
406

Notre Dame Journal of Formal Logic
Volume 38, Number 3, Summer 1997

Infima in the Recursively Enumerable
Weak Truth Table Degrees

RICH BLAYLOCK, ROD DOWNEY, and STEFFEN LEMPP

Abstract We show that for every nontrivial r.e. wtt-degree a, there are
r.e. wtt-degrees b and c incomparable to a such that the infimum of a and b ex-
ists but the infimum of a and c fails to exist. This shows in particular that there
are no strongly noncappable r.e. wtt-degrees, in contrast to the situation in the
r.e. Turing degrees.

1 Introduction and notation Weak truth table reducibility (w-reducibility) was
first introduced by Friedberg and Rogers [8]. Intuitively, we say that a set A is w-
reducible to a set B (written A ≤w B) if there is a Turing reduction from A to B and a
recursive function f such that, for any x, the value f (x) bounds the greatest number
whose membership or nonmembership in B is used to determine A(x).

Since w-reducibility is a stronger reducibility than Turing reducibility, each Tur-
ing degree can be partitioned into the w-degrees of its sets. Ladner and Sasso [11]
showed that there exists a nonzero contiguous degree, that is, an r.e. Turing degree
which contains a single r.e. w-degree. The existence of such contiguous degrees, as
well as the strongly contiguous degrees introduced by Downey [6], has been used to
establish numerous existence results (cf. [11], [13], [1]) in the r.e. Turing degrees by
establishing the corresponding results in the r.e. w-degrees.

Our results here deal with infima in the r.e. w-degrees, thus continuing the inves-
tigations of Cohen [5], Ambos-Spies [3], and Fischer [7]. Cohen’s result that every
incomplete r.e. w-degree is w-branching and Fischer’s result that some initial seg-
ments of the r.e. w-degrees are lattices indicate that infima are more common in the
r.e. w-degrees than in the r.e. Turing degrees. We reinforce this notion.

After giving an elegant finite injury construction of a pair of r.e. Turing de-
grees with no infimum [9], Jockusch asked whether every nonrecursive incomplete
r.e. Turing degree was half of a pair without infimum. Ambos-Spies [2] and Harring-
ton (in an unpublished work) independently answered this question affirmatively by
introducing strongly noncappable r.e. degrees. An r.e. Turing degree a is strongly

Received February 16, 1995

INFIMA IN WEAK TRUTH TABLE DEGREES 407

noncappable if no r.e. b|Ta has an infimum with a. Ambos-Spies and Harrington
showed that there is a strongly noncappable degree incomparable with any given non-
recursive incomplete r.e. degree.

In Theorem 2.1, we show that every nontrivial r.e. w-degree caps nontrivially,
so that the only r.e. w-degrees analogous to strongly noncappable Turing degrees
are trivial. This result gives yet another contrast between the r.e. w-degrees and the
r.e. Turing degrees.

In Theorem 3.1, however, we show that no nontrivial r.e. w-degree caps with all
r.e. w-degrees. Thus in the r.e. w-degrees, like the r.e. Turing degrees, every degree
is half of a pair without infimum. We remark that if two r.e. w-degrees do have an
infimum, then the infimum is itself r.e. (cf. [12], Exercise IX.3.5). Our notation is for
the most part standard, as in Soare [12].

Let ω denote the set of natural numbers including zero. By number we mean an
element of ω and by set we mean a subset of ω. We use 2ω to denote the set of infinite
sequences of 0’s and 1’s, and 2<ω for the set of finite sequences of 0’s and 1’s. For any
set S and number j, we denote the set of elements of S which are strictly less than j
by S � j. Fix a recursive bijection from ωn to ω which is increasing in each argument,
and let 〈x1, x2, . . . , xn〉 denote the image of the n-tuple (x1, x2, . . . , xn) under this
bijection. For a fixed j, ω[j] denotes the set of all pairs of the form 〈x, j〉.

Let Te denote the eth oracle Turing machine in some effective listing of all oracle
Turing machines, and let {e}A denote the partial function computed by Te with ora-
cle A. We write {e}A

s (x) = y if x, y, e < s, machine Te computes {e}A(x) = y in less
than s steps, and the largest number used in the computation is less than s. The use
function, use(A; e, x, s), is the least number greater than all those used in the compu-
tation {e}A

s (x), if this computation is convergent, and 0 otherwise. The use function,
use(A; e, x), is use(A; e, x, s) if {e}A

s is defined for some s, and is undefined other-
wise. We use upper case Greek letters (�, �, etc.) to denote w-reductions and their
lower case counterparts (ϕ, ψ, etc.) to denote the corresponding use functionals.

2 Nontrivial capping in the r.e. w-degrees Here we show that every nontrivial
r.e. w-degree caps nontrivially.

Theorem 2.1 For any nonrecursive, w-incomplete r.e. w-degree c, there is an
r.e. w-degree a|wc such that the infimum a ∩ c exists.

Proof: Let C be a set of the given w-degree c with recursive enumeration {Cs}. We
will construct sets A and B such that A|wC and the w-degree of B is the infimum of
those of A and C. To make A|wC, we will satisfy for each w-reduction � the require-
ments

P� : A �= �C

and
N� : C �= �A.

To make the w-degree of B the infimum of those of A and C, we will satisfy for each
w-reduction � the requirement

Q� : �A = �C = D −→ D ≤w B,

408 BLAYLOCK, DOWNEY, and LEMPP

as well as the global requirements B ≤w A and B ≤w C.
We will achieve both of these last reductions by permitting, that is, we will only

enumerate a number x into B at a stage when numbers lesser or equal to x enter both
A and C. In fact we will enforce this on the A side by enumerating x itself into A
whenever we enumerate it into B.

To aid in satisfying the remaining requirements, we will use a priority tree, with
each node on the tree devoted to a single requirement. The nodes devoted to require-
ments of the form Q�, called infimum nodes, will be regarded as having two possi-
ble outcomes, according to whether the hypothesis of the requirement is true or not.
Nodes devoted to requirements of the form P� or N�, called coding nodes and preser-
vation nodes, respectively, will be regarded as having only a single outcome. Thus
our priority tree T is a subtree of a binary tree.

To be more precise, choose any priority ordering of all the requirements, and
define the tree by recursion on the length of its nodes. Assuming that T has been
defined for nodes of length less than |α|, let α be devoted to the least requirement not
yet associated with any node τ ⊂ α. If this requirement is of the form Q�, then α has
two successors, α̂0 and α̂1. Otherwise, α has a single successor α̂0.

As usual, [T] denotes the set { f ∈ 2ω : (∀n)[f � n ∈ T]} of all infinite paths
through T . We order nodes on the priority tree as follows: for σ, τ ∈ T ,

(i) σ is to the left of τ (σ <L τ) if

(∃ρ ∈ T)[ρ̂0 ⊆ σ & ρ̂1 ⊆ τ];

(ii) σ ≤ τ if σ <L τ or σ ⊆ τ;
(iii) σ < τ if σ ≤ τ and σ �= τ.

Fix an effective coding of the elements of T and denote the code number of a node
τ ∈ T under this coding by #τ.

To meet a requirement like P�, we will code K into A at stages when the length
of agreement between A and �C grows. The particular coding is not crucial, as long
as we are able to code all of (or even cofinitely much of) K into A if this length con-
tinues to grow. Then, if A were equal to �C, we would have C ≤w A ≤w K, a con-
tradiction. Of course, this strategy for a node α devoted to P� may need to respect
“restraints” of various higher priority nodes devoted to N- or Q-type requirements.
This will be accomplished by “resetting” α, which simply means starting the cod-
ing process over, using markers greater than the current stage number (which will be
larger than any such restraints). Requirement P� will eventually be satisfied since the
node on the true path devoted to it will be reset only finitely often.

The strategy for a requirement of the form N� is the Sacks preservation strategy.
When the agreement between C and �A grows to a new maximum m, we will try to
prevent numbers less than the combined use max{ϕ(x) : x < m} from entering A.
This will be done by resetting all lower priority coding and infimum nodes. If α is
the node on the true path devoted to N�, then higher priority coding nodes will be
finitary, so the only danger to α comes from higher priority infimum nodes. We will
arrange so that, after an α-expansionary stage, such an infimum node will enumerate
a number into A only if a smaller number has already entered A. Thus the infimum
node will not be allowed to cause the first “injury” to α.

INFIMA IN WEAK TRUTH TABLE DEGREES 409

Finally, the basic strategy for a requirement of the form Q� is to try to maintain
computations common to �A and �C. At any given stage of the construction, a node
α devoted to Q� will have a certain length of agreement between �A and �C. At
stages when this length grows, we will arrange for α to have a “trace” z for every pair
〈x, y〉 such that x is below the length of agreement and y is below the use ϕ(x). Node
α cannot reset all lower priority nodes when its length of agreement grows, since this
may happen infinitely often. Thus α must occasionally allow lower priority nodes to
enumerate into A and destroy a computation �A(x). If a number such as y later enters
C before the next α-expansionary stage, then we will enumerate the trace z into B to
“inform” B that both sides of the computation have been lost. As mentioned earlier,
in this case we will simultaneously enumerate z into A to keep the reduction B ≤w A.

At each stage s of the construction, we will construct a string fs ∈ T of length s
which will be our current approximation to the true path, that is, the path f ∈ [T] for
which f � m = lim infs fs � m for all m, in the sense that for β = f � m we have

(a) (∃<∞s)[fs <L β] and

(b) (∃∞s)[β ⊆ fs].

Given a node τ ∈ T , a stage s is called a τ-stage if τ ⊆ fs. The set of all τ-stages is
denoted by Sτ.

At various substages of the construction we will be enumerating elements into A.
At each stage s, we will need to define a length of agreement l(τ, s) for each τ ⊆ fs

appropriate for the requirement to which τ is devoted. The value of l(τ, s) will depend
on the elements enumerated into A up to the point at which we define l(τ, s). Thus
for convenience, at any point during the construction, we let A+ denote the set of
elements enumerated into A up to that point.

In the following construction, to reset a coding node simply means to mark it as
having been reset, while to reset an infimum node additionally means to cancel all of
the uncancelled traces associated with it.

2.1 Construction of A and B

Stage s = 0.
Let A0 = B0 = ∅, and let f0 be the empty string.

Stage s + 1.

2.1.1 Trace enumeration First consider each number y ∈ Cs+1 − Cs. (Depending
on the convention chosen, there might be at most one such number y.) Each such y
may have several traces associated with it for the sake of different nodes devoted to
infimum requirements. Suppose z = 〈#α, x, y,w〉 is a trace assigned to 〈x, y〉 for the
sake of some node α devoted to an infimum requirement Q�.

Let t be the greatest α-expansionary stage less than s + 1 (there must be such a
stage since the stage at which z was assigned as a trace is α-expansionary). Check
whether any number less than ϕ(x) has entered A since the beginning of substage |α|
of stage t (that is, since the exact substage at which the largest length of agreement
between �A and �C was established). The idea is that unless such a change has oc-
curred in A, there is no need to notify the infimum since A has held its side of the

410 BLAYLOCK, DOWNEY, and LEMPP

computation on x. If such a change in A has indeed occurred, then enumerate the
trace z into both A and B, and reset all coding or infimum nodes β ≥ α̂1.

2.1.2 Constructing fs+1 Now we construct the current approximation fs+1 to the
true path, taking appropriate action at each node visited along the way. Perform the
following substage in increasing order of t for each t with 0 ≤ t ≤ s.

2.1.3 Substage t Let α = fs+1 � t, and consider the three possibilities for the type
of requirement to which α is devoted.

Case 1: If α is devoted to an infimum requirement Q�, then let

l(α, s + 1) = max{x : (∀y < x)[�Cs+1
s+1 (y) ↓= �A+

s+1(y)]},

and let
m(α, s + 1) = max{l(α, r) : r < s + 1 and r ∈ Sα}.

Call s + 1 α-expansionary if l(α, s + 1) > m(α, s + 1). Put fs+1(t) = 0 if s + 1 is
α-expansionary, and fs+1(t) = 1 otherwise.

If s + 1 is α-expansionary then for each pair 〈x, y〉 with x < l(α, s + 1) and y <

ϕ(x) which does not already have an uncancelled α-trace, find the least number w

such that z = 〈#α, x, y,w〉 > s + 1 and assign z as an α-trace for 〈x, y〉. Finally if
s + 1 is α-expansionary then reset every coding or infimum node β ≥ α̂1.

Case 2: If α is devoted to a coding requirement P�, we automatically have fs+1(t)
= 0. Let

l(α, s + 1) = max{x : (∀y < x)[�Cs+1
s+1 (y) = A+(y)]}.

Let r be the greatest stage less than s + 1 at which α was reset, and enumerate into A
all elements of the set {〈#α, r, k〉 : k ∈ Ks+1} which do not exceed l(α, s + 1). If the
set of numbers so enumerated is nonempty, then reset every coding or infimum node
β > α.

Case 3: Finally, if α is devoted to a preservation requirement N�, we automatically
have fs+1(t) = 0. Let

l(α, s + 1) = max{x : (∀y < x)[�A+
s+1 = Cs+1(y)]}

and
m(α, s + 1) = max{l(α, r) : r < s + 1 and r ∈ Sα}.

If l(α, s + 1) > m(α, s + 1), call s + 1 α-expansionary. If s + 1 is α-expansionary
then reset every coding or infimum node β > α. This completes the construction.

As remarked earlier, both reductions B ≤w A and B ≤w C should be clear. The exis-
tence of the true path f should also be clear. So it only remains to show that each node
on the true path satisfies the requirement to which it is assigned. This is accomplished
by an inductive lemma.

Lemma 2.2 For each w-reduction �,

(i) P� is satisfied, and the node on the true path devoted to P� causes finitely many
elements to enter A and resets other nodes finitely often,

INFIMA IN WEAK TRUTH TABLE DEGREES 411

(ii) N� is satisfied and the node on the true path devoted to N� resets other nodes
finitely often, and

(iii) Q� is satisfied.

Proof: (i) Let α denote the node on the true path devoted to P�. Note that by the
inductive hypothesis, α is reset finitely often by preservation nodes and other coding
nodes. Since infimum nodes above α are either finitary or do not reset α, α is in fact
reset only finitely often. Let r be the largest stage at which α is reset. Assume for
a contradiction that A = �C. Then l(α, s) −→ ∞, so eventually all numbers of the
form 〈#α, r, k〉 with k ∈ K enter A. In fact we have k ∈ K if and only if 〈#α, r, k〉 ∈ A,
so K ≤1 A ≤w C, a contradiction.

Since P� is satisfied, q = max{l(α, s) : s ∈ ω} is finite, and α never enumerates
any number larger than q into A. Since α resets nodes only at stages when it enumer-
ates into A, this can happen only finitely often as well.

(ii) Let β denote the node on the true path devoted to N�. Suppose that �A =
C. Then l(β, s) −→ ∞. We will show for a contradiction that C is recursive. Choose
a stage s large enough so that after stage s, no node to the left of β, no finitary infimum
node above β, and (by inductive hypothesis) no coding node above β enumerates any
numbers into A. To compute C(x) for some x, let sx be the least β-expansionary
stage greater than s with l(β, sx) > x. Then we claim that A � ϕ(x) = Asx � ϕ(x),
so C(x) = �A(x) = �

Asx
sx (x). For suppose that some number less than ϕ(x) enters

A after stage sx. Let z be the smallest number to do so. By choice of sx, z could only
enter A for the sake of an infimum node σ ⊂ β for which there are infinitely many
σ-expansionary stages. In particular this means that sx is itself σ-expansionary. But
then z could only enter A after sx if a smaller number enters first, contradicting the
choice of z.

Since N� is satisfied, there are only finitely many β-expansionary stages, so β

resets other nodes finitely often.
(iii) Let γ denote the node on the true path devoted to Q�. As in part (i), it

should be clear that γ is reset only finitely often. Let r be the greatest stage at which
γ is reset, and assume that the hypothesis of Q� holds, namely that �A = �C = D.
To compute D(x) from B, let sx be the least γ-expansionary stage greater than r for
which l(γ, sx) > x, Bsx � ϕ(x) = B � ϕ(x), and Bsx (z) = B(z) for every γ-trace as-
sociated with x.

Let p denote the common value of �
Csx
sx (x) and �A+

sx
(x) at the end of the γ-

expansionary substage. We claim that for every stage t ≥ sx, either �At
t (x) = p or

�Ct
t (x) = p, so D(x) = p. For since B has settled down below ϕ(x), only coding

nodes could cause an injury to the computation from A, and in particular only coding
nodes τ ⊃ γ, since all other coding nodes have either stopped acting or have been reset
by γ. But if such a node (or nodes) enumerates numbers less than ϕ(x) into A, then C
must remain unchanged below ϕ(x) until at least the next γ-expansionary substage.
Otherwise, a γ-trace for x would enter B, contrary to the choice of sx. Thus, between
γ-expansionary substages, either A � ϕ(x) or C � ϕ(x) is preserved, as desired. This
completes the proof of the lemma, and hence of the theorem. �

412 BLAYLOCK, DOWNEY, and LEMPP

3 Noncapping In contrast to Theorem 2.1, we now show that every r.e. w-degree
is half of a pair without infimum.

Theorem 3.1 For any nonrecursive, w-incomplete r.e. w-degree c, there is an
r.e. w-degree a such that the infimum a ∩ c fails to exist.

Proof: Let C be an r.e. set of the given degree c with recursive enumeration {Cs}s∈ω.
The proof will be nonuniform in the sense that we will construct two r.e. sets A and
Â, only one of whose w-degrees is guaranteed to have the desired property.

Our requirements are therefore based on pairs of sets. In addition to constructing
the main sets A and Â, we will construct for each quadruple (V, V̂,�, �̂), where V
and V̂ are r.e. sets and � and �̂ are w-reductions, a corresponding pair B and B̂. The
idea is that if �A = �C = V and �̂ Â = �̂C = V̂ , then either B will be w-reducible
to both A and C but not V (so that degw(V) �= degw(A) ∩ degw(C)), or B̂ will have
the corresponding relationship with Â, C, and V̂ .

If we can do this for each such quadruple then we are done. For if the w-degree
of V is actually the infimum of those of A and C (for example), then we will have
guaranteed that no V̂ could have a w-degree which is the infimum of those of C and
Â.

3.1 Requirements There are three types of requirements we will satisfy in order to
achieve the desired results. First, for each pair V and V̂ , and each pair of w-reductions
� and �̂, we have a requirement

PV,V̂,�,�̂
: �A = �C = V & �̂ Â = �̂C = V̂ −→ B ≤w A & B ≤w C.

To facilitate the notation, we will suppress the subscripts and call this a P-type re-
quirement. For each P-type requirement, and each w-reduction �, we have a Q-type
subrequirement

Q : �A = �C = V & �̂ Â = �̂C = V̂ & �V = B −→ B̂ ≤w Â & B̂ ≤w C.

Finally for each Q-requirement and each w-reduction �̂ we have an R-type subre-
quirement

R : �A = �C = V & �̂ Â = �̂C = V̂ & �V = B −→ �̂V̂ �= B̂.

3.2 Strategy Consider how we might try to satisfy a single triple of P-,Q-, and
R-type requirements. We need take no action at all until we see a certain amount of
agreement between �A and �C and between �̂ Â and �̂C. As this agreement grows,
we must ensure that the conclusion of the P-requirement holds, which we will do by
constructing a functional � which will give the desired reductions B = �A = �C.
Similarly, we need only take action on behalf of the Q-requirement if we begin to see
additional agreement between �V and B, in which case we will extend the definition
of another functional �̂ which will satisfy B̂ = �̂ Â = �̂C.

Since Q and R have the same hypotheses, we must also take action to satisfy R.
To this end, we begin execution of the following algorithm.

INFIMA IN WEAK TRUTH TABLE DEGREES 413

1. We pick a number x̂ for possible enumeration into both B̂ and Â.

2. Wait until �̂V̂ (x̂) ↓= 0 and �̂ Â � ϕ̂(x̂) = �̂C � ϕ̂(x̂) = V � ϕ̂(x̂). (If this never
happens, then R is satisfied.) When this occurs, restrain numbers less than
max{ψ̂(y) : y ≤ ϕ̂(x̂)} from entering Â, so that Â indirectly maintains the 0
computation from V̂ .

3. Wait for C to change below x̂. While waiting, repeat steps 1 and 2. If we keep
passing step 2, then eventually some such C change must occur, since C is non-
recursive.

4. Wait for �̂C to recompute V̂ � ϕ̂(x̂).

At this point, we have C permission to enumerate x̂ into B̂, and C is maintaining the
0 computation from V̂ . So we would like to enumerate x̂ into both B̂ and Â, redefine
�̂(x̂), and wait for Â to reestablish its control over V̂ . The problem is that C might
change before this happens. So we hold off on enumerating, and instead start working
on the unhatted side to set up a situation where a C change would be beneficial.

5. For each n starting with n = 0, perform the following subroutine.

(a) Pick a number xn for possible enumeration into both B and A.

(b) Wait until �V (xn) ↓= 0 and �A � ϕ(xn) = �C � ϕ(xn) = V � ϕ(xn).
(If this never happens then the hypothesis of Q is falsified.) When this
occurs, restrain numbers less than m = max{ψ(y) : y ≤ ϕ(xn)} from en-
tering A, so that A indirectly maintains the 0 computation from V .

(c) Wait for n to enter K. The idea here is that since C is w-incomplete, if
there are infinitely many xn, then for infinitely many of them, n will enter
K after C has already settled down below xn (else we could compute K
from C). Thus by waiting for n to enter K before committing ourselves
to using xn as a β-witness, we are using the w-incompleteness of C as a
pseudo-restraint on C. While waiting, repeat 5(a) and 5(b) for the next
value of n.

(d) Put xn into A.

(e) Wait for �A to recompute V � ϕ(x). If C changes below m before this
happens, then abandon xn and start over at 5(a) with the next value of n.
Since C is w-incomplete, we will eventually get a recomputation before
any such C change.

Now the unhatted side is just waiting for a C permission, so we return to the hatted
side as previously planned.

6. Put x̂ into both Â and B̂.

7. Wait for �̂ Â to recompute V̂ � ϕ̂(x̂). If C changes below xn before this happens,
then we can enumerate xn into B to falsify the hypothesis of requirement Q.
Otherwise we have at least satisfied requirement R.

3.3 The priority tree In order to satisfy all of the requirements simultaneously, we
use a priority tree, with each node devoted to a single requirement. Nodes devoted
to P-, Q-, and R-type requirements are called α, β, and γ nodes, respectively. Each

414 BLAYLOCK, DOWNEY, and LEMPP

α node has its own functional �, and each β node has its own functional �̂ as de-
scribed in the general strategy above. We regard both α and β nodes as having two
possible outcomes, depending on whether or not the hypotheses of their requirements
appear infinitely often to be satisfied. However, γ nodes will have a single outcome
(success). Thus our tree is a subtree of the binary tree 2<ω.

More precisely, we can define the tree T recursively as follows. Fix a priority or-
dering of the set of all P-, Q-, and R-type requirements such that any subrequirement
Q comes after its associated P-type requirement and any subrequirement R comes af-
ter its associated Q-type requirement.

For any node σ ∈ T , let S be the highest priority requirement such that

1. S is not yet assigned to any node τ ⊂ σ;

2. if S is a Q-type requirement, then α̂0 ⊆ σ where α is devoted to S’s associated
P-type requirement.

3. if S is an R-type requirement, then β̂0 ⊆ σ where β is devoted to S’s associ-
ated Q-type requirement.

Then σ will be devoted to S, and will have two successors σ̂0 and σ̂1 unless S is
an R-type requirement, in which case it has the single successor σ̂1.

At each stage s of the construction, we will construct a string fs ∈ T of length
at most s, which will be our current approximation to the true path, that is, the path
f ∈ [T] for which f � m = lim infs fs � m for all m, in the sense that for β = f � m
we have

(a) (∃<∞s)[fs <L β] and

(b) (∃∞s)[β ⊆ fs].

Given a node τ ∈ T , a stage s is called a τ-stage if τ ⊆ fs. The set of all τ-stages is
denoted by Sτ.

3.4 The construction We build all sets and functionals in stages. At a given
stage s, we construct the current approximation fs to the true path, taking action for
each of the nodes visited along the way. An α-node will always be either active for
some lower β, meaning it is ready to perform step 7 of the algorithm, or passive,
meaning that if visited, it should perform its default action of extending the defini-
tion of �.

Similarly, a β node will be marked as active for some lower γ if it has started
performing step 5 of the algorithm, and passive otherwise, in which case it should
simply extend the definition of �̂. During the construction below, to reset an α node
means to mark α as passive, abandon the current functional � associated with α and
start building a new functional (which we will still denote by � to ease the notation).
To reset a β node means to mark β as passive, cancel any uncancelled β-witnesses,
and start over with a new functional �̂. To reset a γ node means to cancel any uncan-
celled γ-witnesses.

Stage s + 1: We define fs+1 recursively for arguments n < s + 1. Assume that
fs+1 � n is defined. Depending on whether fs+1 � n is an α, β, or γ node, we take
action accordingly and define fs+1(n).

INFIMA IN WEAK TRUTH TABLE DEGREES 415

Case 1 (fs+1 � n is an α node): Let l(α, s + 1) denote the length of agreement

l(α, s + 1) = max{y : ∀x < y[�A(x) =
�C(x) = V (x) & �̂ Â(x) = �̂C(x) = V̂(x)]},

and let m(α, s + 1) = max{l(α, t) : t < s + 1 & t ∈ Sα}. Stage s + 1 is called α-
expansionary if l(α, s + 1) > m(α, s + 1).

If s + 1 is not α-expansionary, then just define fs+1(n) = 1 and take no action
for α. If s + 1 is α-expansionary, then define fs+1(n) = 0 and take the following
action. If α is active for some β ⊃ α, then β must have a unique uncancelled β-witness
xn ∈ A and must in turn be active for some γ ⊃ β that has an uncancelled γ-witness
x̂ ∈ Â. Check if �̂C(x̂) is still defined. If not, then put xn into B. Define �A(z) =
�C(z) = B(z) for all z < l(α, s + 1), and return α to passive mode.

If α is passive, then check whether there is any β ⊃ α that is active for some
γ ⊃ β and has an uncancelled β-witness xn ∈ A (i.e., β has performed step 5(d) of
the algorithm). If so, then check whether �C(xn) is still defined. If so, then put x̂
into Â and B̂ but do not redefine �. Mark α as active for β, stop building fs+1, and
proceed directly to the next stage. If �C(xn) is no longer defined, then cancel xn,
define �A(z) = �C(z) = B(z) for all z < l(α, s + 1), and leave α in passive mode.

Finally if α is passive but there is no such β as in the previous paragraph, then
just define �A(z) = �C(z) = B(z) for all z < l(α, s + 1), and leave α in passive
mode.

Case 2 (fs+1 � n is a β node): Define the length of agreement l(β, s + 1) by
l(β, s + 1) = min{l(α, s + 1), l̄(β, s + 1)}, where α is the α node associated with
β and

l̄(β, s + 1) = max{y : ∀x < y[�V (y) = B(y) &

�C � ϕ(y) = �A � ϕ(y) = V � ϕ(y)]}.
Let m(β, s + 1) = max{l(β, t) : t < s + 1 & t ∈ Sβ} and call stage s + 1 β-
expansionary if l(β, s + 1) > m(β, s + 1).

If s + 1 is not β-expansionary, then just define fs+1(n) = 1 and take no action
for β. If s + 1 is β-expansionary, then define fs+1(n) = 0 and take the following
action. If β is active for some γ ⊃ β, first check if there is any uncancelled γ-witness
x̂ ∈ Â. If so, then we must have passed step 6 of the algorithm, and the fact that we are
visiting β again means that in fact we have performed step 7 as well. Define �̂ Â(z) =
�̂C(z) = B̂(z) for all z < l(β, s + 1), and return β to passive mode.

If there is no such γ-witness, check whether β has an uncancelled witness xn

for γ with �V (xn) ↓= 0, xn not yet in A, and n ∈ K. If so, enumerate xn into A.
Stop building fs+1, and proceed directly to the next stage. If there is no such γ- or
β-witness as above, check whether �V (xn) ↓= 0 for every uncancelled β witness xn.
If so then pick the least n such that there is no β-witness xn for γ, and assign the least
element xn ∈ ω[〈α,β〉] greater than s + 1 as a new β-witness for γ. Stop building fs+1,
and proceed directly to the next stage.

If, on the other hand, β has an uncancelled witness xn for γ with �V (xn) �= 0,
then simply continue to wait for �V (xn) ↓= 0. Stop building fs+1, and proceed di-
rectly to the next stage. If β is passive, then first check whether there is any γ node

416 BLAYLOCK, DOWNEY, and LEMPP

γ ⊇ β̂0 that has no uncancelled γ-witness in A but has an uncancelled, realized γ-
witness x̂ for which Cs+1 � x̂ �= Ct � x̂, where t is the stage at which x̂ became realized.
If there is any such node, let γ denote the one of highest priority, and mark β as ac-
tive for γ. Stop building fs+1, and proceed directly to the next stage. If there is no
such γ node, then define �̂ Â(z) = �̂C(z) = B̂(z) for all z < l(β, s + 1), and define
fs+1(n) = 0.

Case 3 (fs+1 � n is a γ node): We must define fs+1(n) = 1 in all cases. Define the
length of agreement l(γ, s + 1) by l(γ, s + 1) = min{l(β, s + 1), l̄(γ, s + 1)}, where
β is the β node associated with γ and

l̄(γ, s + 1) = max{y : ∀x < y[�̂V̂ (y) = B̂(y) &

�̂C � ϕ̂(y) = �̂ Â � ϕ̂(y) = V̂ � ϕ̂(y)]}.

Let m(γ, s + 1) = max{l(γ, t) : t < s + 1 & t ∈ Sγ} and call stage s + 1 γ-
expansionary if l(γ, s + 1) > m(γ, s + 1). If s + 1 is not γ-expansionary, then take no
action for γ. If s + 1 is γ-expansionary, check if there is any uncancelled, unrealized
γ-witness x̂ for which �̂V̂ (x̂) ↓= 0. If so, pick the least such x̂ and call it realized
(and cancel the others). If there is no γ-witness x̂ for which �̂V̂ (x̂) ↑, then assign the
least element xn ∈ ω[α] greater than s + 1 as a new γ-witness.

This concludes the description of the cases. At the end of stage s+1, we reset all nodes
τ > fs+1.

3.5 The verification To show that the construction works, first note that there is a
unique path f ∈ [T], called the true path, for which f � n = lim infs fs � n for all n,
in the usual sense that for τ = f � m we have

(a) (∃<∞s)[fs <L τ] and
(b) (∃∞s)[τ ⊆ fs].

Note also that any node τ ⊂ f is reset at most finitely often. It remains to show that
each node along the true path f fulfills its commitment by satisfying its associated
requirement.

Lemma 3.2 If for any α node there are infinitely many α-expansionary stages, then
there are infinitely many stages at which α is passive.

Proof: If α becomes active for some β ⊃ α, then α will become passive by the next
α-expansionary stage. �

Lemma 3.3 If for any β node there are infinitely many β-expansionary stages, then
there are infinitely many stages at which β is passive.

Proof: If β becomes active for some γ ⊃ β, then every β-witness xn for γ will even-
tually satisfy �V (xn) ↓= 0 since there are infinitely many β-expansionary stages.
There are infinitely many n that enter K after C has settled down below xn. Thus
some such witness xn must eventually get enumerated into A. The α node associated
with β must then go active for β, and by the previous lemma must become passive

INFIMA IN WEAK TRUTH TABLE DEGREES 417

again. If β has not been reset (and so become passive) by the next β-expansionary
stage, then β will become passive at that stage. �

Lemma 3.4 Any α node α ∈ f satisfies its associated P-type requirement.

Proof: Suppose that α is devoted to the requirement

�A = �C = V & �̂ Â = �̂C = V̂ −→ B ≤w A & B ≤w C,

and that the hypothesis of this requirement is true. Then there are infinitely many α-
expansionary stages, so by Lemma 3.2, there are infinitely many stages at which α is
passive. If α becomes active for some β ⊃ α at some stage, then �A and �C will not
be extended at that stage, but will be extended at the next stage when α becomes pas-
sive. Thus �A and �C are extended infinitely often. For any argument x, we always
define �A(x) = �C(x) = B(x), and this value only changes (from 0 to 1) if both x
has entered A and C � x has changed since the last time �A(x) and �C(x) were de-
fined. So � gives the desired w-reductions, with the use function δ being the identity
function. �

Lemma 3.5 Any β node β ∈ f satisfies its associated Q type requirement.

Proof: Exactly as the proof of the previous lemma. �

Lemma 3.6 Any γ node γ ∈ f satisfies its associated R type requirement.

Proof: Wait for a stage after which γ is never reset. Assuming that the hypotheses of
R hold, any γ-witness that gets assigned afterward will eventually become realized.
Because C is nonrecursive, the associated β node β will become active for γ, and by
Lemma 3.3 must eventually become passive again. Because C is w-incomplete, the
associated α node α will eventually go active for β. Now if C has changed below
the witness x̂ which caused β to go active, then we will enumerate xn into B, after
which we will have B(xn) = 1 but ��A

(xn) ↓= 0 ever afterward, contradicting the
assumption that there are infinitely many β-expansionary stages. Thus we still have

�̂�̂ Â
(x̂) ↓= 0, but B̂(x̂) = 1. Thus R is satisfied. �

In the r.e. Turing degrees, there are several ways to show that there exists a pair
with no infimum (and hence that the r.e. Turing degrees do not form a lattice). The
first proofs of this fact were given by Lachlan [10], p. 569, and Yates [14]. Lach-
lan’s proof was based on his “non-diamond” theorem and the Sacks splitting theo-
rem, while Yates indicated a proof by relativizing the minimal pair construction to a
certain uniformly ascending sequence of r.e. degrees. Later, Jockusch [9] gave an el-
egant finite injury construction of a pair of r.e. Turing degrees with no infimum. Fis-
cher [7] showed that this last construction carries over to the r.e. w-degrees to give
a pair of r.e. w-degrees with no infimum. Blaylock [4] used the same non-infimum
strategy combined with standard techniques to give uniform proofs of Theorem 3.1
in the case when the given degree is either low or promptly simple.

418 BLAYLOCK, DOWNEY, and LEMPP

Acknowledgments Downey wishes to acknowledge the support of the Marsden Fund for
Basic Science. Lempp wishes to acknowledge support by the National Science Foundation.
Both also wish to acknowledge support by a U.S./New Zealand binational grant.

REFERENCES

[1] Ambos-Spies, K., “Contiguous r.e. degrees,” pp. 1–37 in Computation and Proof The-
ory, Lecture Notes in Mathematics, 1104, edited by M. M. Richter et al., Springer-
Verlag, New York, 1984. Zbl 0562.03022 MR 86f:03065 1

[2] Ambos-Spies, K., “On pairs of recursively enumerable degrees,” Transactions of the
American Mathematical Society, vol. 283 (1984), pp. 507–31. Zbl 0541.03023
MR 85d:03083 1

[3] Ambos-Spies, K., “Cupping and noncapping in the r.e. weak truth table and Turing
degrees,” Archiv für mathematische Logik und Grundlagenforschung, vol. 25 (1985),
pp. 109–26. Zbl 0619.03032 MR 87j:03058 1

[4] Blaylock, R., Some Results on e-Genericity and Recursively Enumerable Weak Truth
Table Degrees, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1991.
3

[5] Cohen, P. F., Weak Truth-Table Reducibility and the Pointwise Ordering of 1-1 Recur-
sive Functions, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1975.
1

[6] Downey, R. G., “�0
2 degrees and transfer theorems,” Illinois Journal of Mathematics,

vol. 31 (1987), pp. 419–27. Zbl 0629.03017 MR 89c:03070 1

[7] Fischer, P., “Pairs without infimum in the recursively enumerable weak truth table de-
grees,” The Journal of Symbolic Logic, vol. 51 (1986), pp. 117–29. Zbl 0587.03030
MR 87g:03044 1, 3

[8] Friedberg, R. M., and H. Rogers, Jr. “Reducibility and completeness for sets of in-
tegers,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 5
(1959), pp. 117–25. Zbl 0108.00602 MR 22:3682 1

[9] Jockusch, Jr., C. G., “Three easy constructions of recursively enumerable sets,” pp. 83–
91 in Logic Year 1979–80, Lecture Notes in Mathematics, 859, edited by M. Lerman,
J. Schmerl, and R. Soare, Springer-Verlag, New York, 1981. Zbl 0472.03031
MR 83a:03036 1, 3

[10] Lachlan, A. H., “Lower bounds for pairs of recursively enumerable degrees,” Proceed-
ings of the London Mathematical Society, vol. 16 (1966), pp. 537–69. Zbl 0156.00907
MR 34:4126 3

[11] Ladner, R. E., and L. P. Sasso, “The weak truth table degrees of recursively enumerable
sets,” Annals of Mathematical Logic, vol. 8 (1975), pp. 429–48. Zbl 0324.02028
MR 52:63 1, 1

[12] Soare, R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, New York,
1987. Zbl 0623.03042 MR 88m:03003 1, 1

[13] Stob, M., “wtt-degrees and T-degrees of recursively enumerable sets,” The Journal of
Symbolic Logic, vol. 48 (1983), pp. 921–30. 1

[14] Yates, C. E. M., “A minimal pair of recursively enumerable degrees,” The Journal of
Symbolic Logic, vol. 32 (1965), pp. 159–68. Zbl 0143.25402 MR 34:5677 3

http://www.emis.de/cgi-bin/MATH-item?0562.03022
http://www.ams.org/mathscinet-getitem?mr=86f:03065
http://www.emis.de/cgi-bin/MATH-item?0541.03023
http://www.ams.org/mathscinet-getitem?mr=85d:03083
http://www.emis.de/cgi-bin/MATH-item?0619.03032
http://www.ams.org/mathscinet-getitem?mr=87j:03058
http://www.emis.de/cgi-bin/MATH-item?0629.03017
http://www.ams.org/mathscinet-getitem?mr=89c:03070
http://www.emis.de/cgi-bin/MATH-item?0587.03030
http://www.ams.org/mathscinet-getitem?mr=87g:03044
http://www.emis.de/cgi-bin/MATH-item?0108.00602
http://www.ams.org/mathscinet-getitem?mr=22:3682
http://www.emis.de/cgi-bin/MATH-item?0472.03031
http://www.ams.org/mathscinet-getitem?mr=83a:03036
http://www.emis.de/cgi-bin/MATH-item?0156.00907
http://www.ams.org/mathscinet-getitem?mr=34:4126
http://www.emis.de/cgi-bin/MATH-item?0324.02028
http://www.ams.org/mathscinet-getitem?mr=52:63
http://www.emis.de/cgi-bin/MATH-item?0623.03042
http://www.ams.org/mathscinet-getitem?mr=88m:03003
http://www.emis.de/cgi-bin/MATH-item?0143.25402
http://www.ams.org/mathscinet-getitem?mr=34:5677

INFIMA IN WEAK TRUTH TABLE DEGREES 419

Individual, Inc.
8 New England Executive Parkway West
Burlington, MA 01803
email: blaylock@individual.com

Department of Mathematics
Victoria University of Wellington
P.O. Box 600
Wellington
NEW ZEALAND
email: rod.downey@vuw.ac.nz

Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison, WI 53706-1388
email: lempp@math.wisc.edu

mailto: blaylock@individual.com
mailto: rod.downey@vuw.ac.nz
mailto: lempp@math.wisc.edu

