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Abstract In recent work MacPherson argues that the standard method of
modeling belief logically, as a necessity operator in a modal logic, is doomed to
fail. The problem with normal modal logics as logics of belief is that they treat
believers as “ideal” in unrealistic ways (i.e., as omnidoxastic); however, simi-
lar problems re-emerge for candidate non-normal logics. The authors argue that
logics used to model belief in artificial intelligence (AI) are also flawed in this
way. But for AI systems, omnidoxasticity is impossible because of their finite
nature, and this fact can be exploited to produce operational models of fallible
belief. The relevance of this point to various philosophical views about belief
is discussed.

1 Introduction: modeling beliefs with logic and the problem of omnidoxasticity
A recurring problem in the philosophy of mind has been the logic of reasoning and
belief (cf., e.g., Rescher [17], pp. 3–96 for some examples). The most important re-
cent paradigm was first canvassed by Hintikka [11], in which the belief operatorBEL
is seen effectively as the necessity operator of a modal logic. The operator would then
be relativized to a subject, so we can say thati believes thatp by writing ‘BELi p’.
This then allows the logic of belief to be given a semantics by exploiting familiar
possible worlds semantics for modal logics. For example, one might understand a be-
liever to be allowing for, or expecting, one of a number of situations to obtain; each
situation which the believer thinks is possible can then be seen as a possible world
accessible from the actual one, where the accessibility relation is defined relative to
the believer (for an agenti, wewill call this relationi-accessibility). Then we can say
that BELi p in a worldw iff ∀w′ i-accessible fromw, p ∈ w′. The belief operator
can then be embedded, so that beliefs about the beliefs of oneself and others can be
represented (e.g.,BELiBEL j p ≡ i believes thatj believes thatp).

Although this is an important paradigm, there are some familiar problems with
it. To begin with, most well-behaved modal logics are normal, that is they admit the
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axiomK (BELi(A ⊃ B) ⊃ (BELi A ⊃ BELi B)), and the rule of necessitation (if� A
then� BELi A). However, it is clear that, for the purposes of a doxastic logic, such
normal logics are hardly going to be appropriate. The rule of necessitation means
that any believer would believe all theorems of classical logic. Worse, the addition
of K means that any believer would believe all the logical consequences of all his
beliefs, or, as we shall say, would beomnidoxastic.1 Normal modal logics are the
logics of unbounded rationality, and that is not an assumption that one would wish to
make about real believers. Any doxastic logic which intends to model the structure of
belief for boundedly rational subjects must be nonnormal. The distinction is usually
described by saying that normal logics give the structure of belief forideal believers
(cf. [17], p. 99), whereas the nonnormal logics must be used to describe the structure
of belief for actual believers (cf. Konolige [15], p. 13).

However, using nonnormal logics to model belief makes things harder. To be-
gin with, choosing a nonnormal logic means that the standard possible world-based
model theory cannot be exploited fully (Williamson [19] discusses this issue in the
context of developing syntactically-based ways of determining admissibility of rules
in nonnormal modal logics); basically, the problem is that possible worlds are logi-
cally well-behaved, so that tautologies are always true in them (hence making it dif-
ficult to block the rule of necessitation), and they are closed under deduction (which
will let K in).

But technical questions about modal semantics aside, in a recent paper [15],
MacPherson raises a series of questions about various actual attempts to develop the-
ories of belief that use nonnormal logics and shows that such attempts remain unsat-
isfactory. The issues that MacPherson addresses turn on the oft-noticed distinction
between doxastic logics which allow unbounded rationality and those which do not.
What we wish to claim in this paper is that there are ways to investigate the relation
between bounded and unbounded rationality that do not involve the development of
two kinds of logic, and that clues to alternatives can be garnered from Artificial Intel-
ligence (AI). In the next section, we look at approaches to doxastic logic in AI and put
forward positive proposals in Section3. Finally, we discuss briefly the philosophical
implications of our claim in Section4.

2 Approaches to the problem in Artificial Intelligence

2.1 The need for doxastic logics in AI The logic of belief is an important prob-
lem for AI systems. There are many examples of areas where agents need to be able
to reason both about the beliefs2 they hold, and about the beliefs that other agents
hold. One example is multi-agent problem-solving or planning systems, where artifi-
cial agents need to coordinate their actions with those of other (artificial and possibly
natural) agents. Which actions an agent is likely to perform will depend on its beliefs
about the world, so if agentsA andB need to interact in a complex way, andA needs
to anticipateB’s likely actions,A will also need to reason about whatB believes.

Doxastic logic is a fairly natural place for AI researchers to turn for hints on how
to perform such reasoning. However, it is absolutely essential for AI purposes that
doxastic logics avoid omnidoxasticity. The logic of ideal reasoners is not a matter
with which, at first blush at least, AI is concerned. That a believer ought, given ideal
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resources to believe thus-and-so is at best irrelevant from the AI point of view, and
at worst misleading. Since, in AI, one is interested in building artificial believers,3

and interested also in such systems’ interactions with other boundedly rational agents,
the logical problem is precisely that of modeling the fallible belief structures of the
finite. It is essential that the resource limitations of believers are taken into account
in AI, and therefore a logic that models only the beliefs of ideal agents will not be
acceptable.

Another way of making this point is to say that a logic which does not acknowl-
edge the resource limitations of agents will lead to an intuitively wrong definition of
logical consequence when reasoning about agents’ beliefs. Because we know that
agents are resource limited, we will not necessarily conclude that an agent believes
¬p even if we know that it believes¬q and p ⊃ q. Therefore, an epistemic logic
which leads to this conclusion unrestrictedly cannot be said to capture adequately the
notion of belief that underlies both reasoning about the beliefs of resource-limited
reasoners, and the design of artificial agents.

The problem of omnidoxasticity has two main aspects as far as AI research is
concerned. First, according to omnidoxastic logics, an agent is assumed to believe all
tautologies.BELi p is true in worldw if and only if p is true in all worldsi-accessible
from w. Since a tautology is true in all possible worlds,a fortiori it is true in all pos-
sible worldsi-accessible fromw, and therefore ifp is a tautology,BELi p is true in
w. This is a very strong assumption as an account of natural reasoning.

Second, an omnidoxastic logic assumes that belief is deductively closed. Sup-
poseS = {p : BELi p is true inw}, and thatS |= q. Then every member ofS is true
in every worldi-accessible fromw. So, therefore,q must be true in every worldi-
accessible fromw. SoBELiq is true inw, andhenceq ∈ S. Once again, this is too
strong an assumption about resource-limited belief.

Two consequences of omnidoxasticity which have special importance for AI
might also be mentioned. Omnidoxasticity implies that agents with inconsistent be-
liefs believe everything. This will not do as an assumption about boundedly rational
believers from the AI perspective. Certainly, faced with a recognizable contradiction,
any minimally rational agent would take action. For example, in the case of a con-
tradiction of the form ‘p & ¬p’, it would withdraw one of the two conjuncts; in the
case of a contradiction of the formp iff ¬p, no doubt such an agent would withdraw
either ‘if p then¬p’ or its converse. So there is no immediate problem when the con-
tradiction is clear and recognizable. But it does not seem unreasonable that an entire
set of beliefs might imply a contradiction which has not been discovered, but that that
set of beliefs might also be a reasonable basis for suitably limited interaction with the
world.4 Furthermore, if belief is deductively closed, logically equivalent beliefs turn
out to behave identically. The sentencesit is raining outside andarithmetic is incom-
plete and it is raining outside are true or false together in all possible worlds. Hence
in an omnidoxastic logic, the one is believed just in case the other is. But a system
that reasoned about the beliefs of bounded agents should treat them differently.

Since the omnidoxasticity problems impinge on AI applications so acutely, it is
not surprising that a number of efforts have been made within AI itself to meet the
difficulties. In the remainder of this section, we will briefly review some of the ma-
jor approaches and note that they are not obviously more successful than the straight
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logical approaches reviewed, and rejected, by MacPherson.

2.2 Konolige’s deduction structures A first example of a nonnormal logic is the
logic proposed by Konolige [13]. Konolige associates with each agent a so-called
deduction structure, consisting of a set of sentencesB in propositional logic and a set
of inference rulesR. B represents the set of basic beliefs of the agent, whereasR is
the set of inference rules that the agent is able or willing to apply. An agent is then
assumed to believep if p can be derived fromB using the inference rules inR. Since
R is not necessarily complete with respect to the logic in which the sentences ofB are
expressed, an agent does not always believe all the logical consequences of its base
beliefs.

Konolige’s approach deals with only one source of bounded rationality, namely
alack of inference rules. But other serious problems remain (clearly it is not the case
that theonly source of bounded rationality is a lack of inference rules, since all logi-
cians are able to apply a basic set of rules in FOPC, yet are still only boundedly ratio-
nal). In particular, the beliefs of an agent are still closed under deduction. It is simply
that deduction now depends on the set of inference rules in an agent’s deduction struc-
ture rather than on the logic in which its base beliefs are expressed. For example, it
is just as objectionable to claim that an agent is omnidoxastic with respect to intu-
itionistic logic as it is to claim that it is omnidoxastic with respect to classical logic.5

Yet intuitionistic logic is abona fide deduction structure in Konolige’s sense, since it
results from classical logic by the removal of the rule of double negation elimination.

2.3 Levesque’s logic of implicit and explicit belief Another attempt at dealing
with the problem of omnidoxasticity is Levesque’s logic of implicit and explicit be-
lief [14]. Levesque draws a distinction betweenexplicit beliefs, defined as those be-
liefs actively held by the agent (so that the agent will answer “yes” if asked whether it
believes them), andimplicit beliefs, which logically follow from what the agent be-
lieves, whether it realizes it or not. Levesque argues that resource limitations, and
hence the problem of omnidoxasticity, apply only to explicit belief (in other words,
implicit beliefs are the beliefs of the ideal believer, whereas explicit beliefs are af-
fected by resource limits and bounds of rationality). He therefore proposes to main-
tain the possible world analysis for implicit belief and proposes a new logic for ex-
plicit belief.

In his logic of explicit belief, Levesque uses the notion of asituation in Bar-
wise and Perry’s [3] sense. Intuitively, a situation is a partial possible world. That
is, whereas a possible world supports the truth or falsity of every sentence in the lan-
guage, a situation supports the truth or falsity of only some. Levesque then associates
with each agent a set of situations,S, and says that an agent explicitly believesp if
every situation inS supports the truth ofp. This idea is similar to MacPherson’s own
solution [15], pp.19–26.

Levesque’s logic of explicit belief clearly avoids the various omnidoxasticity
problems because (i) a situation which supports the truth of, for example,p andp ⊃ q
need not necessarily support the truth ofq, and (ii) a situation may support both the
truth and falsity of some sentence without supporting the truth of all other sentences
in the language. As a consequence, an agent need not believe all the logical conse-
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quences of its beliefs, and it is not committed to believing all propositions when it is
inconsistent.

Levesque’s solution does have some intuitive strength behind it. However, its
solution to the omnidoxasticity problem leaves other problems behind in its wake.
For example, there is a question of the structure of situations. These partial possible
worlds must support inference rules or not. If not then there are no inferences to be
made with respect to explicit belief, and, in effect, the attempt to give a doxastic logic,
however attenuated a logic it may be, has been given up.6 This is worse even than
Lemmon’s pessimistic view of epistemic logic, on which the only conclusion that can
be drawn from someone’s knowing something is that that thing is true, since even that
does not follow in the case of belief. If no inference rules are available at all, then any
belief states are merely lists of propositions believed; but the whole point of a doxastic
logic is that one could have some small handle on what else an agent believes given
that it believesp, q, r, etc.. Even if it is philosophically correct to claim that no rules
are available, it is a disappointing view for those who wish logic to provide some
input for AI (though many in AI, such as Ballim and Wilks [2], are quite happy to do
without inputs from logic).

On the other hand, if the partial possible worlds do support inference rules, then
really all we have is a special case of a Konolige deduction structure, in which case
the criticisms of that theory also apply. The agent would still be omnidoxastic with
respect to the rules available.

2.4 Can the extent of omnidoxasticity be limited sufficiently to assuage doubts?
One response that the supporters of both deduction structures and logics of explicit
beliefs could make here is that omnidoxasticity might not matter too much if its ex-
tent were limited. After all, the major problems to be met are arguably the belief in (or
knowledge of) all tautologies and the entailment by an inconsistency of every propo-
sition. These are easily blocked, in the first place by restricting the rule of necessity
and in the second place by being careful in the treatment of inconsistency. Having
blocked those difficulties, what then needs to be watched is what is called “belief clut-
ter” (cf. [10], p. 15). The logic needs to ensure that it keeps manageable the number
of beliefs that the subject has.

One route to doing this is to make sure that only elimination rules are available
in the partial possible worlds. For instance, MacPherson’s own preferred systemBEL

can be seen as a description of belief in which the partial possible worlds support
modus ponens (i.e.,⊃-elimination), &-elimination, and do not allow sentences of the
form p & ¬p (cf. [15], p. 22). So, although relative to this small set of rules, a be-
liever would still be omnidoxastic, there are no problems with belief clutter. Because
only elimination rules are allowed, a finite set of “core” beliefs could be expanded,
through omnidoxasticity, only to another finite set. Every application of every rule
reduces the degree of the new beliefs formed, and so it is not the case that infinitely
many trivial beliefs could be deduced as it would be if introduction rules were avail-
able.

This may point the way to a solution for the truth-functional case.7 And it might
well be a very interesting philosophical result. But it does not solve the AI problem
(in the general case); planning problems often involve substantially more than truth-



480 O’HARA, REICHGELT, and SHADBOLT

functional inferences. For example, Aitken et al. [1] discuss reasoning about beliefs,
time (in particular, modeling the future through a branching model of time), and in-
dividuals. Even if we ignore the special problems set by the doxastic and temporal
components of that particular theorem prover, we still need to address the problem of
how to deal with quantification over individuals.

The problem is this: once the logical apparatus gets beyond simple truth-
functions, the tactic of reducing the degree of the logical formulas by allowing elim-
ination rules only in the partial possible worlds fails to prevent belief clutter. For
example, suppose we had an axiom on whichBELi(∀x)P(x) is allowed to entail
BELi P(a) for eacha that i knows about (call this axiomU), so that, on this axiom,
if an agent believed that everything was purple, then it would believe of everything it
knew about that it was purple. In that event, the number of extra beliefs “created” as a
result of omnidoxasticity with respect to this rule could be very large indeed, though
finite. Suppose the agent was aware of the existence ofn objects; then the addition
of the belief that everything was purple would automatically lead to the addition of
n beliefs (viz., to the effect that each of then objects it recognized was purple). This
numbern might of course be very large, and so the belief clutter could well become
very extensive.

Because there is no upper bound ton in this case, it is clear that the strategy of
restricting all inference rules to elimination rules will not help with belief clutter for
agents which recognize a large number of objects. Only in the truth functional case is
the strategy going to pay dividends. Each application of &-elimination will result in
two extra beliefs (i.e., if the agent believes thatp & q, it will also believe thatp and
thatq); each application of modus ponens will result in only one extra belief (i.e., if
the agent believes thatp and thatp ⊃ q, it will also believe thatq). But an application
of U could result in orders of magnitude more beliefs.

Further, if a system included a function for creating new objects (e.g., the suc-
cessor function for the natural numbers), then an infinity of new (nontrivial) beliefs
could be created usingU. Although the previous argument shows that indefinitely
many new beliefs might be formed using the axiomU alone, the scale of the increase
will always be limited by the number of objects that the agent knows about. But when
the number of objects is not limited, neither is the number of beliefs thatU will sanc-
tion.

For example, suppose thati believes that if a number is greater than 0, then so
is its successor. That is not an unreasonable belief; most human agents with a rudi-
mentary knowledge of arithmetic would assent to it. In our logical terminology, we
say thatBELi(∀x)(x > 0 ⊃ s(x) > 0). Suppose also thati believes that 1 is greater
than 0 (i.e.,BELi(1 > 0)). Now we are on the slippery slope to an infinite chain of
beliefs, thanks to MacPherson’s axiomAS2 and our ownU. AS2, translated into our
own terminology isBELi p & BELi(p ⊃ q) ⊃ BELiq.

The proof is simple: since we haveBELi(∀x)(x > 0 ⊃ s(x) > 0), we have,
by U, BELi1 > 0 ⊃ s(1) > 0. We also haveBELi(1 > 0). Hence, byAS2, we have
BELi(s(1) > 0). Until now, our agent was aware of two objects only, 0 and 1. Now it
is aware of another,s(1) (i.e., 2). SoU can be applied again, sinceBELi(∀x)(x > 0⊃
s(x) > 0), to give usBELi(s(1) > 0 ⊃ s(s(1)) > 0), andAS2 can be applied, since
BELi(s(1) > 0), to give us thatBELi(s(s(1)) > 0). This process of applications of
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U followed byAS2 will give us an infinite series of beliefs 1> 0, s(1) > 0, s(s(1)) >

0, s(s(s(1))) > 0, s(s(s(s(1)))) > 0, . . ., together with the corresponding (infinite)
series of conditionals of the form(sn(1) > 0 ⊃ sn+1(1) > 0) : s ≥ 0.

The alternative to such infinitary belief clutter, of course, is to avoid using an
axiom such asU. But this will restrict severely the scope of the logic. For it is not
clear what the point is of allowing such sentences asBELi(∀x)P(x) into the logic if
no conclusions are to be drawn from this with respect toi’s beliefs about the individ-
uals over which it is reasoning. If an agent believes that everything is aP, andyet
treats some individual as if it were not aP, then it is not clear that the logic is not
equivocating about the semantics of the quantifier (i.e., one’s implicit beliefs would
be classical, and one’s explicit beliefs would be deviant), which MacPherson strongly
(and rightly) objects to (cf. [15], pp. 16–7).

3 Taking control into account So, having reviewed some likely candidates for
doxastic logics from AI, we can endorse MacPherson’s result that there seems to be, at
present, a singular lack of nonnormal modal logics which can model belief. Even the
apparently promising tack of using partial possible worlds, favored by MacPherson,
has important problems with it. Now, neither our survey nor MacPherson’s pretends
to be exhaustive, but it is yet to be demonstratedeither that (a)all the obstacles can
be surmounted without creating new problems elsewhere (the minimum result which
would satisfy MacPherson),or that (b) such a logic could be embodied in a machine
that could work in or close to real time (the extra result required for AI applications).
Our aim in this paper is to suggest a new way of conceptualizing implicit and explicit
belief (or ideal and fallible believers) to sidestep the problems with doxastic logics.

3.1 The sources of fallibility To begin with, consider why it is that an agent does
not believe all the logical consequences of its beliefs. After all, all things being equal,
the survival value of believing the consequences of one’s beliefs is likely to be high.
Following Fagin and Halpern [8], we might identify four reasons why real agents
(both natural and artificial) fail to be omnidoxastic.

Lack of awareness: the agent may be unaware of some concept or object and
therefore cannot have any beliefs about it.

Resource boundedness: the agent does not have the computational resources to
derive all the logical consequences of its beliefs. Or, even if it did, it does not
have enough memory to store them all. Or, even if it did, it could not access an
arbitrary belief from its knowledge base8 in real time due to the cost of search-
ing such a vast store.

Lack of inference rules: the agent may not be able to apply (perhaps through
lack of awareness) certain inference rules (for example∨-elimination).

Limited focus of attention: the agent may fail to put together sentences that
were derived in different contexts. The agent’s reasoning might well be locally
perfect, but the limited focus of attention may not enable it to make connections
with other inferentially relevant beliefs which are currently out of focus.

Note that all these problems are problems with the agent itself. Hence the
sources of fallibility are not logical but psychological. When an agent departs from
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the beliefs of the ideal believer, it is not because its “logic” is nonnormal but because
it is incapable of deriving the best results.

Suppose an agent were also a bit of a metatheorist and observed and commented
on its own beliefs. Suppose also that it believed thatp and thatq, and that it believed
that it believed thatp and it believed that it believed thatq. It is clear that it would
not reason like this:hmm, p is true (I believe), and so is q, but the logic governing my
beliefs is nonnormal, and in particular does not contain the adjunction schema, so I
should not believe that p & q. It would reason like this:p is true (I believe), and so is
q, and therefore p & q is true, so I will add that to my set of beliefs. The conjunction
is added to the agent’s set of beliefs because it performed an inference. Any doxastic
logic that denied the agent access to the inference would be failing to model belief
properly. The important point is that agents sometimes (but only sometimes) fail to
perform inferences; this is a psychological fact, not a point of logic.

3.2 Control heuristics in theorem provers The question now is: how can such psy-
chological facts be modeled? As we have discovered, this may be tricky using logic.
But in AI, what we do have are systems whose limitations might well be congruent
to those of human agents. Normally this is not something to boast of, but in this case,
fallibility may well be of philosophical interest.

We will attempt to show how a particular type of system can be used to model
the limitations of resource-bounded agents. Atheorem prover for a logic is a system
that attempts to find proofs automatically for statements using that logic. This process
turns out to be a process ofsearching; a theorem prover for a logic is a program that
searches the space of possible proofs in that logic. Because of the recursive nature
of many inference rules, it is in general impossible to search this space exhaustively.
Moreover, even when an exhaustive search is in principle possible, practical consid-
erations tend to rule it out (e.g., because of the need to produce results in real time).
Therefore, a theorem prover will need to use a number ofheuristics to determine the
way in which it searches the space of possible proofs. We shall discuss these vari-
ous heuristics, using Prolog (as in Clocksin and Mellish [5]) to illustrate them where
appropriate.

For those readers who are unfamiliar with theorem-proving techniques in AI in
general, and with Prolog in particular, it might be helpful to review some the prin-
ciples of Prolog briefly, just so the flavor of automatic theorem proving is sampled.9

Readers who are moreau fait with theorem proving could skip the next few para-
graphs.

Prolog is a logic-based programming language, widely used within the AI com-
munity, that can determine whether or not a particular proposition (classically) fol-
lows from a set of propositions. The basic type of expression in Prolog is a pred-
icate expression, which consists of a predicate name followed by its arguments
enclosed in parentheses. So, examples of Prolog predicate expressions would be
president(clinton) or brother_of(scott,virgil).

More complex expressions can be formed in Prolog by arranging them in the
form:

p :- p1,p2,...,pn.
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The expression before the ‘:-’ symbol is thehead, and thepi are thesubgoals. The
commas separating the subgoals are conjunctive. The full stop completes the expres-
sion. The expression is interpreted as saying thatp if p1 and p2 and ... and pn. If a
predicate expression appears followed by a full stop (i.e., as a head without any sub-
goals), as in

brother_of(scott,virgil).

then that is interpreted as simply asserting that the expression is true (i.e., it is uncon-
ditionally the case and does not depend on any subgoals).

Rules governing the use of expressions can be set up using the Prolog syntax.
For example, a bachelor can be defined as an unmarried man.

bachelor(X) :- unmarried(X), male(X).

A single man can be defined as either unmarried or a divorcee or a widower. This
gives us three rules.

single(X) :- unmarried(X).
single(X) :- married(X,Y),divorced(X,Y).
single(X) :- married(X,Y),deceased(Y).

To use Prolog, you send aquery. Prolog will then search thepredicate database
which contains all the rules and facts that have been asserted (this is a form of knowl-
edge base). A query is a rule without a head, such as

:- single(scott).

Prolog will then try to prove the expression in the query from the expressions in its
predicate database. It will look for an expression whose head matches the query. In
the simplest case, this would just be the fact that Scott was single.

single(scott).

Having matched these up, Prolog could assert that the query was proven. That case
is simple enough, but it hardly counts as theorem proving. Now suppose that there
is no simple fact corresponding to the query. Then the query might be matched to
one of our rules for the predicatesingle. In the first, there is a match ifscott
is substituted for the variableX through the expression. Given there is a match to
the rule’s head, Prolog then sets up subgoals, which are to prove each statement on
the right hand side of the rule (with suitable substitutions made). So, in the first in-
stance, Prolog will set up a sub-query to proveunmarried(scott), which it will
attempt to prove in the same way. If it fails to prove it, it will remove it from its list
of queries, and go to the next option, which is to prove thatmarried(scott,Y) and
thendivorced(scott,Y). It will attempt to prove each in turn. It will try to match
each query against the heads of all the expressions in its predicate database, substi-
tuting for Y (consistently through the two queries) where appropriate. If it fails to
prove either expression, it will then go on to the third possibility, trying to show that
married(scott,Y) anddeceased(Y).

Having briefly reviewed the operation of Prolog, we can go on to observe that it
is clear from this description that one source of problems for theorem proving is the
fact that a theorem prover has to search through a knowledge base, such as Prolog’s
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predicate database, which may be large and unwieldy. This can make the process of
proving queries very time (and memory) consuming indeed. The process may even
go around in circles (and thereby enter an infinite loop). Imagine if the following rule
had been asserted and was placed in such a way as to be the first expression used for
matching purposes.

married(X,Y) :- married(Y,X).

In that event, when Prolog matched its querymarried(scott,Y) against the head
of the rule, it would then set up a subgoalmarried(Y,scott). But this would also
then match against the head of the rule, sincescott could match against the variable
Y, andY would match againstX, since both are variables (one can think of Prolog rule
expressions as being effectively universally quantified). This would then set up the
next subgoal, which would bemarried(scott,Y), and we would be back where we
started. This loop could go on until the machine ran out of resources.

Even assuming such infinite loops are avoided, it could always happen that a
query sparks off a series of subgoals, which eventually, after much computation, lead
to a dead end. In this case, the machine would have to go back to the beginning, and
all that time and effort would have been wasted — with no guarantee that the next
trail that Prolog pursued would be any more successful.

The set of decisions that a theorem prover like Prolog can take can be arranged
in a tree-like structure. At each point, ornode, anumber of possible actions are avail-
able, and each action determines a differentbranch of the tree (in the case of Prolog,
there is a branch of the tree corresponding to each expression whose head matches the
query). Down each branch, a different set of actions is available; these actions each
then determine their own sub-branches, and so on. This branching structure is called
a search tree. A search tree can be seen as a representation of the space of possible
proofs and attempted proofs of the query in the knowledge base.

So, using our example above, the root node of the tree corresponds to the asking
of the querysingle(scott). There are then four branches from that node in the
search tree, one corresponding to the assertion in the predicate database and one each
corresponding to the three rules forsingle, and each branch leads to a new node.
The first branch leads to a successful proof (aterminal node), the second leads to a
node corresponding to a new query,unmarried(scott), and so on. Each new query
will set off its own subtree.

But the search tree is only half the story. The branches leading from a node in the
tree determine what the systemcan do, but not what the systemwill do. The issue of
what a machine does at each point is called the issue ofcontrol. The flow of control,
in a computational system, defines what the machine is going to do. In the case of a
theorem prover, the major control issue is to determine how it will navigate through
the search tree. Whenever a node with a set of branches is reached, the theorem prover
has to decide which branch to go down. If the branch then leads down a long trail
which appears to have no end, another control issue is to decide when to stop and
go back to the beginning, trying another branch. Clearly, as one can see from the
discussion above, the order in which such a system performs its actions can have a
large effect on how long a derivation of a result can take. Indeed, the order in which
actions are performed can affect whether a result is produced at all. Where possible,
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the control in a system will ensure success. But often it is the case that there is no
sequence of actions which will work in all cases. In these circumstances, the system
is programmed with controlheuristics, which determine a strategy for selecting the
next action to be performed.

Four types of heuristic can be distinguished that are used by a logic-based theo-
rem prover:

1. heuristics to decide which propositions to retrieve from the knowledge base;

2. heuristics to generate the next layer in the search tree;

3. heuristics to decide which open node in the search tree to expand; and

4. heuristics to decide whether a branch should be pruned or not.

These control heuristics define what the theorem prover is intended to do, and when
(i.e., which propositions it should prove, how, and in what order). In the remainder
of this section, we explain in detail the effects of each of these types of heuristic.

First, in general, such a theorem prover will contain a number of inference rules,
such as modus ponens. The rule will be stored in a form which looks something like:
IF ((ASSERTED? P) AND (ASSERTED? (=> PQ))) THEN ASSERTQ, whereP and
Q are metavariables for propositions. Therefore, before an inference rule can be ap-
plied, the metavariables first have to be instantiated with actual propositions in the
knowledge base. This is usually done by searching for and retrieving suitable formu-
las. The first heuristic that logic-based theorem provers use is a heuristic to decide
the order in which formulas should be retrieved.

The heuristic that Prolog uses for retrieving propositions from the knowledge
base is simply textual order. Propositions are retrieved in the order in which they
were asserted into the knowledge base. However, one can imagine more sophisti-
cated heuristics. For example, Socrates (cf. Corlett et al. [6]) contains a partitioning
mechanism that allows the user to partition the knowledge base and thus restrict re-
trieval of propositions to only certain parts of the knowledge base. Hence, to extend
our example above, one could make a partition with all the propositions to do with the
marital status of the people in question, and then when a query likesingle(scott)
comes in, restrict the search to that partition (or at least promote efficiency by search-
ing that partition first). Or alternatively, all the propositions mentioningscott might
be partitioned together, and that partition would then be searched first. All the general
propositions, with variables likeX andY in them, would be in a separate partition, and
that partition might be searched next.

As we have seen, a theorem prover’s proof can be seen as a traversal of a search
tree. At any node in the tree, the theorem prover can apply any one of its repertoire of
inference rules; the application of each rule will open up a new branch. The second
class of heuristics then concerns the operators that are used to build the next layer of
the search tree. Given that one has decided to expand a particular node of the tree,
one has to decide how to expand it.

The third class of heuristics concerns the decision as to which node to expand
next. At any given point, more than one node may remain unexplored, and a theorem
prover has to decide where to go next.

Again, the heuristics that Prolog uses for deciding which node to expand next
are relatively simple: left-to-right, depth-first (i.e., choose the leftmost unexplored
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node, and go down a level where possible). Other systems have more sophisticated
heuristics. Indeed, many systems allow the user to define explicitly the heuristics that
they want to use (e.g., MRS of Genesereth et al. [9] and Socrates of Corlett et al. [6]).
This would allow, for instance, the user to apply a breadth-first heuristic (i.e., never
go down a level in the tree unless all the nodes at higher levels are expanded), which
can be slower than depth-first search but is guaranteed to find the shortest proof.

The final class of heuristics in theorem provers is used to prune the search tree—
i.e., to make the decision that a given node looks so bad that it should not be con-
sidered for further expansion. This is of particular importance for real-time theorem
proving. Indeed, since most interesting logics are semi-decidable, it is impossible in
general to perform an exhaustive search for a proof of a proposition. Heuristics are
therefore necessary to decide whether the current node is a suitable candidate for ex-
pansion or should be considered a dead end.

The heuristics that Prolog uses for deciding to prune a branch are very weak.
Prolog will prune a branch as a dead end only if there are no clauses in the knowl-
edge base against which the current query can be matched. In all other cases, Pro-
log will continue until it runs out of memory space. As a more sophisticated ex-
ample, the UT theorem prover of Bledsoe [4] prunes a branch from the search
tree if the same goal occurs more than once in the same branch. The rationale is
that if in trying to prove some goalg, we reduceg to itself, we are never going
to find a proof forg along the current path. Recall our example where the rule
married(X,Y) :- married(Y,X) caused an infinite loop; this heuristic would rule
that out, since oncemarried(scott,Y) appeared for the second time as a query, the
whole branch of the tree would be pruned (i.e., this query would be withdrawn), and
another route would be tried.

3.3 Avoiding omnidoxasticity with control So, what does all this mean in practice?
The idea is that modeling belief should be a two-stage process. Firstly, the structure
of warranted belief has to be worked out as a logic. This logic needs to be inclusive, to
take account of all the inferences a resource-bounded believer is justified in making.
It does not need to be exclusive, and so it would not matter if some inferences were
allowed that were psychologically unrealistic (as long as those inferences were war-
ranted). In such a logic, an expression such asBELi p is interpreted as “i has a warrant
to believep.” After this stage has been completed, the second stage is to develop a
theorem prover for that logic whose control heuristics model the psychological falli-
bility of a human agent with respect to the logic. If an agent being modeled by this
process fails to believe something it is warranted in believing, then the idea would be
that that limitation (assuming it to be systematic) would be coded into the theorem
prover. Then, if the theorem prover provesBELi p, and inserts it into its knowledge
base, this (act) is interpreted as meaning thati actually believesp.

There is a rough consensus that any logic of warranted belief must be normal
(although this needs to be argued for). We do not particularly want to make a stand
over this, although we think it is a reasonable assumption. It seems likely that if an
agent has a warrant to believep and a warrant to believep ⊃ q, then it has a warrant
to believeq; this would allowK into the logic of warranted belief. And similarly,
an agent presumably has a warrant to believe any theorem of classical logic, which
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would allow the rule of necessitation. These additions to the logic would make it nor-
mal.

The logic of warranted belief could allow further refinements that would be un-
available for a logic of actual belief. If an agent is warranted in believingp, then it
is probably warranted in believing that it is warranted in believingp (i.e.,BELi p ⊃
BELi(BELi p)). i’s warrant to believep consists of some evidence forp that i pos-
sesses (this evidence is of course defeasible, since this is a logic of belief, not knowl-
edge). Then it is arguable thati’s possession of such evidence must be known toi in
order for that evidence to warranti’s belief thatp. Then i must be warranted in believ-
ing that that evidence is available to itself, from which it follows thati is warranted
in believing thati has a warrant for belief inp.

We do not want to get into the fine details of a logic for warranted belief. But
the main point is that such a logic would be substantially stronger than any of the
solutions to the omnidoxasticity problem discussed in Sections1 and2 above. The
question then is: will the modeling of belief by a theorem prover for this logic avoid
omnidoxasticity?

When belief is interpreted as the theorem prover’s coming out with the output
asserting that a proposition is believed, the result is automatically that omnidoxastic-
ity must be avoided, since any theorem prover can only output finitely many proposi-
tions. This will obviously rule out the possibility that belief will be deductively closed
(assuming a classical propositional logic). Even if the machine has insertedBELi p
into its knowledge base, it does not follow that it will ever get around to inserting
BELi p ∨ q. It need not insertBELiBELi p. It may or may not; it depends on the con-
trol heuristics. It certainly will not in every case. If the knowledge base is large, there
will be many (almost certainly infinitely many) warranted beliefs derivable from it.
This is where the dangers of omnidoxasticity arise, since logically there is no reason
why, for any warranted belief, that belief should not be held. But an artificial agent
is in no danger of deriving all those beliefs, since it is limited in time and memory,
and therefore clearly will not be omnidoxastic. The beliefs derived by the theorem
prover would all be warranted, since the underlying logic would be doxastic, but not
all warranted beliefs would be derived. This, we believe, makes the solution already
as good as the nonnormal doxastic logics discussed above.

In the same way, the other serious problem with normal doxastic logics, that any
contradiction implies all other propositions, is also circumvented. A theorem prover
may well not discover an inconsistency in its knowledge base, although it will with-
draw one when one is found (in this respect its behavior will mirror that of a human
agent). Most theorem provers contain some sort of consistency checking; checking
each proposition for consistency with the knowledge base is generally quite expen-
sive in time and memory, however, and usually this facility can be turned off. One
particular way in which an inconsistency might remain undiscovered with a human
agent occurs when the two inconsistent beliefs are not connected because they are
associated with different contexts. This can be modeled by a partitioned knowledge
base, where the propositions in such a knowledge base are separated from each other;
when two inconsistent propositions are kept in separate partitions, it might be the case
that the inconsistency goes undiscovered for some time.

Given that the two basic problems of omnidoxasticity are circumvented by the
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use of a theorem prover, the question arises as to how good a model of an actual be-
liever it would be. In other words, the additional problem is that not only does a
human agent not believe everything, what it believes is circumscribed in particular
ways. This is the area where a theorem prover is likely to score over nonnormal dox-
astic logics. Nonnormal logics tend to rule out particular types of inference. But in
general, most inference types are used by human agents; even quite complex infer-
ences likemodus tollendo ponens ((A ∨ B) ⊃ (¬B ⊃ A)) or reductio ad absurdum
are used fairly frequently in relatively unsophisticated contexts. Human agents tend
to fail to draw all the conclusions that they might; it is not that they are omnidoxastic
with respect to particular restricted sets of inference rules. Hence the solutions that
nonnormal doxastic logics provide for omnidoxasticity are quite arbitrary andad hoc.

On the other hand, theorem provers can be biased in ways similar to the ways in
which human agents can be biased. In Section3.1, we followed Fagin and Halpern
in distinguishing four different sources of doxastic fallibility. In the remainder of this
section, we will show how these different sources correspond directly to various prop-
erties essential to any theorem prover implementing a logic sufficient to capture dox-
astic reasoning.

The first source is lack of awareness. This is the situation where an agent may
not be aware of a concept or object. In this case, it should not be held to be enter-
taining, for example, any of the tautologies involving that concept or object. Even
though it is a tautology that either Mario Andretti can fly a helicopter or Mario An-
dretti cannot fly a helicopter, it would be deeply counterintuitive to assume that Perkin
Warbeck believed that. We would propose that this limitation could simply be mod-
eled as a limitation in the language available for the theorem prover. A system that
cannot reason about an expression because it has not beendeclared cannot be said to
believe any sentences involving such expressions.

The second source is resource-boundedness. An agent does not have the compu-
tational resources to derive all the logical consequences of its beliefs. Recasting the
problem in terms of theorem proving we can say that the problem is what to do given
that infinite resources of memory and time are not available to the agent. Resource-
boundedness is addressed in theorem provers via the heuristics used to decide which
node to expand next and which branches in the search tree to prune. Deciding which
states are interesting, or likely to be fruitful, is a way of coping with the fact that it is
not feasible to search the entire tree. The heuristics to prune the search tree could be
altered to take account of likely strategies used by human agents; in this way, the ways
that human resource-boundedness manifests itself can be mimicked by the artificial
agent.

The third source is lack of inference rules. We can model this problem by notic-
ing the fact that any theorem prover must embody heuristics that allow it to generate
the next layer of the search tree. Such operations can be seen as the application of
inference rules in our doxastic application. If the heuristics apply only certain op-
erations then we will see behavior which amounts to a lack of inference rules. This
offers a natural way of implementing Konolige’s deduction structures and MacPher-
son’s partial possible worlds semantics.

The final source is limited focus of attention. Often agents do not use all the be-
liefs that they have which are relevant to a given query. Such behavior is reflected in
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the heuristic that is used to determine which propositions to retrieve from the knowl-
edge base. This heuristic will attempt to retrieve only those propositions which are
likely to be relevant, such as all those propositions that mention terms that are used
in the query explicitly. However, such a heuristic is not guaranteed to retrieve all rel-
evant propositions, and therefore we are likely to get behavior that mimics limited
focus of attention.

It is an open question how far all the psychological strategies for coping with
resource-boundedness used by human agents can be modeled in this way. However,
the advantage that theorem provers have over nonnormal doxastic logics is that they
allow the logic of belief to be very simple, while allowing the complex reasons for
the lack of omnidoxasticity to be modeled. As more information is gathered from
psychology about human reasoning practices, that information can be incorporated
into an operational model built around a theorem prover merely by altering its prior-
ities; the changes required by a logic would be much more complex. A logic, being
a bounded and abstract object, is better suited to modeling relatively well-behaved
structures (such as warranted belief). The unpredictable types of human behavior
would better be modeled by machine behavior that is not easy to predict either. A
human agent might believep and p ⊃ q and therefore believeq on Monday, while
on Thursday no longer believeq, despite still believing thatp and p ⊃ q. It is hard
to imagine how that sort of capricious behaviour could be modeled by a logic at all,
yet it is at the heart of the problem with belief. On the other hand, there is at least a
chance of using the machine and the context in which the machine is used to model
the nonlogical conditions governing Thursday’s failure and Monday’s success.

4 Discussion: belief, control, and omnidoxasticity Effectively, then, our claim is
that the distinction between fallible and ideal believers can be modeled by a simpler
method than the traditional solution of exploiting the distinction between nonnormal
and normal modal logics. Our claim is that, if ideal believers are correctly modeled
using a normal modal logic, then fallible believers can be modeled using a theorem
prover for that logic. The relevant distinction would then be between a logic and a
finite embodiment of a logic.

Note how the distinction can be of relevance to both types of AI we mentioned
above—recall from Note 3 how AI can be seen as a branch of cognitive science or as a
branch of engineering. If AI is an engineering discipline, then the aim is to get good
results in real time without using too many computational resources. Then using a
(relatively simple and well-understood) normal logic for modeling belief must be a
saving over systems that try to use complex nonnormal systems. On the other hand,
if AI is a psychological discipline, then the heuristics discussed in Section3.2 can
be used specifically to model the limitations mentioned in Section3.1. For instance,
the heuristic governing the pruning of the theorem prover’s search tree, for example,
could be based on the investigation and discovery of exactly when a human agent
fails to apply a particular rule, which is uncontroversially a matter ofpsychological
investigation. Although we make no suggestion that existing theorem provers model
fallible human believers exactly, there would seem to be no reason why the heuristics
governing a theorem prover might not be made more psychologically realistic in this
way. Indeed, if a strong model of human belief is required, then the control heuristics
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for the theorem prover could even reflect flawed reasoning patterns, such as incorrect
reasoning with probabilities (see Kahneman et al. [12]), or biases in expert reasoning
(see Silverman [18]).

However, even if our solution were deemed to be adequate for the engineering
discipline of AI or the empirical discipline of cognitive science, it might be objected
that the solution is unlikely to be adequate as ananalysis of belief. The distinction
between the logic and the theorem prover cannot be an analysis or explication of the
concept of belief, this objection would run, because of the following dilemma. Ei-
ther the theorem prover (which embodies a normal modal logic and control heuris-
tics which are psychologically realistic to the degree required) always does the same
thing or it does not. In the first case, the theorem prover in effect is merely a repre-
sentation of a nonnormal logic; the set of propositions that the theorem prover will
prove will define a nonnormal doxastic logic (although this may be a logic with very
nontrivial inference rules). In such a logic, ‘�’ would be equivalent to ‘provable with
the theorem prover’. Hence the use of control heuristics to model resource-bounded
belief is merely a short cut to the correct analysis, not the analysis itself. In the second
case, where the theorem prover is inherently unpredictable, that very unpredictability
means that we have no stable analysis of the concept of belief.

In fact, the first case, where the theorem prover always does the same thing, and
therefore will effectively specify a nonnormal logic, is relatively improbable. A the-
orem prover is likely to have various dynamic properties, as will be seen in the dis-
cussion of the second case below. These dynamic properties would tend to make it
unlikely that theorem provers are guaranteed to function in the same way across com-
putational contexts, so a criticism of our approach based on the hypothesis that the
first case obtained would lack force on that ground. Furthermore, it is not clear that
the claims we have made for the philosophico-logical interest of theorem provers in
doxastic logics would be inconsistent with the criticism. After all, we could certainly
insist that the theorem prover would be an important tool for the investigation of the
concept of belief if it was equivalent to the logic; indeed, it might be theonly tool
available for such an investigation, since such a circumscribed logic as is envisaged
here would lack generally applicable and easily formulated rules of inference. One
might even go further and claim that without extensive tests on such a theorem prover,
the logic would almost certainly never have been discovered in the first place.

The second case we have to look at is the case where the psychologically real-
istic theorem prover does not specify a nonnormal logic. The first point to note is
that we should resist claims that a computational system could not beexplanatory
of belief simply because it is a piece of hardware, and that therefore the analysis of
the concept of belief would not have been advanced. For instance, the distinction be-
tween thelogic of belief (the logic of ideal or implicit belief) and thepsychology of
belief (the beliefs that individuals actually hold) is a perfectly respectable one, and
many philosophers have held that which beliefsactually get held by resource-limited
agents is a matter of psychology and not entirely determined by the concept of belief
itself. Logic determines which beliefs arewarranted; psychology determine which
beliefs are held.

Indeed, to claim that an analysis of belief could not use input from psychology
(or any other empirical discipline, for that matter), is an over-strong claim. For in-
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stance, a psychologically realistic theorem prover for a normal modal logic might be
used to disprove the claim that that logic was a good doxastic logic for anideal be-
liever. For if the heuristics that the theorem prover used werebona fide psychologi-
cally and the output of the theorem prover did not respect fairly basic intuitions about
what fallible believers are likely to believe, this might be taken as evidence of a fail-
ure of the embodied logic to define what theideal believer would believe. It might
even be said that that it is not obvious how else one could discover the properties of
ideal belief.

So we should resist claims that a functioning computational systemper se must
fail to explicate an abstract concept. What we have to do finally is to explain why the
output of a theorem prover may vary from context to context. After all, computers
are supposedly deterministic machines; how could such a thing happen? There are
at least three types of circumstance in which such variance could occur, and we will
argue that each circumstance is analogous to similar sources of variation in natural
belief.

To begin with, a theorem prover, like any computational system, can do only
whatever is permitted at any time (i.e., whatever is consistent with its specification).
If it turns out that nothing is permitted, the program will stop. If only one thing is
permitted, then that action is performed. But there will be a problem of control if there
is more than one permissible action. In that event, the class of actions that the system
could perform is called aconflict set. The system must then choose between the items
in the conflict set; the strategy it uses to make this choice is called aconflict resolution
strategy. In the case of a theorem prover, one type of situation in which a conflict
resolution strategy is likely to be needed occurs when it is ready to apply an inference
rule. There may be one or more inference rules applicable, or alternatively there may
be more than one formula to which a rule will apply. The theorem prover then has
to choose one particular action to perform, and, as discussed in Section3.2, it will
have heuristics to make that choice. But note that the heuristic which determines the
conflict resolution strategy need not be deterministic. For example, the strategy may
be to use a randomizing function to choose the action to perform next, in the event
that there is a conflict. Or, more realistically, it may be dependent on other concerns
not directly related to the logical issues (e.g., the ease of performing the action, or the
order in which the members of the conflict set are listed).

Thus the theorem prover may in different circumstances resolve conflicts differ-
ently, which means that given the same premises, it need not always give the same
output, since some ways of resolving conflicts could lead to an efficient solution,
while others may simply cause the system to run out of time. Indeed, if the sys-
tem’s knowledge base were actually inconsistent, different ways of resolving conflicts
could lead to inconsistent solutions being reached in different circumstances to the
same problem. This would certainly be of interest if it turned out that natural believ-
ers were similarly variant in the ways in which they approached problems. But even if
not, such differing conflict resolution strategies could still supply results of philosoph-
ical, psychological, and logical interest. If it turned out that a theorem prover which
was psychologically realistic in the appropriate ways could always reach the same re-
sult even with, say, a random conflict resolution strategy, then that is suggestive; that
is good evidence (given the psychological realism of the systems in question) that a
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natural believer should also achieve such results, come what may. On the other hand,
if the achievement of a result varied with the conflict resolution, that is good evidence
that a natural believer might not be expected to reach the result in all circumstances.
In other words, a theorem prover might be useful in discovering whether the order in
which things are done is significant. And if the purpose of doxastic logics is to reason
about real, resource-bounded believers (whether natural or artificial), then it is hard
to see why that is not relevant.

A second type of circumstance where the output of a theorem prover might be
expected to vary will depend on factors to do with memory. The efficiency of a theo-
rem prover will be limited by the amount of memory that is free at any point; that in
turn will depend on the type of machine that the system is being run on. The memory
size itself may vary; furthermore, the quality of the machine’sgarbage collection (i.e.,
the way the machine routinely frees parts of its memory by erasing old data that are
no longer in use) will also influence how much memory the system gets to use. The
amount of available memory will obviously have an effect on whether the theorem
prover manages to complete its reasoning. But it may also be the case that the actual
results of a theorem prover’s investigations will depend on the quantity of memory
available, so that, for example, it will reach an approximate solution, followed by
a series of refinements which lead to increasing accuracy. In that case, the number
and quality of the refinements may also be determined by garbage collection. Hence
theorem provers may be used as tools for the investigation ofhuman memory limita-
tions if it is shown that psychologically realistic heuristics require a certain amount
of memory to work efficiently.

The third type of circumstance in which variance might be anticipated occurs
when the order that the beliefs appear in the system’s knowledge base varies. Dox-
astic logics make play with a notion of timelessness which would appear to be unre-
alistic for a fallible agent. If I come to believe something, there is a time at which I
believe it, and a time in the past at which I did not.10 However, in a (static) doxastic
logic, this phenomenon is rather glossed over; all the statements of the logic must be
made in what Hintikka [11], p. 7 (or Hintikka’s friend, to be precise) called a “log-
ically specious present.” But beliefs might well interact; the order in which beliefs
are acquired may be an important factor in judgments about, for example, which of
an inconsistent set of beliefs to give up (a long-held belief might become embedded).
Whether contradictions and inconsistencies are even noticed may be a function of an
ordering effect. Such effects are modeled easily by a theorem prover (since a theorem
prover is also operating in time, and order effects can be modeled in control heuris-
tics), whereas a logic, being static, can model such effects only at the cost of a further
set of complications to the axioms and the semantics.

So, to conclude, we have suggested that theorem provers embodying logics of
ideal or implicit belief can, by an artful choice of their control heuristics, be used to
model the explicit beliefs of fallible believers, thereby gaining in simplicity over static
nonnormal modal logics, which are standardly used. We have argued that use of such
heuristics in operational dynamic systems is preferable to the production of complex
and arcane logics from the points of view of AI conceived as an engineering disci-
pline, as a sub-discipline of cognitive psychology, and even as a contributor to the
philosophy of mind.
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NOTES

1. Suppose thatBELi p and thatq is a logical consequence ofp (p � q). Then� p ⊃ q. So,
by necessitation,� BELi(p ⊃ q). So, byK, � BELi p ⊃ BELiq. But, by assumption,
BELi p. Hence, on that assumption alone,BELiq.

2. For an artificial system, a “belief” is a proposition stored in its knowledge base upon
which it may act. Opinion is divided as to whether the beliefs of human agents can be
conceptualized similarly. For example, Harman [10], pp.13–4 sees beliefs as being writ-
ten in “mentalese” in the mind; in AI terms mentalese can be seen as the human knowl-
edge representation language, and on this view human and artificial agents are not too
disanalogous in principle at least. On the other hand, Dennett [7] emphasizes the role
of interpretation in belief attribution. For the purposes of this paper, our account will
be neutral between these two views; our claim is only that at the level of logic, the log-
ics of natural belief and artificial “belief” can and should influence each other (which,
it should be emphasized, is consistent with the idea that philosophical theories of belief
are independent of AI theories—cf. Ballim and Wilks [2], p. 451). For this reason, for
the rest of this paper, we shall drop the scare quotes around the term “belief,” which we
shall use to refer both to the natural and the artificial versions. The argument will not
be affected. Similarly, we will not use quotes to distinguish between natural action and
artificial “action.”

3. This characterization is neutral between a view of AI as cognitive science, where psy-
chological computational models of existing (natural) believers are to be built, and the
view of AI as an engineering discipline, where the aim is to build working systems that
conform to given specifications.

4. One example of this would be Kripke’s Paderewski example, where someone has contra-
dictory (but not disastrously so) beliefs about Paderewski (the musician) and Paderewski
(the politician). Another example might be naı̈ve set theory, whose inconsistencies be-
come apparent only in relatively specialized circumstances, viz., those where sets might
be members of themselves. One could certainly imagine there being decades between
Frege’s development of the theory and the discovery of the Russell set without any prob-
lem arising.

5. Though some would claim that omnidoxasticity with respect to intuitionistic logic is at
least slightly more realistic psychologically since intuitionistic logic is premised on the
finite abilities of agents to verify or prove statements.

6. Cf. [17], p. 99 on knowledge: “epistemic logic cannot concern itself with actualoccur-
rent knowledge, nor withdispositional knowledge: these biographical and psychologi-
cal approaches to knowledge simply lack a ‘logic.’ ”

7. What concerns us here is thegeneral structure of MacPherson’s solution. We do not want
to get into arguments about the particular axioms that MacPherson has chosen. His aim
is not to model belief exactly using his axioms but to show that it is possible to develop
anonnormal modal logic which will avoid the problem of omnidoxasticity, and, for the
propositional case, we do not wish to dissent from that.

8. The knowledge base is the portion of memory in which all the current beliefs of the the-
orem prover are stored. It is called aknowledge base as opposed to abelief base because
AI makes no distinction between what a systemknows and what itbelieves. See Re-
ichgelt [16] for a review of the representation of knowledge (= beliefs) in AI systems.
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9. We only skim the surface of Prolog in this account; it is a substantially more sophisticated
system than would appear from our brief review. Automatic theorem proving is a process
of searching for proofs, and what we want to show is that controlling the search process
can lead to interesting behavior. To that end, we hope to give the flavor of proof as search
to an audience which is relatively unfamiliar with that idea. We have therefore (to save
space as much as any other reason) only described as much of Prolog as would serve that
purpose. For a full account of Prolog, see [5].

10. Those who claim that belief attribution is not determinate are not, of course, committed
to the claim that there is a determinate time at which the belief came to be believed. As
before, we intend our account to be neutral between accounts of beliefs as determinate
and more interpretative accounts. See Note 2.
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