Notre Dame Journal of Formal Logic
Volume 39, Number 1, Winter 1998

Predicative Logic and Formal Arithmetic

JOHN P. BURGESS and A. P. HAZEN

Abstract  After a summary of earlier work it is shown that elementary or
Kalmar arithmetic can be interpreted within the system of Rusdeiliscipia
Mathematica with the axiom of infinity but without the axiom of reducibility.

1 Historical introduction  After discovering the inconsistency in Fregésundge-

setze der Arithmetik, Russell proposed two changes: first, dropping the assumption
that to every higher-order entity there corresponds a first-order entity; and second,
restricting the assumptions on the existence of higher-order entities, so that instead
of a simple hierarchy of first-order, second-order, third-order, and so on, one has a
ramified hierarchy in which each order is subdivided into various types in such a way
that a condition involving quantification over all entities of one type is never assumed
to determine another entity of the same type, but only of a higher type. But Russell
found that with these two changes he could not derive classical mathematics, so in
Principia Mathematica he partially compensated for the first change by assuming the
axiom of infinity and, for all mathematical purposes, wholly undid the second change
by assuming his axiom of reducibility.

Thepredicativist tradition from Weyl P1] to Feferman[P] and beyond accepts
infinity but rejects reducibility and is willing to give up parts of classical mathematics.
However, predicativists have been unable to derive classical arithmetic and unwill-
ing to give it up and so have simply assumed it as axiomatic. This assumption has its
defenders, as with Feferman and Hellria}) &nd also its detractors, as with C. Par-
sons[L5]. Itis, therefore, of some philosophical as well as historical interest to ask
how large a fragment of classical arithmetic can be developed within the Russellian
system ofPrincipia Mathematica with infinity but without reducibility.

Now many subsystems of classical or Peano arithmetic have been recognized
since the work of Skolenll], Kalmar [9], Grzegorczyk[fl], and other pioneers.
Among these the most studied have beerstiverimitive or Grzegorczyk arithmetics
I'n. These agree in allowing definitions by primitive recursion, but only when the
function F being defined recursively is bounded by some function already given; or
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what is essentially equivalent, they agree in allowing proofs by mathematical induc-
tion but only when the statemeatbeing proved inductively contains only bounded
guantifications, that is, quantifications of the fork®s < u and3x < u, meaning
Yu(u<v— ...)and3u(u < v A...). They disagree only as to how many of
the fundamental operations of additignmultiplication x, exponentiatiort, super-
exponentiation, and so on, they admit. ThuFj or subelementary arithmetic ad-

mits only+ and x, I's or elementary or Kalmar arithmetic admits als¢, andI', or
super-elementary arithmetic admits alsgr. The union of all ofl", amounts tqrim-

itive recursive or Skolem arithmetic.

Which if any of these systems can be developed or interpreted within the Rus-
sellian system? Russell's own later attempt to develop arithmetic within the system
(Whitehead and Russeltf], Appendix B) was a failure, but several other logicians
over the years have been more successful. We will describe briefly such previous
work on the question as is known to us. (Given the frequency of independent redis-
covery and of unpublished work in this area, it would not be surprising if there were
also other work unknown to us.) All positive results require only the second-order
part of the system and only a few types of predicative second-order ehtities.

To begin with, Skolem [[d], ch. 14), using an ordinal approach to number rem-
iniscent of Dedekind, and later Kripke (unpublished), using a cardinal approach rem-
iniscent of Russell himself, both succeeded in developing the basic laws of addi-
tion and multiplication. Skolem seems to have hoped this positive result could be
extended to all of primitive recursive arithmetic—perhaps everyone who has ever
thought about the problem and got anywhere at all with it has hoped this initially—but
Kripke before long realized that it could not, since the consistency of the Russellian
system can be proved within primitive recursive arithmetic (to whiéld&ian con-
siderations apply).

To reconstruct and elaborate this argument two points are to be noted. First,
the consistency of the Russellian system can be proved by iterated application of the
proof by Shoenfield7] of Novak Gal's theorenfi[4] to the effect that the extension
T+ formed by addition of one type of predicative higher-order entity to a consistent
theoryT is still consistent. Second, Shoenfield’s proof can be formalized in primitive
recursive arithmetic, being an application of basic results of finitist, though nonele-
mentary, proof theory. Since the proof can be carried out in primitive recursive arith-
metic, it can be carried out iR, for all sufficiently largen, and it will be impossible to
develop orinterpret sudh, in the Russellian system, though a more detailed analysis
of the proof would be needed to determine the minimum valuerefjuired?

Nelson [[3] would at first glance seem to be relevant to our concerns here: the
very name of his enterprise, “predicative arithmetic,” suggests as much. At second
glance, the cited book seems less relevant, since it is concerned with a system of fea-
sible arithmetic, interpretable imudimentary or Robinson arithmeticQ, as in Tarski,
Mostowski, and Robinsof2[], in which there are no higher-order entities at all and
in which the basic laws of addition and multiplication are not deduced but assumed as
axiomatic. (Moreover, even Montagna and Manditi][ which undertakes a reduc-
tion of Nelson’s starting point to a weak systenseftheory, is not directly relevant
to our present question of reduction to a predicative systenigbér-order logic.) At
third glance, the cited book is seen to be relevant after all, since once one has shown
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by whatever means that the most basic laws, the axior@s oén be obtained in the
Russellian system, anything shown in the cited book to be interpretable in the system
Q will be interpretable in the Russellian system. And in the cited book itis shown, of-
ten using in the proofs ideas attributed to Solovay (unpublished), that much indeed is
interpretable in the syste@. From such results it follows that subelementary arith-
metic is interpretable in the Russellian system, in the weak sense that, for any finitely
many theorems of subelementary arithmetic, there is a class of individuals (specifi-
able by a formula of the language @f) that can be proved in the Russellian system

to satisfy those theorems.

Wilkie (unpublished) has shown that in fact a system at least as strong as sub-
elementary arithmetic is interpretableQnin the usual sense that there srgleclass
of individuals (specifiable by a formula of the languag&Xfthat can be proved in
Q to satisfy all the theorems of the system. For a proof sajekdand Pudik ([B],
pp. 366-71).

One might well expect (or at least hope) that a shorter, simpler proof of the inter-
pretability of subelementary arithmetic in the Russellian system ought to be possible,
if one proceeded directly rather than aand exploited some of the extra strength
of the second-order apparatus. HaZghip efect indicates that such a compara-
tively short and simple proof is indeed available: the cited paper gives an exposition
of the derivation of the basic laws of addition and multiplication in the Russellian
system, using only a few types of predicative second-order entities, and at the end
announces that it can be shown that subelementary arithmetic as a whole can be inter-
preted in the Russellian system in the ordinary sense (by a direct method used already
in Hazen[B]). This direct method is such that if we could only get exponentiation (or
super-exponentiation), it would at once give elementary (or super-elementary) arith-
metic.

Leivant [LO] appears to address the second-order part of the Russellian system
and states without proof that in the system being addressed, super-exponentiation is
provably total, whereas super-super-exponentiation is not. But to our knowledge the
only subsequent published paper relevant to the cited abstract is Lé&ixnhich
really addresses a different system, a typed version of Church’s system rather than a
version of the system of types of Russell. Since the Church-style system is stronger
than the Russellian system, the positive results about the former do not automati-
cally apply to the latter, but the negative result on the unobtainability of super-super-
exponentiatiorwould apply to the Russell-style system or at least its second-order
part3

The most conspicuous question left open by the foregoing discussion is whether
exponentiation (or even super-exponentiation) is obtainable. Our main result is that
elementary arithmetic is interpretable in a small fragment of the Russellian system.
The bulk of this paper is devoted to the prdof.

Sectio?Hescribes more precisely the small fragment in question, which is close
to the system originally used ififl. SectiorBltreats order. Sectiof&andSltreat
addition and multiplication in a manner adapted fr@ifl][ Sectiorf freats bounded
induction in a manner adapted frof[ SectiorlZltreats exponentiation. Sectid
contains a subsidiary result about super-exponentidtion.
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2 Thesystems Fortunately, it will not be necessary to describewhel e of predica-
tive higher-order logic but only its second-order part. Simaple predicative second-
order extensiot,(T) of a first-order theory has, besides the first-order variables
X, Y, z, ... forindividuals as ifiT, monadic second-order variabl®$, Y1, Z1, ... for
certain classes of individuals to be calledlasses, with the membership symbel
and the following axiom scheme cdmprehension for formulasy that do notinvolve
bound 1-class variables:

IXx(x e Xt «— p(x))

whereing may contain first- or second-order free variables not displayed. Mere

is called theextension of ¢. U1(T) has as well the dyadic, triadic, tetradic. . ,

and analogues of the foregoing monadic apparatus.ddhie e predicative second-
order extensiorJ,(T) has, in addition, second-order variabl¥$, Y2, Z2, . .. for
certain further classes of individuals to be calledl@sses, with comprehension

for formulas that (may involve bound 1-class variables but) do not involve bound
2-class variables, as well as the polyadic analogues thereoftrifhe quadruple,
quintuple, . . . predicative second-order extensiodg(T), U4(T), Us(T),... are
similarly defined and the (full) predicative second-order extendig(T) of T is the
union of theU,(T) for all finite n.

The axiom of infinity comes in several variant versions. Dedekind’s historic ver-
sion is a second-order axiom asserting the existence of a set of individuals, a one-to-
one function from that set to itself, and an individual in the set but not in the range
of the function. Extending the function by defining it to be the identity outside its
original domain, this version reduces to a version asserting the existence of a one-to-
one function on the set @l individuals and an individual not in the range of that
function. By giving the entities asserted to exist names, this existential second-order
axiom can, like any other such axiom, be reduced to first-order form. It can then be
divided into two conjuncts, one asserting that the named function is one-to-one and
the other asserting that the named individual is not in its range. By using the sugges-
tive namessuccessor or Sfor the one-to-one function armro or O for the individual
not in its range, these two axioms can be made to assume a very familiar form.

(1)  0#3x
(2) X # Yy — SX# Sy.

Let T be the first-order theory witB andS as its nonlogical symbols and (1) and
(2) above as its nonlogical axiom¥,,(To) is then a variant version of the second-
order part of the Russellian system. WorkindJin(T ), for everyk there are monadic
and polyadic second-order entities of lekek-classes anéi-relations. Call a class
inductive if it contains0 and is closed unde3, containingSx whenever it contains.
Then for eaclk there is also a notion of number(la+ 1)-number being an individual
belonging to every inductivk-class.

For most of our work we will need only,(Tg), which we callpredicative
Dedekind arithmetic or PDA. Working in PDA, we will use ‘set’, ‘relation’, ‘class’,
and ‘number’ without further qualification to mean respectively, 1-class, 1-relation,
2-class, and 3-number. (Usually the contrast ‘set’ versus ‘class’ is used to mark a dif-
ference of order, but we have no need for terms to mark distinctions of order since we



PREDICATIVE LOGIC AND FORMAL ARITHMETIC 5

are concerned only with second-order entities, whereas we do have a need for terms
to distinguish the first two levels within the second-order.) With this terminology the
obstacle encountered in trying to develop formal arithmetic within predicative logic
is just this, that conditions mentioning the notion of number (and thus implicitly in-
volving quantification over classes) do not determine classes, so that even if such a
condition can be proved inductive, it cannot be concluded that it holds for all numbers.
In the proofs to follow, every detour taken is in order to circumvent this obstacle.

The formal arithmetids is a first-order theory having nonlogical symb0)sS,
+, *x, 1, and having the nonlogical axioms 1 and 2 above, plus the following.

3) X<0&=x=0

(4) X<Sy<=xXx<yvx=Sy
(5) X4+0=x

(6) X+ Sy=S(X+Y)

) xx0=0

(8) Xk Sy = (X*Y)+ X

9 x10=950

(10)  x1Sy=(X1Yy)*X

It also has the axiom scheme ldfunded induction, according to which, for any
with all quantifiers bounded, the following counts as an axiom:

VY{[@(0, y) AVX(@(X, Y) = @(SX, ¥))] = VXp(X, y)}

wherein there may be in place gfany finite number of variables.

Rz is at least as strong as elementary arithmetic as it is usually formulated in
the literature. The part d®3 not involving 1 will be calledR,. Our main result will
be that for every theorem &3 it is provable inPDA that the theorem holds when
variables are restricted to numbers. Sedgtfireats (3) and (4), Sectidftreats (5)
and (6), Sectiofltreats (7) and (8), Sectiditreats bounded induction, and Section
[Mtreats (9) and (10). Sectificonsiders two further axioms.

(11) xfy=30
(12) X Sy=xt X1y

Certain laws derivable by induction from (1) — (10) will play a special role as auxil-
iaries in the construction: the reflexivity and counterinductiveness and transitivity of
order, the associativity of addition, the distributivity of multiplication over addition,
and the associativity of multiplication. We set these down now for future reference.

(13) y=y

(14) if Sx < y,thenx<y

(15) if x<yandy < zthenx<z
(16) X+ (yY+2=XxX+y) +2z
a7 Xk (Y+2) =XkYy+X*2Z
(18) X# (Yx2) = (XxY)*2Z
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3 Order Call a setcounterinductive (for y) if it containsx whenever it containSx

(and it containgy). Define order by setting < y if and only if x is an element of

every counterinductive set fgr We claim that (3), (4), and (13)—(15) all follow.
Indeed (13) — (15) are immediate or almost so on unpacking the definitions and

so is the first of the following three items, which together would suffice to give (3)

and (4):

() if x <y, thenx < Sy;
(i) if x<0,thenx=0;
(iii) if x < Sy, thenx < yorx=Sy.

Then (i) holds becausf}, which is to say the extension of the formuyléu) saying
u =0, is cmunterinductive fob, using the fact thad # Su for anyu by axiom 1. And
(iii) holds because iX! is a counterinductive set fornot containingk andx # Sy,
thenX* U {Sy}, which is to say the extension of the formulau) sayingu € X' v u=
Sy, is acounterinductive set fdBy not containingx, using the fact thaBy # Su for
anyu # y by axiom 2.

Call a classlosed downward if x is a member of it wheneveris a member of
it andx < y. The contraction lemma for order says that any inductive cla$ has
an inductive subclas®? that is closed downward. Indeed, it suffices toBébe the
class of allx such that for all < x we haveu e A2. First, we haved € B? by (3) and
the assumption thdt € A2. Further, if we havex € B? so thatu € A? for all u < x,
then we havex € A2 by (13), andSx € A? by the assumption th#? is closed under
S, and so by (4) we have € A? for all u < Sx, and saSx e B2. Finally, if y € B so
thatu e A? for everyu < y, and ifx < y, then for anyu < x we haveu < y by (15),
and sou € A? so thatx e B2, completing the proof.

4 Sums Define arelatiof! to be acomputation of the sumwith x (of y (as2)) if F*
is a function from individuals to individuals (ands in its domain (andF*(y) = 2))
and for all individualau we have

(5a)  Ois in the domain of! andF(0) = x;
(6a)  if Suis in the domain of* then so isu, and we haveé=*(Su) =
SFL(u).

If there exists a unique individualfor which there exists a computation of the sum
of xwith y asz, call it x+ y, which otherwise will be undefined. Call an individual
summableif x+ yis defined for all individualg. Thedefinitenesslemma for addition
says that for all individuals we have

(5b) 0is summable and+ 0 = x;
(6b) if yis summable then so By, and we havex+ Sy = S(x+ y).

The proofis a more or less standard set-theoretic argument. Unigueness is easy since
(5a) specifies what + 0 must be and (6a) specifies what Sy must be given what

X+ yis. For the existence part of (5b) it suffices to consider the fundtowith
domain{0} andF(0) = x. This satisfies (5a) by definition and (6a) vacuously. For

the existence part of (6b), consider a computafdrf the sum withx of y. If Sy
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is already in the domain d&* we are done. Otherwise consider the funcfidrwith
domainF! = domainE! U {Sy} and withF*(u) = E(u) for u # Sy andF(Sy) =
SEL(y). It suffices to show tha! is a computation of the sum withof Sy, and for
this (5a) and (6a) fou +# y are immediate from (5a) and (6a) f&t, whereas (6a) for
y holds by definition, completing the proof.

The definiteness lemma implies that the class of summable individuals is in-
ductive. Callx additive if x is summable and for all summablethe sumv + x is
summable, and moreover, for all individualsthe sumu + (v + X) is what it ought
to be, namely(u + v) 4+ Xx. Theassociativity lemma for addition says that the class
of additive individuals is inductive.

For the proof, recall the usual inductive proof of the associative law of addi-
tion 16 using axioms 5 and 6 and mathematical induction. That proof essentially con-
sists of two series of equations, one to prove associativityaththe third term and
one to prove associativity witBx as the third term, assuming as induction hypothesis
associativity withx as the third term:

U+ @w+0) =u+v=U+v)+0
U+ (w+Sx) = u+Skw+Xx)
= S(U+ (v+x)

S((U+v) +X)

= (U+v)—+ Sx

Each equation is justified by (5) or (6) or the induction hypothesis. In the present
context, (5b) is identical with (5) but (6b) is weaker than (6), being conditional on
summability. To show the equations hold in the present context we need to check
that summability holds where needed, using for this purpose our assumption that
v is summable, and in the induction step, the assumptionxhsiadditive. It is
readily checked that under those assumpti@ns x, v + X, Sx, andS(v + x) are all
summable and that the foregoing are all the terms whose summability is required for
the above equations, thus completing the proof.

Theclosure lemma for addition says that ik andy are additive, so ig + y. For
the proof, it suffices to check the following equations:

u+@+x+y) = ut+((v+x+Yy)
U+ @+x)+y

(U+v)+X)+Yy

= (U+v)+ X+Y).

The contraction lemma for addition is a kind of generalization, saying that any induc-
tive classA? has an inductive subcla (containing only additive individuals and)
closed unde#-.

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality #ais a subclass of the class of additive
individuals from the start, making the associative law available. It then suffices to let
B? be the class of akt € A? such that for all, if u € A% thenu+ x € A%. The proofs
thatB? (i) containsD, (ii) is closed undes, and (iii) is closed undet-, are as follows.
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Let u € A% be given. For (i)u+ 0= u e A%, and sa0 € B?. For (i), givenx e B?
so thatu + x € A% we haveu + Sx = S(u + x) € A? sinceA? is inductive, and so
Sx € B2. For (iii), givenx € B? andy € B® we haveu+ (x+y) = (u+x) +y, and
u+ x € A% sincex € B?, and then(u + x) 4 y € A? sincey € B?, andsox+ y € B2,
This completes the proof.

What our work to this point shows is that by restricting variables to additive in-
dividuals we get an interpretation of axioms 1 -6 and 13— 16. Henceforth for conve-
nience we use ‘individual’ to meamdditive individual’, so it may be said that indi-
viduals satisfy (1) —(6) and (13)— (16).

5 Products Define a relatiorF* to be acomputation of the product with x (of y
(as 2)) if F*is a function from individuals to individuals (andis in its domain (and
Fl(y) = 2)) and for all individualsu we have:

(7a)  Ois in the domain of! andF(0) = SO;
(8a)  if Suis in the domain of* then so isu, and we haveé=*(Su) =
Fl(u) + x.

If there exists a uniquefor which there exists a computation of the produck afith
y asz, call it x x y, which otherwise will be undefined. Call individuglproductive
if xx yis defined for all individual.

The definiteness lemma for multiplication says that for all individuale have:

(7b) Ois productive anckx 0 = 0;
(8b) if y is productive then so iSy, and we havex Sy = (X * y) + X.

The proof is exactly like that of the corresponding lemma for addition.

The definiteness lemma implies that the class of productive individuals is induc-
tive. Callx summably productive if x is productive and for all productivethe sum
v+ Xis productive and moreover, for any individugthe producti* (v + X) is what
it ought to be, namelyl % v + u* x. Thedistributivity lemma says that the class of
summably productive is inductive. For the proof, it suffices to check the equations
used in the usual derivation of the distributive law 17:

Ux(v+0)=uxv=uxv+0=uxv+uUx*0;

Usx(v+Sx) = Ux*xS(v+ X)
= Ux(v+Xx)+u
= (Uxv4+UxXx)+U
= Uxv+ (UxX+U)
Uk v+ Uk SX.

Theadditive closure lemma for multiplication says that ik andy are summably pro-
ductive, therx + y is summably productive. For the proof, it suffices to check the
following equations:
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Ux 0+ (X+Yy) = ux(W+x+Y)
= (Ux@+X)+uxy
= (Uxv4+UxX)+UxY
= Uxv+ (UxX+UxY)
= Uxv+Ux(X+Y).

Call x amultiplicative if x is summably productive and for all summably productive

v, the producty * x is summably productive and, moreover, for any individu#he
productu x (v * X) is what it ought to be, namelwi * v) % x. The associativity lemma

for multiplication says that the class of multiplicative individuals is inductive. For the
proof, it suffices to check the equations used in the usual derivation of the associative
law 18 for multiplication:

Ux(vx0)=ux0=0= (u*xv) *0;

Uk (vxSX) = Ux*x(v*xX+ )
= Ux(vxX)+Uxv
= (Uxv)xX+Ux*xv
(U*v) *x SX.

The closure lemma for multiplication says that @ndy are multiplicative, thex + y
andx * y are multiplicative. For the proof of closure undgiit suffices to check the
following equations:

Us (k (X+Y) = Ux(xX+v%Yy)
= Ux(*xX)+Ux((vx*xY)
= (Uxv)xX+ (Uxv)*xYy
= (Uxv)*x(X+Y).

The proof of closure undes is exactly like the proof of the corresponding lemma for
addition. The contraction lemma for multiplication is a kind of generalization, saying
that any inductive clasa? has an inductive subclaB® (containing only multiplica-
tive individuals and) closed underand x.

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality tais a subclass of the class of multi-
plicative individuals from the start, making the distributive and associative laws avail-
able. By the contraction lemma for addition it may be assumed without loss of gen-
erality thatA? is closed unde#-. It then suffices to leB? be the class of ak € A?
such that for all, if u € A%, thenu x x € A2. The proofs thaB? (i) contains0, (ii)
is closed undes, and (iii) is closed undert, are as follows. Leti € A? be given.

For (i), ux 0 = 0 € A? sinceA? is inductive, and s@ e B?. For (ii), givenx € B?
andu = x € A% we haveu = Sx = U X+ u € A2 sinceA? is closed unde#-, and so
Sx e B?. For (iii), given x € B? andy € B?, we haveu x x € A sincex € B?, and
thenu sy € A% sincey € B?, and sou* (X+ Yy) = Ux X+ Ux y € A sinceA? is
closed unde#-, sothatx x y € B2. The proof thaB? (iv) is closed undes: is exactly
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like the corresponding step in the proof of the contraction lemma for addition. This
completes the proof.

What our work to this point shows is that by restricting variables to multiplica-
tive individuals, we get an interpretation of axioms 1—8 and 13 —18. Henceforth, for
convenience, we use ‘individual’ to mean ‘multiplicative individual’, so it may be
said that individuals satisfy (1)—(8) and (13)—(£8).

6 Boundedinduction Now recall thata number is an individual belonging to every
inductive class. The closure lemma for numbers states that the numbers (1) 6pntain
(2) are closed undes, (3) are closed downward, (4) are closed ungdeand (5) are
closed undek . Here (1) and (2) are immediate from the definition, whereas (3) — (5)
are almost immediate from the contraction lemmas. (For instance, given ithat
number andi < X, to show thatu is a number it suffices to consider any inductive
classA? and show € A2, By the contraction lemma, there is an inductive subclass
B? of A? that is closed downward. Sinceis a number an®? is inductive,x € B,
Then sincas < x andB? is closed downwardj € B2. And then, sinc®? is a subclass
of A%, ue A%)

The closure lemma guarantees that all axioms 1 ,qfalong with the auxil-
iaries 13 —18) hold when quantifiers are restricted to numbers. To show that all ax-
ioms (and hence all theorems)R% hold when quantifiers are restricted to numbers,
two things remain to be done: (1) to define exponentiation and show that numbers
are closed under it and satisfy axioms 9 and 10; and (2) to show that the bounded
induction axioms hold when quantifiers are restricted to numbers. These tasks may
be taken up in either order and we will first undertake task 2. More precisely, we will
show in this section that every bounded induction axioiRofiolds when quantifiers
are restricted to numbers and we will do so by a proof that will extend automatically to
the additional bounded induction axiomsR¥ (mentioning exponentiation), as soon
as we accomplish task 1 in the next section.

To commence, an important consequence of the closure lemmaadbdbleite-
ness lemma which says that for any formula of the language witl®, S, <, +, and
* having all quantifiers bounded, and for any particular numibane has thap(u)
holds if and only ifp(u) holdswhen all its quantifiers are restricted to numbers, and
herein there may be any finite number of variables in plaae &br example, ifx is
anumber, then the following are equivalent:

Jw < X(X = Sw);
Jw < x(w is a number andh x = Sw).

This is immediate: the restrictiom'is a number’ is already implied by the restriction
fw < X.

To continue, the absoluteness lemma greatly simplifies the task of showing that a
bounded induction axiom holds when quantifiers are restricted to numbers. To show
that such an axiom, as displayed in Section 1, holds when quantifiers are restricted
to numbers, it will suffice to consider any fixed numlyefior which the antecedent
00, y) AVX(p(X, Y) = ¢(SX, y)) of the axiom holds when quantifiers are restricted
to numbers and to show that the conseqivemt(x, y) of the axiom holds when quan-
tifiers are restricted to numbers. By the absoluteness lemma, the antecedent holding
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when quantifiers are restricted to numbers amounts simpy(@y) holding and
to o(X, y) — ¢(SX, y) holding for all numbers, whereas the consequent holding
when quantifiers are restricted to numbers amounts simphystoy) holding for all
numbersx. So it will suffice to consider a numbey such thatp(0, y) holds and
(U, y) — @(Su, y) holds for every numbeu, and to consider any numbey and

to show thaip(v, y) holds.

To conclude, we show this as follows. Consider the cl&ssf all individualsu
such thau < v — ¢(u, y) holds. By (13) it will suffice to show that belongs toA?
and sincev is a number, for this it will suffice to show thaf is inductive. As toA2
containing, (0, y) is given. As toA? being closed undes, it suffices to show that
if we haveu < v — ¢(u, y) then we havéSu < v — ¢(Su, y) or equivalently, that
if we haveu < v — ¢(u, y) andSu < v, then we haveo(Su, y). And indeed, given
u<v— ¢(U,Yy) andSu < v, by (14) we getu < v and, hencep(u, y). From the
downward closure of numbers and< v, it follows thatu is a number, and we are
given thatp(u, y) — ¢(Su, y) holds for numbers, so we getSu, y) as required to
complete the proof.

7 Powers As already indicated, though we have chosen to treat bounded induction
before exponentiation, these topics could have been taken in either order and the treat-
ment of exponentiation does not require the results of the preceding section. Rather,
we take as our starting point in this section the situation at the very end of 9eftion
where it was said that individuals satisfy (1) —(8) and (13) —(18).

Define a relatiorF! to be acomputation of the power of x (to y (as 2)) if F1 is a
function from individuals to individuals (angis in its domain (andF(y) = z)) and
for all individualsu we have

(9a)  Ois in the domain of! andF(0) = SO;
(10a)  ifSuis in the domain oF?, then so isu and we haver!(Su) =
FL(u) * x.
If there exists a uniquefor which there exists a computation of the powexab y
asz, call it x 1 y, which otherwise will be undefined. Call an individuapowerful
if x4 yis defined for all individual.
The definiteness lemma for exponentiation says that for all individuaéshave

(9b) 0is powerful andx 1 0 = S0;
(10b) if y is powerful, then so iSy and we havex + Sy = (X 1 y) * X.

The proof is exactly like that of the corresponding lemmas for addition and multipli-
cation. The definiteness lemma implies that the class of powerfuinductive.

The method used to prove the contraction lemmas for addition and multiplica-
tion is not applicable to exponentiation, since that operation is not associative. Still,
without making use of the notions of class or numbevgak contraction lemma for
exponentiation can be proved, saying that every inductive &asss an inductive
subclas$8? (containing only powerful individuals and) closed undeand x such
that for allx andy in B2, x 1 yis in A2,

For the proof, since the intersection of any two inductive classes is inductive, it
may be assumed without loss of generality thais a subclass of the class of pow-
erful individuals from the start. By the contraction lemma for multiplication, it may
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be assumed without loss of generality thatis closed undes and s . Now let B
be the class of alh € A such that for all € A? we haveu 1 v € A%, WeclaimB? is
inductive. As toB? containing, for anyu € A%, by (9b) and the inductiveness Af
we haveu 1 0 = SO € A2, As to B? being closed undes, if v € B?, o that for any
u e A% we haveu 1 v € A2, then for anyu € A2, by (10b) and the closure @? under
%, we haveu 1 Sv = (U1 v) = u e A2, and henceéu e B?, proving the claim. 1182
is not itself closed undef and x, it can be replaced by an inductive subclass that is
by the contraction lemma for multiplication, to complete the proof.

It is almost immediate from the weak contraction lemma already proved that
numbers are closed undef. (Indeed, ifx andy are numbers it suffices to prove that
x 1 y € A? for any inductive clas#?. Let B? be as in the weak contraction lemma.
We havex € B andy e B? by inductiveness oB?, sincex andy are numbers, so
X1y € A? as required.) This was the missing piece needed to show that all theorems
of Rz can be proved if?DA to hold when quantifiers are restricted to numbers.

8 Superpowers To treat super-exponentiation, we employ a different method,
yielding a weaker result. As to predicative logic, we pass fRIDA = U,(Tp) to
U, (To), where we must distinguish various levels of numbers. As to formal arith-
metic, we consider a theofy; in a language without quantifiers (free variables in
theorems being tacitly understood as universally quantifidg)has the nonlogical
axioms 1-12 (besides the logical axioms for identity which may be taken to be reflex-
ivity, symmetry, transitivity, and substitution of equals for equals in atomic formulas).
A proof inRj is a sequence of formulas each of which is either an axiom or follows
from earlier ones by truth-functional logic or by substitution of terms for variables
or by a newrule of inference for bounded induction, allowing the inference from the
premisesp(0, y) andp(X, y) — ¢(SX, y) to the conclusiorp(x, y), for all formulas
¢ of the quantifier-free language. The partRjf not involving{ may be calledRs.

As a first step, define a relatidf to be acomputation of the superpower of x
(toy (as 2)) if Ftis a function from 3-numbers to 3-numbers (ani in its domain
(andF(y) = 2)) and for all 3-numbers we have

(11a)  Oisin the domain oF* andF!(0) = S0;
(12a)  ifSuisinthe domain ofF! then ® isu, and we hav&!(Su) = x 1
Fl(u).

If there exists a unique for which there exists a computation of the superpower of
x to they asz, call it x 1} y, which otherwise will be undefined. Call a 3-number
superproductive if x 1} y is defined for all 3-numbers. The definiteness lemma for
super-exponentiation says that for all 3-numbetise following hold.

(11b) 0is superproductive anq} 0 = S0;
(12b) if y is superproductive then so &/, and we havex {t Sy = x 4
XA y).

The proof is much the same as that of the corresponding lemmas for other arithmetic
operations.
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What will now be shown is thaR; is interpretable irJ,,(To) in the following
very weak sense: for every finite setof theorems oRjy, or what comes to the same
thing—since the conjunction of any finite set of theorems is itself a theorem—for any
single theorend of Ry, there is &, such that for alh > kj the theoren® holds when
the variables are taken to range omarumbers. This condition is to be understood as
requiring that the values of all termsdrbe defined when the values of the variables
in 8 are taken to b@-numbers, but not that the values of these terms themselves be
n-numbers. Note that, weak as it is, interpretability in this sense does imply the con-
sistency ofR; relative toU,,(To): it shows thaD # 0 cannot be a theorem of the
former unless it is a theorem of the latter. In fact, it guarantees that any result not
mentioningf and provable ifRy is provable inJ,,(To) to hold forn-numbers for all
sufficiently largen.’

The proof is by induction on the length of the prooftbin R; with five cases
to be distinguished. First, consider the case wifgseany axiom but (11) or (12).

The results of the previous sections literally say that the 3-numbers are closed under
addition, multiplication, and exponentiation and satisfy all theorenizpbut the
proofs of the previous sections actually show that this hold&foumbers for any

k > 3. So in the case under consideration we may fake 3.

Second, consider the case whérgone of the axioms 11 or 12. The definiteness
lemma says that the 3-class of all superproductiiginductive. So it contains all 4-
numbers. The same proof shows that for &y 3 and any(k + 1)-numbers< andy,

X 1t yis defined and is &number. So in the case under consideration we may take
ko = 4.

Third, consider the case whetés inferred by truth-functional logic from vari-
ousd; for which appropriatds; has already been found. In this case we may take
to be the maximum of thk.

Fourth, consider the case whetés inferred by substitution of terms for vari-
ables from some/ for which an appropriat&, has already been found. Note that,
given functions that for alk take (k + m)-numbers tk-numbers, and given func-
tions that for allk take (k + n)-numbers tdk-numbers, composition of the former
functions with the latter functions yields functions that tgket p)-numbers tc-
numbers, whergp = m+ n. Since+, %, and4 carryk-numbers tk-numbers and
1 carries(k + 1)-numbers tk-numbers, this guarantees that for any té(mv, . . .)
built up from variables, v, . .. using the symbol§, S, +, x, 1, andqy, there is ap;
such that for alk the value of the termis defined and &number whenever the val-
ues of the variables aK& + py)-numbers. So in the case under consideration we may
let py be the maximum of they for t aterm occurring irg, and then leky = ky, + py.

Fifth, consider the case whefle= 6(x, y) is inferred by induction from

¥ =0(0,y) A (B(X, y) = 0(SX, )

for which an appropriatk, has been found. It follows that for any fixé&g-number
y the (ky, + 1)-class of allk,-numbersx such tha®(x, y) holds is inductive and so
contains allky 4 1)-numbers. The same proof shows it containglalf- 1)-numbers
for anyk > ky. So inthe case under consideration we may tieke= ky, + 1. This
completes the proof.
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Essentially the same method can be applieRjdo show that it can be inter-
preted in a similar very weak sensdJn(T).8 The method is also applicable in other
situations of related interedt.

NOTES

1. Heck [B] considers a Fregean system in which only the second and not the first of Rus-
sell's two changes to the system of {Beundgesetze is made, namely, a predicative ex-
tension of the first-order fragment of tBundgesetze as studied in T. Parsori&f]. In
this first-order fragment, a version of the axiom of infinity is already provable and does
not have to be assumed, and a pairing function is definable, so that in considering ex-
tensions only monadic higher-order entities need to be assumed. Heck shows that in the
context he considers, the basic laws of addition and multiplication can be derived us-
ing justone level of predicative second-order entities. Because his Fregean system is
stronger than the Russellian, this result does not transfer directly. But it does suggest a
goal that a development of the basic laws of addition and multiplication within a Rus-
sellian system might hope to achieve, and that indeed is achievable, as can be seen from
the development below.

2. Shoenfield states the theorem for a particllanamely, Zermelo-Frankel set theory,
whereT* boils down to Gdel-Bernays set theory, but his proof, which is formulated in
terms of the epsilon-symbol theorem—though easily reformulable in terms of the cut-
elimination theorem—is more widely applicable. Shoenfield himself notes that his proof
gives a primitive recursive functioR for which it is provable that if there were any
derivation of a contradiction ifi * with Godel number x, there would be a derivation
of a contradiction ifT with Gdodel number F(x). To prove consistency for a fragment
of the Russellian system with a fixed finite numipeof types of higher-order entities,
it would be necessary to consider tn# function in the sequence defined B§(x) = x
andF*1(x) = F(FX(x)). To prove consistency for the Russellian system as a whole,
it would be necessary to proceed by induction and consider the furfetiolefined by
the recursionF*(0, x) = x, F*(Sy, X) = F(F*(y, X)). WhicheverI', suppliesF will
supply eacli-™ and be uninterpretable in any fragment of the Russellian system involv-
ing only finitely many types, whered,,1 will supply F* and be uninterpretable in the
Russellian system as a whole. It appears that one mayntakéwhich would make our
positive results below best possible, since as Kripke already noted, the only conspicu-
ous nonelementary step in the argument is the use of cut elimination, which involves a
super-exponential function but nothing worse.

3. Thus this confirms the estimate conjectured in the preceding note. Other claims an-
nounced without proof irm pertain to transfinite iteration in systems of the kind there
addressed. Predicative analysis a@ﬂprates the hierarchy of levels of second-order
entities into the transfinite, subject to a restrictiomationomy, roughly to the effect that
extension of the system of types up to an ordial permittedprovided the ordinalt is
describable in as much of the system of types as we already have. If claims such as those
in the cited abstract could be substantiated for a Russell-style as opposed to a Church-
style system and subject to a restriction of autonomy, the whole of classical arithmetic
would arguably becoméeducible in a predicativist framework, where heretofore it has
simply beerassumed.

4. This work obviously leaves open a number of questions about the exact strength of the
Russellian system and natural subsystems thereof as compared with various well-known
weak systems of arithmetic from the literature, though an unusually helpful report by an
anonymous referee has, besides providing some important references to the more recent
literature and other useful comments, sketched proofs of some interesting partial results.
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5. An earlier draft of this paper by the first author alone proved that elementary arithmetic
can be interpreted in a weak sense in the Russellian system. The second author sug-
gested that by using the methods[6], [elementary arithmetic could be interpreted in
the ordinary sense in a small fragment of the Russellian system. This suggestion was
then verified by both authors. The historical information given comes largely from the
second author, and the treatment of super-exponentiation in the closing section from the
first author.

6. Ourwork thus far and the fairly routine extension thereof that would be needed to obtain
the interpretability ofQ , makes no essential use of the notion of class, and could have
been carried outibl1(To). For whereas the contraction lemmas were stated as theorems
about classes, associating to any clsa subclas®?, they could easily be restated as
metatheorems about formulas, associating to any formalatronger formulgs.

7. The result can be extended to a system allowing bounded recursion—or essentially
equivalently, bounded induction—as does super-elementary arithReés it is usu-
ally formulated in the literature. Details are omitted here because the positive result
is so weak. Indeed, it may even be regarded as negative, since what the construction
of this section actually shows is that given the existence of a class closed under all the
fundamental operations up to th@", there follows the existence of an interpretation
in U, (Typ) in the very weak sense for a theory of the fundamental operations up to the
(m+ 1)St If the possibility of the latter is excluded (say by consistency proof considera-
tions, as in an earlier note) then the possibility of the former is excluded as well. (It thus
appears that in the most natural sense of the phrase super-exponentiatiqravably
total in the Russellian system.)

8. The idea would be to show that for every theoRgrthere is a formula, (u) such that it
is provable inU1(To) thatk, is inductive and that, (X) A k,(Y) — (X, y), wherein it
is required that the values of the terms appearingare defined fok andy satisfyingg,,
but not that the values of such terms themselves sadjsf§he proof is by induction on
the length of the proof ap. The proof of the weak contraction lemma for exponentiation
associates to any inductive formutaa stronger formulax™ = g such that powers of
members of clasB determined by3 are members of the clagsdetermined byx. In
the case wherg is obtained by substitution if, for «,, we may takec) ™', where the
number of iterations of T matches the depth of nestingiofthe terms substituted thto
yield ¢. Inthe case where is obtained by induction frorgr, we may takec, = «y A ¢.
Remarks similar to the preceding note apply.

9. Notably the following: @del’s first incompleteness theorem holds for the rudimentary
arithmeticQ or any other theory at least as strong. Indeed, the sy&eras introduced
precisely in order to prove such a result. Textbook presentations tend to leave the im-
pression tha® is a very weak system and that one would have to go to a much stronger
system to obtain a formalization of the proof of the first incompleteness theorem, which
is the crucial step in proving the second incompleteness theorem. This impression is re-
inforced by Bezboruah and Shepherdd@}y hich proves the second incompleteness
theorem forQ by a method which the cited authors emphasize is ddeBan and in-
applicable to stronger systems. But it has long been known to specialists that the for-
malization of the proof of the first incompleteness theorem can in fact be carried out in
acomparatively weak system, namely, elementary arithnigti¢tndeed, the systeili;
was introduced precisely in order to prove such a result. Moreover, it is now known
to specialists tha® is not such a very weak system after all, in that many ostensibly
stronger systems are interpretable in it, including systems involving a certain amount
of exponentiation. Though; does not seem to be among the systems for which inter-
pretability has been explicitly stated in the published literature, by essentially the same
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method as in the preceding note, the results on interpretability (in a very weak sense) in
U1 (To) indicated there can be extended to interpretabilitQin
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