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Partition Principles and Infinite Sums
of Cardinal Numbers

MASASI HIGASIKAWA

Abstract The Axiom of Choice implies the Partition Principle and the ex-
istence, uniqueness, and monotonicity of (possibly infinite) sums of cardinal
numbers. We establish several deductive relations among those principles and
their variants: the monotonicity follows from the existence plus uniqueness;
the uniqueness implies the Partition Principle; the Weak Partition Principle is
strictly stronger than the Well-Ordered Choice.

1 Introduction ThePartition Principle statesthat the size of any partitionof asetis
at most that of the original set. The uniqueness of the sums of cardinal numbersisthe
principle that the direct sums of equipollent sets are also equipollent. (They are PP
and FB, respectively, in the next section.) They are immediate consequences of the
Axiom of Choice and the first two of seven applications presented by Zermelo
to indicate the indispensability of the Axiom.

The deductive relations have not been settled among those three principles ex-
cept for the above-mentioned trivial ones. We partly answer by showing theimplica-
tion FB = PP (Theorem([3.2).

We also establish that the Weak Partition Principle is strictly stronger than the
Axiom of Choice restricted to well-orderable families of sets; this solvestwo of prob-
lems in Banaschewski and Moore [[IJ. For other results, see the end of the next sec-
tion.

2 Preliminaries  Wework inthetheory ZFU (the Zermel o-Fraenkel set theory with
atoms and without the Axiom of Choice) — Regularity, or ZF°, unless otherwise
stated.

Some of our notation is borrowed from [[] or Rubin and Rubin [[13]. We define
therelations ~, <, < and <x by

X~y <& thereexistsahijection x — v,
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X<y < thereexistsaninjection x — v,
X<y & X=<xyandnoty <X,
X=<xy <& Xxisempty or there existsasurjection y — X.

We use + and ) _ to denote direct sums; if necessary to be specific,
X+y = (xx{0hU(yx{1}),

doxo o= [ Joix{ih.

icl icl

A set x issaid to beidemmultiple if X+ x = X.

In ZF°, the notion of cardinality is known to be undefinable (cf. Jech [Iﬂ The-
orem 11.2, see also Remark [2.11below). So we use alocal cardinal number instead,
by which we mean a nonempty set X such that (Vx,y € X)(x~ y). Let

XEX & forsomeye X, x~y.

Nevertheless for x well-orderable, |x| denotes the least ordinal equipollent to x.
We consider following statements.

AC: The Axiom of Choice.

R,-AC: Well-ordered choice of length wy,.

DC: The Principle of Dependent Choices.

Ro-TC: Every Dedekind-finite set isfinite.

PP: If x <x y, then x < y. (The Partition Principle.)

WPP: If x <x y, then y £ x. (The Weak Partition Principle. An equivalent for-
mulation: if X <x y < X, then x~ y.)

PPIdm: If yisidemmultipleand x <x y,then x < y.

Fl: Foreverypair (x; : i e 1), (yi:i e |)of familiesof setswith the sameindex
set, (Vie l)(x <y)implies) ;% <> i, Vi

FB: For (xi:iel),(yi:iel)asabove (Viel)(x ~y)implies) X ~
Yiel Yi-

LCR: Forevery family (X : i € |) of local cardinal numbers, thereexistsafam-
ily (x ;i € I) of setssuch that (Vi € 1)(X€X).

Idm: Every infinite set isidemmultiple.

PW: If a set has at least two elements, then it can be partitioned into well-
orderable blocks with at least two elements.

WU: The union of awell-orderable family of well-orderable setsis aso well-
orderable.

Remark 2.1  Assumetemporarily the Regularity Axiom and that the class of atoms
isaset. In this case every set x is assigned its cardinal number card (x) such that
X~ Yy & card(X) = card(y). For cardina numbers m;j,i € | and m, we define
m to be asum of (m; ;i € |) if there exists a family of sets (x; : i € 1) such that
(Vi € I)(card (x)) = m;) and card (}_;, X)) = m. Then existence, uniqueness and
monotonicity of the sum are equivalent to LCR, FB and FI, respectively.
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These principles are al consequences of AC and independent of ZF. The follow-
ing deductive relations are well known or easily seen (cf. Halpern and Howard [],
Haussler [[4], Howard [E], Jech [], Moore [[9], Pelc [10], Pincus[[12], Rubin and Ru-
bin [13], and Sageev [[[4]), where arrows denote implicationsin ZF° and negated ar-
rows mean that the implications are independent of ZF.1

o - FB
= N N
PP wu £ ()
v N / 0
WPP PPldm Ma)Ry-AC Z DC Z No-AC
A \%
l[dm Z Ro-TC
A D R '
PW LCR A (%)

The symbol (x) stands for the Axiom of Choice restricted to countable families of
countable sets, which we include here to simplify the diagram.
Our results are indicated below by double arrows.

FB+LCR
U
FI > FB = PP — WPP = PPldm z (Va)Ry-AC
T ¥
FB+PW = Idm PW

We thus answer two of the open problems mentioned in [[1]:

(13) Does CB* (or even WPP) imply DC?
(14) Does PP follow from the proposition that for al «, R,-PP?

the former affirmatively (Corollary[4.2), the |atter negatively (Corollary B.2).

3 Partition principlesand direct sums  Pincus (see [[L0]) proved that
PP = (Va)R,-AC.

Here PP can be weakened to the following principle.

PP~ If yisidemmultiple and there existsasurjection ontoanordinal f:y— A
such that for each & < A, f~1[{£}] is Dedekind-infinite, then 1 < .

Thecondition*“yisidemmultiple” above, which makes PP~ aconsequence of PPIdm,
isnot relevant to the argumentsin this section but is necessary for the proof of Corol-

lary B.2]
Lemma3.l PP isequivalentto (Va)R,-AC.

Proof (Sketch):  The necessity is straightforward. For the other direction, a dlight
modification of Pincus's proof will do. Let (xy Ty < a)a> be a family of nonempty
sets. Assuming PP~ and (Y8 < a)Rg-AC, we prove ]_[y<wa X, # .
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Let C, for y < w, denote the set ]_[3<y Xs, which is nonempty by (V8 < a)Ng-
AC. We define families (D, : y < wy) of setsand (A, : y < wq) of cardinals induc-
tively asfollows.

A, = max{¥ U Ds ), supirjt,
s<y d<y
D, = oxC, x4,

where R (-) denotes the Hartogs function:
R(X) =min{a € Ord : o £ X}.

Let D= Uy<a)a DV’ A= S'Ipy<w,1 )‘V'
Since the projection f : D — A suchthat f(x, %, u) = u satisfies the premise
of PP~, weget aninjectiong: A — D. Using g, we can define a choice function in

l_[y<a)a XV' U
Theorem 3.2 FB implies PP.
Proof: Consider the following auxiliary statement.

PP': If there existsasurjection f : y — x such that for each u € x, f~[{u}] is
finite or Dedekind-infinite, then x < y.

PP implies PP~ and so Rq-TC by Lemmal21] Thus PP’ isin fact equivalent to PP.
Let x, yand f beasin the premise of PP'. Assuming FB, we show x < y.
We define families (y, : u € x) and (z, : u € x) asfollows.

o = 7wl
|YU|, Yu iSfinite,
a yu U {0}, vy isDedekind-infinite.

Then we have (Yu € X)(yy ~ z,) and, by using FB,

On the other hand, surjectivity of f implies (Yu € x)(0 € z,). Hence we get

y=|_|Yu”ZYu%ZZu2{O}XX%X,

uex uex uex
accordingly x <'y. O
Here we refer to two cancellation laws.

Theorem 3.3 (Tarski [16], Corollary 5)  If x+n x z~ y+n x z for some natural
number n, then X+ z~ y+ z

Theorem 3.4 (Fillmore[2]) Assume Rg-AC. If (Yn < w)(nx X< (n+1) x ),
then x < y.2
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Lemma35 AssumeLCR. Iftwo familiesof sets(x:iel)yand (y;:iel)anda
natural number n satisfy

(Vie D((N+1) x X < ¥),
then for some (z :i € I),
Mieh)(nxx +z~Y).

Proof: Let(x:iel),(y:iel)andnbeasinthehypothesisand (Z :i e |) de
termined by

Zi={zCvyi:z~ X + wforsomew suchthat (n+ 1) x X; + w =~ y;}.

Thenforeachie |, Z; # @.
Suppose z, Z € Z;. Thereexist w and w’ satisfying
M+ xx+w ~ M+ xx+w (=),
zZ = X+w,
Z ~ x+w.
By Theorem[B.3] we have X; + w ~ X; + w’, and so z~ Z. Hence each Z, fori € |
isalocal cardina number.

By using LCR, we obtain a family (z :i € |) such that (Vi € 1)(z<€Z), for
which (Vi € 1)(n x X 4+ z ~ y;) holds. O
Theorem 3.6 FB plusLCR implies FI.

Proof:  Supposetwo familiesof sets(x; :i € 1) and {y; :i € I) satisfy (Vi € ) (% <
Vi). Then, for eachn < w,

Mie D((N+1) xx 2 (N+1) x V).
By Lemmal3.5] we get afamily (z : i € ) such that

Yie H(nx X +2z~ (n+1) x V).

Therefore, by FB,
n x in +ZZi ~(n+1) x ZYi,
iel iel iel

and so

Nx > xi=(M+1)x Y .

iel iel
Applying Theorem[2:4] we conclude that

in 52%-

il il
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4 Idemmultiplicity Asfar asidemmultiple setsare concerned, some aspects of car-
dinalities are quite ssimple.

Proposition 41  WPPimplies PPldm.3

Proof: Letx=<xy~y+y. Wehavey=<x+y=xy+y~y. By WPP, We get
X+y~yandsox <y. O
Corollary 42 WPPimplies (Va)R,-AC.

Proof: Combine the proposition with Lemma[3.1] a

Corollary 4.3 Assume ldm. Then PP and WPP are equivalent.

Lemma4.4 FB plusldmimpliesFl.
Proof: Let (x :iel),(y:iel)besuchtha (Vi € 1)(X < yi). We define the
family (z :i € 1) by
) il =Ixil, i isfinite,
A= y; isinfinite.
Using Idm, we get (Vi € 1)(X + z ~ ¥;); and hence, dueto FB, }"i, X < Y i, Vi-
(]

In the lemmaabove, |dm can be replaced by (apparently weaker) PW. We shall show
this through a generalization of the theorem in Konig [[8].
For partitions y, z of the same set, we denote by z C y that

Mvey)Fwez)(vC w).

(I.e., ziseverywhere strictly coarser than y.)

Lemmad4.5 Assume PW. Suppose y is a partition (of its union) with at least two
blocks. Then there exists a coarser one z such that

ZL Yy,
Mw e 2y({vey: v C w}iswell-orderable).

Proof: Due to PW, there exists a partition Z of y such that each w’ € Z is well-
orderable and consists of at least two blocks of y. Then

zZ= {Uw/:w/ez'}
suffices. O

Theorem 4.6 PW plus FB impliesIdm.

Proof:  Suppose x is an infinite set. Assuming PW and FB, we shall show that x is
idemmultiple. If x iswell-orderable, then we are done. So assume otherwise.
We denote by P the set

{y: yisapartition of x into well-orderable blocks},
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Then P is nonempty, and each y € P hasinfinitely many blocks. For y € P, let zbe
acoarser partition asin Lemmal4.5] Thusfor each w € z,

{vey:vC w}iswel-orderable,
w=J{vey:vZw}

by WU, w iswell-orderable. Therefore z e P. Accordingly we have shown that
Vye P)3ze P)(zC w).
By using DC, we get a sequence (yn : N < w) in P such that
(VN < @) (Yns1 T Yn)-
We define the partition y,, by

Yo = Uvn:(vn:n<0)>€HYnand(Vn<0))(Un§Un+l) .

n<w n<w

Then each block v of vy, is the union of a strictly increasing sequence of well-
orderable sets. Again by WU, v iswell-orderable and infinite, and thusidemmuiltiple.
By virtue of FB, we have
Z (v+v)

Do

&

V€Y VEYw
~ YurYu
V€Y VEYw
On the other hand,
x=|]v~ Y w
VEYw VEYy
Therefore x isidemmultiple. O

Corollary 4.7 FB plus PW implies FI.

5 Levy'smodel  Recall themodel described in[{Z], Theorem 8.9. Webeginwith the
universe V of ZFU + AC + “the set A of atomsisof sizeRX,.;.” The permutation
model ¥ isdetermined by the group G of all permutations of A and the normal ideal
| = {X C A:|A <R,}: V isthe class satisfying

AcCcv

and
VX)(xe ¥V < xC VY and (AE € ) (fix(E) € sym(x))),

where
sym(x) = {me G:aXx=Xx},
fix(x) = {mreG:(Vyex)(ry=y)}.

7 is known to be amodel of ZFU + (Va)RX,-AC + —AC (and more). The transfer
into ZF is obtained by Pincus (see also Pincus [[IT])).
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Theorem 5.1 Inthemodd 7/,

1. PW does not hold;®
2. PPIdm does not hold.

Proof: Wework inthe universe V.
(1) Suppose x is a partition of A into (well-orderable)” nontrivial blocks. Let
Ebein|. Sinceforevery y C A,

(yiswel-orderable)” < |y| < Ry,

there exist two atoms a, b € A\ E which do not belong to the same block of x. We
denote by 7 the transposition of a and b. Then = € fix(E) and nx # x. Therefore
Xé¢ V.

(2) Let, foreach X C A, [X] ={Y C A: XAYisfinite}, and let P(A)/fin =
{[X] : X € A}. Note that

V= (PA/fin” <« P(AY ~ P(A)Y + P(A)Y.

We want to show that
V= (PA/fin” £ PAY.

Suppose f : (P(A)/fin)Y — P(A)Y isaninjection. (P(A)Y = (X C A: X e
| or A\ X € I} and for each X € P(A)Y, [X]¥ =[X].) Weshow that f ¢ ¥, i.e,
for each E € |, we find = € fix(E) such that =f £ f. We define the function ™ :
P(A)Y = | by

g_ | X% Xel,
| A\ X, otherwise.

Casel: For some X € P(A)Y, f/[/:Xj ¢ E. Let 7 be the transposition of an ele-
ment of f[X]\ Eandonein A\ (f[X]U E). Then r € fix(E). On the other hand,
[X] = [xX] and = (f[X]) # f[X], so (xF)[X] = (xD)[7X] = =(f[X]) # f[X],
hencenf # f.

Case2: Fordl Xe P(A)Y, T[X] C E. Let X e P(A)Y and r < fix(E) besuchthat
[X] # [7X]. Then f[xX] # f[X] = 7(f[X]) = (xf)[xX]. Weasoget xf # f. O

Corollary 5.2  Assumethat ZF isconsistent. Thenin ZF, (Va)R,-AC doesnot im-
ply PW nor PPIdm, a fortiori WPP.

Acknowledgments This paper isbased on part of the author’s dissertation at the University
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NOTES
1. By virtue of Howard [[], Theorem 2.3, theimplication WU — Ro-AC isindependent of
ZFU.
2. Fillmore's result is formulated in the language of cardinal algebras (cf. Tarski [7).

3. Sierpifski showsthat w; < RandR/Q < R, instances of PPIdm, follow from WPP.
Our proof is essentially the same as the arguments therein.
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4. Konig deduced Idm from the principle “every infinite set has a partition whose blocks

are all at most countable and not singletons” by implicitly using FB and DC.

5. Theauthor thanks Tatsuya Shimurafor pointing out that this model witnesses ZF I/ PW.
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