) =5.
Thespine of an expressiolt is the set of subexpressionsBivhose right-depth
in Eis 0. For example,

spine(ab(cxd)e f) ={(ab(cxd)e f), (ab(cxd)e), (ab(cxd)), (ab), (a)}.

The notation E/F]G is used to mean “the combinator expression produced
when all occurrences of the expressierin G are replaced by the expressi@i’
Let F be a combinator expression in normal form contairag . . , Xm as its only
atomic subexpressions. Thept, , (F) will be any combinator expression, not
containing any element ¢ky, . .., Xm} such thatopt, . (F) X1 ...Xm) reducesto
F in the minimum number of reduction steps using normal order reduction, denoted
by redy, ... x.(F).

We also need to introducg; and Z5:

Z; =[(C' S(S C (K (K)v")»"™)/(C'Bv™v™)]absy y(Vy).

Z, = [(SC(C'S(K(K1))v")v™)/(B'Cv™v"™)]absy y (V).

326 M. S. JOY and V. J. RAYWARD-SMITH
We begin by giving some basic results ®,, W'\, Z; and Z,.
Lemma4.l (abscy(Vyy) Xy) reducesto Vy'y in 4n — 2 reduction steps;
(absy y(Vy'y) X y) reducesto Vg, in 4n — 2 reduction steps;
(Z1 x y) reducesto V¢, in 4n + 3 reduction steps,
(Z2 x y) reducesto V', in 4n + 3 reduction steps,
(Z1 xX) and (Z, y) each reduces to normal formin 2n+ 1 reduction steps.

Proof: These results are allimmediate from the definition¥f, Z;, and Z,.

Lemmad4.2 redx(VQy) >2n—1, redX(V{,jX) >2n—1;
redx,y(v){‘,y) > 4n — 2, redx,y(V{,‘,X) >4n— 2.

Proof: The left-depths ok andy in VQy are 2 — 1 and 2h — 2 respectively, hence
we get the first two inequalities, as a combinato€hfcan increase the left- (or right-)
depth of one of its arguments by at most 1. Let

Xy = [w1/v"] (w2/v*" (wa/v* ... (wa/v™VR) ..,

and))))
Xo = [wa/v"(w2/v*" ((wa/v*" ... (wn/v™V) ..)),

where thew; are distinct new variables. S = ((wn X)(wn Y) ... (w1 X) (w1 Y)),
andv occurs in neitheiX; nor Xo.

We note thatredy, y(X1) = redy y(Vy,), since the right-depth af " in p(+DNjs
n, and thus any attempt to utilize the fact that there exist common subexpressions of
V;,,, except the instances of' in (' x) and(v'" y) for each, will necessitate at least
(" — 1) extra reduction steps, which is more than the number needakBQy(VQy).
X, is treated similarly. Tereate each subexpression of the foxma; x) or (w; y), an

A-reduction,
Aap...a...a>abp...b1...a1..a (r <),

whereg, is eitherx or y, isneeded. Each reduction step can increase the left-depth
of eitherx or y (but not both) by at most 1. For, if it increased the left-depth of both
by one, at least one more reduction step would be needed to “separate” them in or-
der for them to be passed singly as arguments toAto®mbinators. We thus get

redy y(X1) > 4n— 2, andredy y(Xp) > 4n— 2. The results foi&/)[‘,y then follow.

Lemma4.3 optx’y(v;‘,y) = absx,y(VQ,y), optx’y(VQX) = absx,y(VQX).
Proof: This follows from Lemmag_TlhndZ.Z]

Lemma4.4 optx,y(WQy) = absx,y(WQy), optx,y(W{,‘,x) = absx,y(WQX).

Proof: Since no node ifX; nor X,, as defined in Lemm&t.2] with right-depth 0
and left-depth less tham2+ 1 can be shared, each reduction stepj, , (W,',)
may affect only the spine CVQy or VQX (but not both). So each reduction step using
opt, y (X1 Xz) can be associated with eithef, or Vy!,. Thus,

redy y (Wg) > redy y(Vyy) + redy < (V).

The result then follows from lemm&sZlandZ3]

NP-COMPLETENESS
Lemma4.5 redv(absx,y(v)?,y)) <nhn+ 20+ 8n—3,
red, (absy y(Vy'y)) < nR 420+ 8n — 3.
Proof: LetVi = yn_1(f, g)v (") = abscy(Vy), where
fapy (C'S(SCw@BBY)V) V),

gBy (C'Byy), and
v = absy(Y¥a(v, h)).

>
>

Thus we have

= (C@(SEC 9 sEoO))EcEBhhh,
(K(S(C'B) 1)),

Yi—1((Bw),v) = ¥7_1(((SB), 1) v), and

v o= (Y1 ((SH, D).

Hence,

S Q -
1

=)

Vo= (S (Yn-1(f,9) ¥a_1((SB), I) (¥a_1((S1), 1)) v)
reduces to normal forrtabs)gy(VQy)).

Vi= (S F (¥a-1((SB), 1)) (¥a-1((S1),) v),

whereF is (yn_1(f, 9)), reduces to normal forr(ab&,y(VQy)) in at most

1 because of initiaS
+9(n—-1) because off
+5 because of

+n+(A-21((M-1) because offz_1((SB), |), since eactB
is used for each occurrence bf
+2n-1 because off7_1((S1), 1))

= ni+ 2N + 8n — 3 reduction steps.
The result forabsy,x(VQy) is almost identical.

Lemmad4.6 red,(Z;) <nhn+ 20+ 8n+ 6,
red,(Z;) < nh+ 2N+ 8n+ 6.

Proof: The proof is essentially the same as that for Lernthexcept that

gy > (K(KD),
g = (KKK (KD)),
Uo = (S Wn(f,9) Wr-1((SB), 1)) (¥a-1((S1), 1) v)

reduces to normal forrdy;

Ui = (SF @n1((SB), D) Wa1((S1, 1)) v),

327

wheref is (Y (f, g)) reduced to normal form, reduces to normal fo#y, in & most
nn+ 2N+ 8n+ 6 reduction steps. The result f@p is almostidentical, withthéC’ S)

and(S C) in f interchanged.

328 M. S. JOY and V. J. RAYWARD-SMITH

We now examineZ; and Z, more closely. First of all, by using; instead of
abs,<,y(VQy), andZ, instead ofabs(,y(VQX), we have a structure which is more “sym-
metric.” The extra symmetry manifests itself in the following way.

abscy(Vyy) = C'S(SC(..(C'Bv" ™).)",
Zi = C' S(SC(..(C'S(SCK(KI))v"™v")..)M,

so the former contains an expressi@i B v™ v™), corresponding tgB’ C v™ v")
in absy y (Vyy)-

Note carefully the ordering of the subscripts x and y. Apart from the interchange
of (C’' B) and(B’ C), absx,y(VQy) andabsx,y(VQX) can be interconverted merely by
swapping occurrences o€’ S) and(S C). It isnot necessary also to swap occur-
rences of C’ B) and(B’ C) in the Z;.

Consider the proof of Lemnta5] Since code which reducesq can be created
by swapping the occurrences @8 C) and (C’ S) in the definition of f, we may
replace(C’ S) and(S C) in Ug by variabled; andt, respectively and abstract them
out. Thusf would become

C (€ (St))C ([C (St (C(SBHNHI.

After Ug had then been reduced to normal form we would have
U=ty (ta (ty (ta... (tg (t2 (K (K 1)) o™y 0"y ..y 02 02 o) o7,
Abstractingt; andt, from this expression yieldst®hew combinators, since

Uy = (Ujtgty)andUj= (Ujts tg) where
U = C(SC/ (C'C(B' SI(..)v") ",
Uy = C' C(B SI(C(SC (...))v") ",

and so an extra Itreduction steps, as each combinator must be used twice.
Lemmad4.7 opt, ., (Uy) = U7, opty, ¢ (Ug) = U,.

Proof: We examine the first case; the second is almost identical. As in Ldf#ha
we are unable to utilize the code-sharing possibilities offered by'fhand the other
internal nodes dfJ; cannot be shared. Due to the symmetrigfweare interested in
codeU andU’ such thatU t; to) reduces tat; (to (U’ t1 to) v") v") in the minimal
number of reduction steps. Each combinatooccurring inU must take as its last
argument precisely one bfort,. Itisthen straightforward to enumerate the possible
U, and the result follows.

However, we cannot simply abstract th#omU;. Wewould, asin Lemmid.6]need
to considered, (U;) andred, (U).

Lemmad4.8 red, ,(w Z3 Zp) < ni+ 20+ 28n-+ 17.

Proof: Replace ifJ; abovet; by (B C (SC')), andt, by (B (C’' C) (B S1)), thus
obtainingU(, where(Uy (C'S) (S C)) = Zy and(Uy (S C) (C'9)) = Z,. Thus
we have introduced 10 combinators to create egdfotal of 2(h reduction steps).

NP-COMPLETENESS 329

We have alsaed, (Z1) = red, (Uy), since the structures af; andU(are essentially
identical. So

(C'B(C(CS(C(CI(C'9)(SC))(C(CI(SC) (C9)opt,(Uy)w v

reduces to(w Z; Zo) in at mostred,(Uy) + 114 20n reduction steps. Apply
LemmaZ.g]

Lemma4.9 red, ,(w absyy (V)Qy) absx,y(VQx)) > redy, , (w Zy Zp).
Proof: Clear by symmetry.

Lemma4.10 opt,(v") = ¥7_1((S1),).
Proof: Clear by inspection.

Lemma4.11 red,(Z;) > nn+ 20+ 8n— 10.

Proof: Wecount the minimum number of combinators needeapir)(Z;). Wenote
first that it will be necessary to share certain sections of code. The occurrendes of
must be shared, and by LemfalOlred, (v") = 27 — 1. Since the expressiond’
must be shared there will be a functibn v'" — vi*D" which must be executed
(n— 1) times. Each execution dfmust require at least— 1 reduction steps, as the
depth ofv'™ in v+ is A, Since the right-depth of (v, X) is A, atleasti — 1 re-
duction steps will be needed to creatmitially. We are using the “simplest” method
for obtaining each'. Wethus need an expressi@which will take as arguments
andv'", returning an expression of the form

(C'S(SCZvM,
whereZ’ is Z with arguments$ and (hv'™). So
Z=S (C(C'S) (S (SCHSBZ I

This code is optimal. We gei@ — 1) extra reduction steps from ti and the result
follows. Note the effects at the “top” and “bottom” @i have been ignored and will
introduce (a few) extra combinators.

Lemma4.12 red, ,(w Z; Z3) > ni+ 21+ 25n— 11

Proof: We note first of all that the only differences betwegnandZ, are the left-
most(C’ S) and(S C) expression referred to at the start of the subsection. Thus the
“obvious” way to achieve the expressiopt,, ,(w Z; Z») is to use a strategy sim-
ilar to that outlined in LemmEL8] Such a strategy involves replacibgandt, in
U, by expressions consisting only of combinators such that the resulting expression
(Ug, say) acts as if; andt, had been abstracted out, yet is still of the same essential
structure asJo. Thus(Ug t1 to) reduces tdJ;. If such a strategy is adopted, the re-
placements fot; andt, previously given are optimal. Unlike the previous lemma, it
is not obvious that this reduction strategy is optimal. However, it is sufficiently close
to optimal for our purposes.

There are two other possible reduction strategies. The first involves creating
some (and by symmetry this impliedl) of the v'" and passing them as arguments

330 M. S. JOY and V. J. RAYWARD-SMITH

to code representing; andZ,. This would requireO(n?) extra reduction steps, so
such a strategy is unacceptable.

The second involves amending the definitionfafo that the number of reduc-
tion steps needed to abstract this less. For instance,

fapy>C(SC(CC(B SI(@BB)Y)Y

would implement the optimal abstraction afandt, from U given earlier. Now
suppose that we had decided on another, more efficient, abstractioaraft, from

Up. The corresponding will be such thatf « g y > F, wherea, g andy occur in

F, but the depth of in F is increased by at least one, and thus abstraatjiigandy

from F will yield at least one extra combinator, hence a total ef 1 extra reduction
steps. The optimal number of combinators introduced to absiraotit, from U is

8n, hence

redw,v(w Zy Z3)

v

2redh, 1, (Up) + (n— 1) + red, (Z1)
= 2@B8n)+ (n—1)+ (nh+ 20+ 8n— 10)

(by LemmdZ.11).
max

Lemma4.13 Letsym= ¢ labs,
with |E| = n. Then sh.m < 2mn.

Proof: See Joyl§] or Kennaway[[]].

xn(E)| @s E ranges over expressionsin CL

.....

5 Thetransformation Given an instancd,, of HS, we construct an instande)
of OP as follows.
We sssumem = ||, r = |C| andc; = {Cj 1, Ci 2}, then f (1) comprises a combi-

nator expressioft, containing variables, di, ..., d (all distinct), defined by
E = (ng,lcl,z to WCr:,lcr.z)’

wheren = 1003, and an integek’ = 30r (m+r) + 4n(r 4 k) + (nA + 2i + 28n).
Note that thef so constructed is injective and that the size of the instance of OP is
polynomial in the size of the instance of HS. We see alsatha2r. Weshall assume
thatr is large, for instance > 100. To compute the transformation, we need to show
thatl is ayes-instance of HS ifff (1) is ayEs-instance of OP. Before doing this we
motivate our definition and establish two further lemmas.

LetI" be the set of all functions frodd, ..., r} — {1, 2}. ThusI represents the
possibilities for ordering the elements of theas the suffices of the/s. Fix some
¢ € T',andletaj = ¢j 3. Letby,... bg be an enumeration of the, so we have not
presupposed an ordering on theand

Xt = [(S(C (K1) W™ Ciapi))))/(B (™ Cizyiy) v"™] absg, (VE,.q,)-
X = [(C(S(KI) v™) "™ Cizgi))/(C o™ (™ Ciz—pi)))] @bsg) (VE,.6,)-

thus(Z; ¢i.,()) reduces tox .

NP-COMPLETENESS 331

LetY1, ..., Yzp be an enumeration of thé¢! and X2, where we note that, due to
the symmetry of theX;! there must be an even numberf Let x, X2, andy; be
variables which will correspond with?!, X2, andY; respectively.

Er = absy, yppbu.be(E2),

E, = (ap(€a)... (¢ a)(¢ a)),
Es = Ei1Yi...Yapby...bg

Thus the choice ap(i) corresponds with code-sharing variablemdc;) in W)Qy,
and p will correspond tdk in HS.
E; reduces tcE in e; + e reduction steps, where, by Lemia 3

e < 2(2p+ q)(4r) < 24r?

(sinceq < r andp <r). e is the number of combinators introduced 4lys in E,
and, by Lemm&L1] e, = 2r(2n + 2) is the number of reduction steps for tb(é and
X?.

So we now have a situation where we have takend abstracted two variables
(one of them being) from eachW,!, in E (we remember that there are three variables
occurring inWy'). By introducing theb; we have ensured that no predefined ordering
has been specified for the abstraction of the variabl&sdifferent tov. This has led
to code-sharing; thus if, for instand&j' , andW,, are inE, then wemay have chosen
to code-share the occurrences(df‘ x) in W'y andWj,.

Now,Y; = (Z'y;), whereZ' € {Z;,Z,}, y; occurs inY;, andy; # v (1 <i < 2p).

Let

Es = (@bs, 2.4, dn(E1(ZH Y1) ... (ZP y2p) by...byg)),

where thez are variables corresponding to tB& andz;, z is the enumeration of
theZ corresponding t&;, Z,, and we note that each @ andZ, contains precisely
onevariablev. (E4 Z; Z» d; . ..dm) reduces tdE; in e; + ey reduction steps, where
€1 < 2(m+2)(4p+qg+2) < 24mr, by LemmaZ.13] 4 is the number of combina-
tors introduced bybsin Eg, ey = 2p(2n+ 1) is the number of reduction steps for
the Z; andZ,. Now, let

Z = opt,,(wZ; Z)and
e = rajw,v(w Zl ZZ)

Wehave, by Lemmag._8land4.13 ni+ 27+ 25n — 11 < e, < nA+ 2+ 28n + 17,
and(Z E4 v dy ... dm) reduces tdE; in €4 + ey + e, reduction steps.

We note that, by usin@; instead ofabsy y (Vy y) andZz; instead ofabsx,y(VQX)
we have introducedt most 12r extra reduction steps from using the optimal code for
each individuaV,, and have got improved code for the abstraction ffom V)Qy,

X,y
by Lemmd4.9)

Lemma5.1 There exists an expression Es containing no variables such that (re-
calling that v, dy,...,dm is our enumeration of the variables occurring in E)
Es v d;...dnreducesto E in e steps, where

e<30r(m+r)+4n(r 4+ p) + (NN + 20+ 28n).

332 M. S. JOY and V. J. RAYWARD-SMITH
Proof: From the above discussion, Iet = (Z E,).

e

et +ex+est+e+e

242 4+ 2r(2n+2) + 24nr +2p(2n+1) + &,
27r(M4r)+4n(r + p) + €, since 4 +2p < 3r?
30r(m+r) +4n(r 4+ p) + (NAi + 21+ 28n), since 17< 3r2.

A AN A

We assume thah is “large” (though only polynomially so) compared tcand m.

We have found an expressidg which after suitable arguments have been added re-
duces toE in 4n(r + p) + e, + O(r?) reduction steps. We associgtén this with

kin HS. We next show that “optimal” code representigeduces in approximately
an(r + p) + e, reduction steps.

We know the value oE, to within (approximately) 8. Thus we know the “op-
timal” size of code, and we have an algorithm for getting to within narrow bounds of
such code and certainly to sufficient accuracy to evaluate the vakipaafessary to
furnish a solution of HS. Thus we argue that, if we can find code represehtaig
size at most M+ r) + 4nr + 4nk 4 (nn + 20 + 28n) for E in polynomial time,
we can solve HS in polynomial time also.

Lemmab5.2 red,q, . d,(E) = (4n—2)(r + p) + (nA+ 20+ 250 — 11).

Proof: Since the depth dVQy is greater thamn, optimal code to represeh’;’(‘,y re-
duces in at leasin steps, and by LemntaZlthere exists code representiBgvhich
reduces in less thanng@ steps. Thus to produce optimal code tBrsome code-
sharing will be necessary. An “obvious” strategy would be to share as many common
subexpressions as possible, in particular all occurrence’§ ahd of (v'" z), where
z e {dy,...,dn}. This does not, however, yield sirategy for producing optimal
code, since we may assume only thast of these subexpressions must be shared,
and we have not exhibited an optimal method for generating them.

ConsiderVy!, and Vg, wherex, y, a, andb are distinct. The only sharable
subexpressions are those containing only occurrencestbét is thev'". Suppose
we require to find cod® such that(V v x y a b) reduces taViy, V) in the min-
imum number of steps. Then we may assume that we shareXedere(X x y)
reduces td/Qy. For, if we share code that allows more complicated arguments, we
do not improve the code we produce, since we still require a similar amount of work
for eachVQy, of which less may be shared. By Lemfz&] we may assume that
X E._abe,y(VQy). If a= xthen this allows us the possibility of sharing the instances
of v'" also.

Consider now,, andVy,, wherex, y, anda are distinct. Suppose we wish
to find codeV such that(V v x y a) reduces t(IVQy Var[y) in the minimum number
of steps. If we share code &sabove, we lose the possibility of sharing expressions
(v'" y) containingy. However, if we have createabsx,y(vgx), we will be able to
share those expressions. By symmetry, for a nontrizialvill be necessary to create
both absx,y(VQy) andabsx,y(vgx), hence we will need at least reduction steps to
perform that creation. At this point we note that, by Lenifnd we would not be
better off treating each\{, as a single unit rather than a combination\f, and
Vix-

NP-COMPLETENESS 333

Each occurrence aibsx,y(v)?,y) or ab&,y(VQX) will, by Lemmal4.1] require
4n — 2 reduction steps, of whichi2- 1 cannot be shared (viz. the second arguments),
and 2 — 1 may be shared (the first arguments), thus yieldimg-42 for eachW,
(total (4n — 2)r) and4n — 2 for each shared expression (totdh — 2) p). We also
have, by Lemm&.12] e, > nii + 2 + 25n — 11.

UsingW,!, ensures that, if at any point we introduaes, y(V,',), we must also
introduceabsy x(Vy'y), thus ensuring symmetry. Use @f and Z; in the previous
analysis serves to iron out the asymmetry which is introduced at the “botto\d{j’pf

when applyingabs.

Theorem 5.3 HStransformsto OP.
Proof: We have, from Lemmad&._1and52

1. Amap f from an instance of HS to an instance of OP which can be evaluated
in polynomial time, and which is injective;

2. An algorithm which will find code for an instance OP which reduces (after suit-
able arguments have been addedttim e steps, where
e<k =30c(m-+r)+4n(r + k) + (n0 + 27+ 28n); and

3. Aproof thatred, g, ... 4,(E) = (4n—2)(r +K) + (N + 21+ 25n — 11).

The difference between these two bounds ig(80+ r) + 2(r + k) +3n— 11, which

is less than the change in value of either of theh g altered by 1 (viz. 8), since

n = 1003, If we produce code which reduces khreduction steps, we can find a
value fork which is uniquely determined, which will solve the corresponding instance
of HS.

Lemmab5.4 Supposeexpression E;, which contains only combinators, is such that
(E1 X1...Xm) reducesto Ez in p reduction steps, where Ez contains no combinators
and the x; are distinct variables. Then there exists an expression E,, containing only
combinators, such that (E; X; ... Xm) reducesto Ez in at most p steps, with

|Ez2| < (|Es|+4p—m)2.

Proof: Letthe combinators for thp reduction steps whefE; X; . .. Xp) is reduced
be (inorderk;, ..., ¢cp. We can construct the expressi@i by working “backwards”
from the graph representirigg, effectively “mimicking” the original reduction in re-
verse. Where necessary we insert a “dummy” symbol, which is then replaced by an
expression when appropriate.

When (E» X1...Xmn) is finally constructed, each remaining dummy symbol
is replaced by a single combinator, as this atom will have been “deleted” when
(B2 X1...%Xm) IS reduced.

Since the original reduction was normal ordes,will be in normal form. How-
ever there may be some code-sharindein but since this expression is in normal
form the number of reduction steps fdE, X1 . .. Xm) Will be the same as iE, were
considered as a tree with the shared subgraphs copied. This is because no shared node
in E> will be overwritten.

At no point must we introduce more than 4 extra symbols at any one step (for
example, suppose our expression after reductiomatapand anS reduction is used

334 M. S. JOY and V. J. RAYWARD-SMITH

at reduction step, then the expression after stgp— 1) would be: (S « 8y 8),i.e.,
symbola has been replaced by expressi@ng §)(y §)).

We are constructing a graph, therefore the number of leaf nodes will be at
most (| Es|+4p — m). Since this graph may contain shared nodes,

|Eo| < (|Es|+4p — m)2.

Note that this construction is nondeterministic: it assumes one has been able to
choose which subexpression of an an intermediate expression to rewrite in order to
mimic the original reduction.

Theorem 5.5 The Optimization Problemisin NP.

Proof: From LemmdZ.4) we need only generate expressidBsnondeterministi-

cally, with |E'| < (|E|+4K — m)2, such that the only atomic subexpressionstof
are combinators an(E’ x; . . . Xm) reduces td@ in at mostk’ steps. We note here that
we have already produced expressiorE’ which such thatE’ x; ... Xy) reduces to

E in at mostk’ steps (see Lemnfallabove), and we may without loss of generality
assume that < k'. The steps necessary from creating the expredsida deciding
whetherE’ is a suitable expression can clearly be completed in polynomial time.

Theorem 5.6 The Optimization Problemis NP-Complete
Proof: This is a consequence of Theordm&ands.5

6 Final observations If we restrict our attention to a subset of combinatorgjta

base, and the corresponding set of functions which are representable using them, then
the problem of producing optimal cod®y be simplified, as Batini and Pettoro$g] [

show for the subbaseB}.

However, itis reasonable to assume that the result we have giveniis true if we do
not restrict the functions we allow, provided that we use only a finite set of combina-
tors. Our proof is specific to one particular set of combinators (it would, for example,
fail at Lemmag¢i.5landZ.6lfor a different set of combinators). A general proof is re-
quired.

Acknowledgments We are grateful to Warren Burton, Mike Paterson, Alan Gibbons and
Tom Axford for comments on previous versions of this document, and to the United Kingdom
Science and Engineering Research Council for funding the initial research.

REFERENCES

[1] Barendregt, H. PThe Lambda Calculus, its Syntax and Semantics, North-Holland, Am-
sterdam, 1981Zb[0467.03010 MR 830:0301F11

[2] Batini, C., and A. Pettorosstome Properties of Subbasesin Weak Combinatory Logic,
Report 75-04, Istituto di Automatica, Roma, 197&.

[3] Clarke, T. J. W., P. J. S. Gladstone, C. D. MacLean and A. C. Norman, “SKIM—The
S,K,I Reduction Machine” i€onference Record of the 1980 LI SP Conference, Stanford
University, 1980.0

http://www.emis.de/cgi-bin/MATH-item?0467.03010
http://www.ams.org/mathscinet-getitem?mr=83b:03016

(4]

(5]

(6]

[7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

NP-COMPLETENESS 335

Curry, H. B., W. Craig and R. C. Fey§ombinatory Logic, vol. 1, North-Holland, Am-
sterdam, 195&Db[0081.24T10F MR 20:811T 11

Curry, H. B., J. R. Hindley and J. P. Seldi@pombinatory Logic, vol. 2, North-Holland,
Amsterdam, 197#Db[0242.02029[}

Garey, M. R., and D. S. Johnso@pmputers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, 19[Z%l 0411.68039
MR 80g:68056[2

Glaser, H., C. Hankin and D. TilRrinciplesof Functional Programming, Prentice-Hall,
Englewood Cliffs, 1984Zbl 0649.6800F MR 88:68007 |1

Hindley, J. R., and J. P. Seldimtroduction to Combinatorsand A-Cal culus, Cambridge
University Press, Cambridge, 198800614 03014 MR 88i-030d971

Joy, M. S.,0Onthe Efficient | mplementati on of Combinatorsasan Object Codefor Func-
tional Programs, PhD Thesis, University of East Anglia, Norwich, 1985]]

Joy, M. S., V. J. Rayward-Smith and F. W. Burton, “Efficient combinator co@eri+
puter Languages, vol. 10 (1985), pp. 221—-2241]

Kennaway, J. R., “The complexity of a translatiometalculus to combinators,” Inter-
nal Report CS/82/023/E, University of East Anglia, Norwich, 19B2.

Klop, J. W., Combinatory Reduction Systems, Mathematisch Centrum, Amsterdam,
1980[7bl 0466.03006 MR 83e:03036 3.1

Stoye, W. R., “The implementation of functional languages using custom hardware,”
Technical Report 81, University of Cambridge Computer Laboratory, Cambridge, 1985.

Turner, D. A., “Another algorithm for bracket abstractioiftie Journal of Symbolic

Logic, vol. 44, (1979), pp. 67-7(Zbl 0408.03018 MR 80f:030A{ JB.2]

Turner, D. A., “A new implementation technique for applicative languadestivare—
Practice and Experience, vol. 9 (1979), pp. 31-4%bl 0386.68009[3.1

Turner, D. A., “Combinator reduction machines,”Rnoceedings of the International
Workshop on High Level Computer Architecture, Los Angeles, 1984[T]

Department of Computer Science
University of Warwick
Coventry, CV4 7AL

U.K.

email: M.S.Joy@dcs.warwick.ac.uk

School of Information Systems
University of East Anglia
Norwich, NR4 7TJ

U.K.

email: \VRayward-Smith@sys.uea ac.uk|

http://www.emis.de/cgi-bin/MATH-item?0081.24104
http://www.ams.org/mathscinet-getitem?mr=20:817
http://www.emis.de/cgi-bin/MATH-item?0242.02029
http://www.emis.de/cgi-bin/MATH-item?0411.68039
http://www.ams.org/mathscinet-getitem?mr=80g:68056
http://www.emis.de/cgi-bin/MATH-item?0649.68002
http://www.ams.org/mathscinet-getitem?mr=88i:68007
http://www.emis.de/cgi-bin/MATH-item?0614.03014
http://www.ams.org/mathscinet-getitem?mr=88j:03009
http://www.emis.de/cgi-bin/MATH-item?0466.03006
http://www.ams.org/mathscinet-getitem?mr=83e:03026
http://www.emis.de/cgi-bin/MATH-item?0408.03013
http://www.ams.org/mathscinet-getitem?mr=80f:03021
http://www.emis.de/cgi-bin/MATH-item?0386.68009
mailto: V.Rayward-Smith@sys.uea.ac.uk

