375

Notre Dame Journal of Formal Logic
Volume 40, Number 3, Summer 1999

Limits for Paraconsistent Calculi

WALTER A. CARNIELLI and JOAO MARCOS

Abstract  This paper discusses how to define logics as deductive limits of se-
guences of other logics. The case of da Costa’s hierarchy of increasingly weaker
paraconsistent calculi, known €5 1 < n < w, iscarefully studied. The calcu-

lus C,, in particular, constitutes no more than a lower deductive bound to this
hierarchy and differs considerably from its companions. A long standing prob-
lem in the literature (open for more than 35 years) is to define the deductive
limit to this hierarchy, that is, its greatest lower deductive bound. The calcu-
lus Gnin, Stronger tharC,,, isfirst presented as a step toward this limit. As an
alternative to the bivaluation semantics@fi, presented thereupon, possible-
translations semantics are then introduced and suggested as the standard tech-
nigue both to give this calculus a more reasonable semantics and to derive some
interesting properties about it. Possible-translations semantics are then used to
provide both a semantics and a decision procedur€fgr, the real deductive

limit of da Costa’s hierarchy. Possible-translations semantics also make it pos-
sible to characterize a precise sense of duality: as an exaf\plgis proposed

as the dual t@in.

1 The problem While formulating the first important hierarchy of paraconsistent
calculi, known a€;,,1 < n < w, da Costa]ﬁ also introduced another calculus,,
axiomatized by exactly those schemas common t@;allOne may regard’, as a
kind of syntactic limitof the calculi in the hierarchy.

1.1 Axiomatization The kernel of each of the calcu}, includes the Intuitionistic
Positive Calculuglnt™), which may be axiomatized by the following schemas:

1) A—» (B— A,

2 (A—-B)— (A—> (B—>C)) — (A= C)),
(3) A— (B— (AAB)),

(4) (AAB)— A

(5) (AAB) — B,

(6) A— (Av B),
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(7) B— (Av B),
8) (A-C) — (B~ C),— (AvB)— Q)),

having as its only rule modus ponemd®): A, A— B/B. Adding to(Int*) theex-
cluded middleand thereduction of negationsespectively, in the following form:

(9) Av—A,
(10) ——A— A,

one shall obtairt,,. EachG, may now be constructed frofy, by the addition of two
schemas more:

(11n) B™ — ((A— B) » ((A— —=B) = —=A)),
(12n) (AW ABM™) = ((AAB)Y™ A (AVB)Y™ A (A= BY™),

We remember tha6G° abbreviates the formula(G A =G), thatG",0 < n < o, is
recursively defined by3? £ G and G™! £ (G")°, and thatG™,1 < n < w, by
GD E GLandG™D Z GM A G, One may understand the formuB{" as say-
ing that the propositio®s is well-behavedandso (11n) may be regarded as a form
of paraconsistent reductio ad absurduand (12h) as regulating thepropagation of
well-behavior

1.2 What about thesemanticstothecalculi G, 1<n<w? Arruda@ has shown

that none of these calculiis characterizable by finite matrices. Nevertheless, they may
be characterized by non-truth-functional bivaluations. For a gi¥en < o, letv,

be a function from the well-formed formulas 6f into {0,1}, such that

val[i] wvn(AAB)=1 < un(A)=1landvy(B)=1;
val[iil wvn(AvB)=1 < uw(A)=1oruv(B)=1
valiiil w(A— B)=1 < (A =00ruvy(B) =1
val[iv] vn(A)=0 = uw(-A) =1

val[vl] wvp(—A) =1 = wvp(A) =1,

val[vi]  vn(A" ) = v(—A™Y) = vy (A" =0;
val[vii] vn(A) = vn(—=A) —= unEA)=1

-

val[viii] vn(A) # va(—A) and vn(A#B) #£ v (—(A#B)), where
vn(B) # vn(—B) #e{n,v,—>L

For each;, 1 < n < w, wecall the functiorv, so defined an-valuation In daCosta
and Alves[L5] and Lopart and Alves L8 the strong soundness and completeness
of the semantics given by the set of all suekaluations is proven. These valuations
also help us to show that eachis strictly weaker than any of its predecessors, that
is, denoting byT h($) the set of theorems of a calculdswe have:

Th(G) C Th(Gy), ifl <m<n< w.

Indeed, the formulaG™ 1 A =G™ 1) or the axioms (1) and (12n), for in-
stance, hold irG, but do not hold in any’,, n > m> 1.

As the axioms of’,, come from the axioms of a give®, if we simply erase the
schemas (19) and (121), exactly the ones dealing with well-behavior, it may seem
that a non-truth-functional bivaluation f@}, would be obtained if we erased clauses
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val[vi] to val[viii] of v,. That is far from true. A complicated, but adequate bivalua-
tion semantics fot,,, or w-valuation is provided in Lopait [I7]. Let’s call asemi-
valuationfor C, a functions from the well formed formulas of,, into {0,1}, such
that
sval[i] s(AAB)=1 <<= s(A)=1ands(B)=1,

sval[iil s(AvB)=1 << s(A)=1lors(B)=1;

sval[iii] s(A)=0 = s(—A=1

sval[iv] s(—A) =1 = s(A)=1

svall[v] s(A—-B)=1 — s(A)=0o0rs(B)=1;

sval[vi] s(B)=1 =— s(A— B)=1.

An w-valuationv,, is defined to be a semi-valuation such that the following clause
also holds:

sval[vii] For all A4, ..., Ay, and allB not of the formC — D,
V(AL — (A — -+ > (Ah— B),...)) = 0= thereis a
semi-valuatiors such thas(Aj)) =1 ands(B) =0,1<i <n.

With the awkward definitions given above, while one might well regaras a syn-
tactic limit of the hierarchyG,, one should not also regard the former calculus as a
semantic limitof the latter.

Clausewal[i] toval[iii] of ann-valuation inform us that all purely positive clas-
sical schemas are valid in ea€l n < w. Such is no longer true id;,. It isnot hard
to see, for instance, that the formutav (A — B), which we shall calDummett’s
Law (DL), is notvalid in C,, though it obviously holds in eadh,, n < w.

1.3 So why should we call C, the limit of the hierarchy G, after all?  Under a

very reasonable account, we would require thatithé-calculusof that hierarchy,
which we shall callj, hereafter, has as theorems all and only those theorems which
are common to all calculiy,, 1 < n < w, that is,

(Ra:l 1) Th(Cle) = m1§n<w Th(Cn)

Clearly,C, is notClim.

But we do not wish to regard the notion of theoremhood as the cornerstone of
our definition of a limit-calculus, as we understand that the notion of derivability, re-
flected on the consequence operators of our logics, is much more fundamental. Here,
in a very general perspectivelaic Ly will be seen simply as a set (of formulds)
endowed with a consequence opera@ong: o(Ly) — p(Ly). Now, the setl of
formulas of allG, coincide. We will require thaf;,, should be such that, given any
subsef” of L we have that

(Req 2) Cong,,(I') = m15n<w Cong, (I').

It is immediate to see thdReq 1) is but a particular case §Req 2), for Th(S) =
Con (D).

2 First step toward the solution  What if we precisely adde(DL) to C, as a new
axiom schema? With this very simple change we obtain a new calculus that we shall
call Gnin. Now we may finally show thati,i, is, by its turn, closer to the semantic
limit of the hierarchyG,, 1 < n < w, once it is characterized exactly by the clauses
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val[i] to val[v] of ann-valuation—and so it is a kind ofminimalparaconsistent cal-
culus containing all purely positive classical schemas. Let's callvaloationsthe
functionsvnin subjected to these clauses and let’s define the consequence relation,
Emin, 8susual.

Theorem 2.1 LetI' U {A} be a set of formulas af,in. Then

I' Fmin A= T E=min A

Proof: One just has to check that all axioms (1) to (10) gIb& ) assume only the
value 1 in any min-valuation, and tha1P) preserves validity. This proves sound-
ness. U

For completeness we need an auxiliary lemma. Aet {G} be a set of formulas
of Gyin. Call A a G-saturatedset if A tmin G and for any formulaA of Gyin such
that A ¢ A we haveA U {A} Fnin G. First note that any consistent déetof for-
mulas ofGyin such thafl” Hmin G may be extended to @-saturated set by the usual
Lindenbaum-Asser construction. Now we can prove the following lemma.

LemmaZ2.2 LetA U{G} be a set of formulas of,j, with A a G-saturated set.
Then

* for any formula A inGnin, A Fmin A<= A€ A.

Proof: Consequence of axioms (1) and (2), wilR).

(i) AABe A<=Ac AandBe A. Fromx, axioms (3), (4), (5), and\I P).
(i) AvBe A«<AecAorBe A. Fromx, axioms (6), (7), (8), andNIP).
(i) A—> Be A=A AO0OrBe A. Fromx, (ii), axioms (1), OL), and MP).
(iv) Ad A= —AcA. Fromx, axiom (9) and M P).

(V) —mAe A= Ac A. From x, axiom (10) and M P).
U

Corollary 2.3 The characteristic function of a G-saturated set of formulaS,pf
gives amin-valuation.

Proof: Indeed, letA be aG-saturated set and define a functiosuch that, for any
formula A of Gnin, v(A) = 1if A€ A, andv(A) = 0otherwise. Then it's easy to see
that (i) to (v) satisfy, respectivelyal[i] to val[v]. O

Proof: Given a formulaA in Gyin such thatl” Hnin A, one may, by Lindenbaum-
Asser’s construction, extend to an A-saturated set. As A Fmin A, then, by
Lemma2.2d, A ¢ A. By Corollary23] the characteristic function af is such that
foranyB e A, v(B) =1, whilev(A) # 1. S0,A Fmin A, and in particulal” pemin A.
This proves completeness. O
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2.1 Comparison of C, and Gyin.  So far, we have the following situation.
Th(CGy) C Th(Gnin) € Th(Glim)-

If Gnin is not the limit-calculus o5, itis & least closer to it thag,,. SurelyGpin and

C, share some properties, such as the uncharacterizability by finite matrices.
Given anyG,, n < w, wemay define thetrong negatiomf a formulaG, denoted

by ~M G, as—G A G, It iseasy to prove that this negation has all the properties

of classical negation (cf. da Costa]) and so, for example, the formu@a ~™ G

trivializes G,. However, inC,, or Gyin N0 such negation is definable. Actually, fol-

lowing a suggestion of Alve&l], we may prove the following.

Proposition 2.5 NeitherC, nor Gy are finitely trivializable, that is, no finite set
of formulas may be added to any of these calculi so as to trivialize it.
Proof: This is an immediate consequence of the following facts. O

Fact 2.6 Inall matrices with whichGyin is provably sound, the ordering relatien
between its values defined as<ab if and only if a— b takes a distinguished value’
is a preorder.

Proof: Just verify it's reflexive and transitive. O

Fact 2.7  If Gnin Were finitely trivializable, the ordering defined in F&&Bwould
admit a least element.

Proof: Indeed, supposingin to be a formula such that, for any formu®& Gyin U
{Fin} F G, then by the Deduction Theorem one has gt - Fin — G. There is
amin-valuationv and a valuea such thatw(Fin) = a. Let p be an atomic variable
not occurring inFin, andv’ a min-valuation such that’(p) = b for some valueb
andv’(g) = v(q) for all g atomic and different fronp. Thenv'(Fin) = a. In par-
ticular, one has that, = Fin — p, sov'(Fin — p) =a— b. Buta— btakes a
distinguished value, sa < b for all b. O

Fact 2.8 There are sound matrices fak,, not having the property in Fai.7]

Proof: Define the truth-values to be all the cofinite subsets of the natural numbers,
N, andN itself to be the only distinguished value. The connectives are defined as

v(A— B) = v(ACU(B);
v(AvB) = v(A)Uv(B);
v(AAB) = v(A)Nuv(B);
v(A)CU{neN:n> max(w(A°)+2}, if v(A) CN;

—|A =
Ve N\{0}, if v(A) = N.

Now one just has to check that all axioms(@fi, assume but the distinguished value
N, for any given valuation, and tha¥(P) preserves validity. The only difficult case
is that of the axion——A — A, especially ifv(A) # N. In this casep(—A) =



380 W. A. CARNIELLI and J. MARCOS

v(A)C U{n e N:n>maxv(A°) + 2}, andv(=—A) = v(-A)‘U{neN:n>

max(v(—A)°) + 2}. But then,u(=A)¢ = v(A)N{n e N:n < maxw(A)°) +1},

and so makw(—A)€) = max(v(A®)) + 1, hencev(——A) = [v(A)N{neN:n<

max(v(A®)) + 1}JJ U {n € N : n > max(v(A°)) + 3}. Notice also thaw(A) =

v(A)U {n e N:n> max(v(A®)) + 1}. By some simple set-theoretical manipula-

tions one finally obtains(——A) = v(A) \ {max(v(A®)) + 2}. Itisnow easy to ver-

ify that in this situation——A — A is satisfied (and, by the ways — ——A is ot

satisfied—perhaps these infinitary matrices will validaiy the theorems oEyin?).

The ordering relation in the case of the matrices above turns to be the subset

relation, C, that clearly has not a minimal element in the set of values considered.

O

In [15] and [[L8], decision procedures usirguasi matricesvere provided to each

Gh, N < w. Asone might expect from the intricated semantic characterizatiat), of
given above, quasi matrices fa}, usually are very complicated (cfLT]). Once
more, this is not the case fak,,. A decision procedure for a formuf@in Gyin is
easily obtained from the method of quasi matrices for sGme < w, if one simply
erases all steps dealing with well-behavior, considering instead the following algo-
rithm:

Let A be some subformula @ or the negation of some proper subformula
of G. Then, evaluatingA in a linek of a quasi matrix foiG,

[.#] If AhasformB#C, where # is any binary connective, evaluate it classically.
[-] If Ahas the form—B, and the value oB in k is 0, write 1 underA in this
line; if the value ofB in kis 1, bifurcate this line and write 0 in the first part
and, in the second, write 1.
To show the adequacy of this procedure, we prove the following, for a given formula
G.

Proposition 2.9  Given a bivaluation foiGy,, there is a line of a quasi matrix for
G that corresponds to it.

Proposition 2.10  Given a line of a quasi matrix for G, there is a bivaluation for
Gmin corresponding to it.

A possible-worlds semantics faf, was proposed by BaaH] and it seems that
only some minor modifications might be in order to turn this semantics adequate for
Gmin- We will not investigate this problem here. It should be observed, however, that
possible-worlds semantics for ea€h n < w, have still not been produced.

2.2 How can aformula and its negation both betrue?  We believe the semantics
just given toGnin does not help much to explain its paraconsistent behavior. We in-
troduce in the following a new kind of semantics with various interesting properties:

(a) it sheds some light upon the paraconsistent behaviGqf

(b) it provides a truth-functional interpretation for the connective§qf;

(c) it gives a simple decision procedure Ggin;

(d) it makes it possible to semantically charactetigg , the real limit-calculus of
G.l<n<ow.
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3 New semantics for Gyin We first introduce some terminology from the theory

of translations between logi¢sf. Carnielli and D’'Ottaviandd]). In the end of Sec-
tion[1] wehave proposed to see a logigas a structure of the forii.s, Cony), where

Lxis a set, an€Cong aconsequence operator bp. Now, atranslation from the logic

L, into the logicL, is defined as a homomorphism between these structures, that is,
amap=*: L; — Ly, such that, give" U {A} C Lj:

A€ Cony(I') = A" € Cony(I'*).

Such a map is calledeonservative translatioii the converse also holds. Of course,
if we have, for a given calculus, L, = L, = (well formed formulas ofS), Con, de-
noting its syntactic consequence relation @um, a proposed semantic consequence
relation, wherex is the identity function, then showing thats a translation is show-
ing soundness, and showing that conservative is showing completeness.

Now consider the “weak-strong” Iogﬂd/f, given by the following three-valued
matrices:

- - A - R \
v -l ([l T F F|F
- FEEaiaE) - FERErE) - EEEEEE) - RS
¢ TR - EEESEE) - FEESEE) + FiEY

Here T and T are the distinguished values. One may interpret the vafuasTtrue
by default,” that is, by lack of evidence to the contrary. Given two propositions con-
nected by a conjunction, a disjunction, or an implication then the matrices above mean
that in these cases we can never be completely sure—the evaluatiqrvajr —
will not return the value T. We have two negationg,and—,,: we all the first one
strongand observe that it has a classical behavior, changing definitely the status of
propositions—from distinguished to nondistinguished and vice versa; the other one
we callweakand observe that there is a situation in which we can neither confirm nor
disconfirm a proposition—negating a proposition true by default, this negation will
return another proposition of the same status.

Now let’s define the selr of all functionsx from the formulas of,, into the
formulas of‘l/l/3S subjected to the following clauses:

Tr 1. for atomicp, p* = p, (—=p)* =~ p;

Tr 2. (=A)* = =sA* or (=A)* = —,, A*, for nonatomicA,;

Tr 3. (A#B)* = A*#B*, where #c {A, v, —}.

Wesay the paiPT =< ‘W33, Tr > gives apossible-translations semantittsCGyjn. If

=3 denotes the consequence relatiomiﬁ, andI’ U { A} is a set of formulas of i,
we define thd°T-consequence relatiQfi=pr, as:

def
I =pr A <:e) for all x € Tr, we havel™ =3 A*.

We will call a possible translatiorof a formula A in Gyin any image of it through
some function irfifr. We may immediately prove the following.

Theorem 3.1 (Soundness) I Fpin A== T Ep1 A.



382 W. A. CARNIELLI and J. MARCOS

Proof: Given a formulaA, itisevident that the total number of its possible transla-
tions is finite—in fact, it is 2, wheren is the number of negation symbols & So

here one just has to test all possible translations of each axiom, from (1) to (10) and
(DL), and then verify that all possible translations BfR) preserve validity. [

This result assures us that eacin Tr is indeed a translation frorGy, into WS,
in the sense precised above. We may present a stronger result relating the possible-
translations semantics to the bivaluation semantics presented in $&ction

Theorem 3.2 (Convenience) Given atranslation:in Tr and a valuations in 7>,
then the function such that, for every formula A iGnin,
V(A) =1 w(A") e (T, T},

is a min-valuation.

Proof: Immediate, just verify thatal[i] to val[v] hold. O
Note that Theorer8.1Jis also provable as a corollary of Theorél

Theorem 3.3 (Representability) Given amin-valuationvnn, there is a translation
* in Tr and a valuatiorw in ‘WSS such that, for every formula A iGyin,

w(A") e (T, T} < vmin(A) =1

Proof: Define p* as p, and define the valuatiom for atomic p as

wp)=T iff v(=p)=0;

w(p)=T- iff v(p)=21landv(—p) =1,

w(p*)=F iff v(p)=0.
Define (—p)* as—, p*, and (A#B)* as A*#B*. For nonatomicA, ddine (—A)* as
- A*if v(A) = v(—A), and define it assA* otherwise. Now one just has to check
that these definitions work. O

Corollary 3.4 (Completeness) T =p1 A== T Fnin A.

Thus “weaving” together all the translationsTin, as we would do with sheaves, we
have eventually obtained a conservative translation fehgninto the structurdT.

The new decision procedure f6ki, is immediate. Given a formul& in Gy,
we just have to make all possible translations of it and test each of them using the
matrices of#4}>. There is an obvious relation between this method and the one of
guasi matrices.

Proposition 3.5 Given a formula G ot’, and a quasi matrix for itQMg,

(i) for givenw and* in PT there is a line k ofQMg that corresponds to them;
(i) for each line k ofQM¢ there are corresponding and* in PT.

Proof of part (i): From Theorerfg.2land Propositiof2.9] O

Proof of part (ii): From Propositio.10and Theorerz.3 O
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So the apparent superiority of the new testing method over the one with quasi matrices
seems to consist in adding new columns instead of bifurcating the lines. We restore
truth-functionality if we only allow each formula @, to be interpreted as a con-
junction of all its possible translations. A nice application of the possible-translations
semantics foGy, is to help to easily show the following.

Proposition 3.6  No negated formula is a theorem 6, (and, consequently, of
Co)-

Argument 3.7 For any given negated formutaG one may find a valuatiow and
atranslation* such thatw ((—=G)*) = F.

Proof: Just pick aw such thatw(p) = T~ for any atomicp and then translate every
negated subformula A of G as—,, A* while translating—G itself as—sG*. O

Argument 3.8 There are models df,;, in which no negated formulas are valid.

Proof: Indeed, one such model is given in Fadtlabove. O

Either of the arguments above prove Proposifigll A modified version of Argu-
ment3.7lwas used in Carnielli and Marcd§Z] to prove that negated formulas are
also not theorems of arg,, unless they have well-behaved subformulas.

4 Notthelimit! It seems the particular axioms (@)land (121) of G, can play tricks
on us. Using both of them we may prove, for example, some fornBedflorgan
Lawsthat we cannot prove without them.

Proposition 4.1  The following are the only forms of De Morgan Laws provable in
eachGy,1<n < w:

(DM1)—-(AAB) - (-Av—-B); (DM3)-(—AAB)—> (Av—-B);
(DM2)—=(AA—=B) - (-Av B); (DM4)—=(—=AA—-B)— (Av B).

Note: The syntactic proofs surely require some skill from the reader.
None of them is provable i, without the axion{11n).

Proof: Just consider the following matrices:

> B B - B3I
na Al e & & |
&
e

J

[+ D .
B »~+« O+ *~ >+
+ KAEIEN) « E3EIEKND + K [ ¢ |

where& ande are distinguished. O

L
L
&

EJE AR

None of them is provable id;, without the axion{12n).

Proof: Just consider the same matrices above, changing only the conjunction for:
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[~ EAENEN
“ Al

& EXEIE
+ EAERE -

Of course, one does not really need to give independence proofs to show these formu-
las to be not valid irGyin. We havewo semantics and decision procedures already at
our disposal. The formuldM 1), for instance, may be shown to be not vaéither.

1. if we pick atomic variablep andq as A and B and choose a min-valuation
Umin, Such that

Umin(P) = Umin(@) = 1, vmin(—=P) = vmin(—Qq) = 0 andvmin(=(pA Q)) =1,

or
2. if we pick atomic variablep andg as A andB and choose a translatierand
avaluationw such that
(=P ==wp. (=D =—wq.(~(PAU)" = —w(pAQ) andw(p) = w(@)=T.
Let’s give one more full example of those semantics in action, now to prove that the
following.
Proposition 4.2 (AA—=A) - == (AA —A) is not a theorem ofy,n, though it is
indeed a theorem of an},, and consequently @ .

Proof: To see why this formula is provable in aid, just take a look at the clause
val[vii] in Sectiorfl] On the other side, let’s turn to the quasi matrix of the formula

(PA=P) = ==(PA=P) N Gyin:

P —=p pA=p —=(pA=p) —=(PA=P) (PA=P)=>—=(PA—D)

0 1 0 1 0 1 [
. |0 0 1 0 1 i
|1 O 1 1 i
| . | 0 0 iv

| 1 v

Line (iv) tells this formula not to be a tautology 6. Of course, this line cannot
appear in a quasi matrix for arts. Now let’s consider the possible translations of
this formula:

L(pA=wp) = —s7s(PA —wP);

2.(pPA=wP) = =wos(PA=wP); T T T T T @
3. (PA=wP) = =s~w(P A —wp); | T T F | T (b)
4. (PA—=wP) = “w—w(PA —wp); F - 1 -1 1

@)
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Line (b) of the 3rd translation shows this formula once more to be invali@,ip.
The canonical connection established in Proposffigibetween the two procedures
above will tell the reader, for instance, how to transform lingsand §) of the quasi
matrix above into, respectively, the paiis (b)) and(4, (b)) of PT, and, conversely,
how to transform the pair&l, (a)) and(3, (b)) of PT into the lines {{) and {v) of the
guasi matrix. O

Thence, the situation has turned out to be the following:

Th(Cy) C Th(Gnin) € Th(Glim)-

We conclude that the calculug,, too, though very interesting by itself, is not the
desired limit-calculus of,.

4.1 Anidea Let's constructfrom each, the calculugs,, just erasing axiom (1.
So even though we still have paraconsistent reductio ad absurdum, we have no prop-
agation of well-behavior. The third part of Propositiddlguarantees us that no De
Morgan Laws are valid in ang,. Given a specificB,, it's not hard to prove that
an adequate non-truth-functional semantics for it is provided if we just erase clause
val[viii] of ann-valuation.

Perhapsiyin is indeed a limit-calculus of the hierarc, 1 < n < »? To con-
vince oneself of the negative answer to this question, one should just observe that the
clauseval|vii] is still present for any calculug,, and SO(AA = A) - == (A A —A)
is still provable in anyB,. Will Gyin be characterized as the limit-calculus of some
further weakening of the calcul,? We cannot answer this question at this time.

5 So where'sthelimit? What about some history first? Possible-translations se-
mantics can be situated into the more general setticgmibinations of logic&or an
overview, see Blackburn and de Rijlg pnd for a categorial approach of possible-
translations semantics, see Carnielli and Coni@i. [One of us has initially pro-
posed possible-translations semantics as a way of combining logics with well-known
many-valued semantics so as to produce interpretations to some nonclassical logics
(cf. Carnielli [6]). A special case of possible-translations semantics is society seman-
tics (cf. Carnielli and Lima-MarqueB0]). Possible-translations semantics based on
three-valued logics and adequate for interpreting slightly stronger versions of the cal-
culi G, may be found in Carniell[f] and Carnielli and MarcoBEP], and the hierarchy

G, itself is studied in Marco41[d].

For eachGy, 1 < m < w, we may definePT,, apossible-translations seman-
tics based on three-valued matrices with three conjunctions, three disjunctions, three
implications, and two negations, together with convenient restrictions over the func-
tions inTry,. Let's denote the consequence relation definedTig, ask=m. So, for
a given formulaA we would theoretically have a maximum df 23¢9+ possible
translations, whera is the number of negations in the formufa c the number of
conjunctionsd of disjunctionsj of implications. We collect these translations into a
setPT(A). But remember that for eadhy, this set may be restricted and diminished
by the conditions over the translationsTin,. Thus, denoting byPt(A, m) the set
of all possible-translations of a formukain a calculusG,, we ectually have, for any
givenl<m<n< w,
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(1) Pt(A, m) C Pt(A,n) C PT(A).

Making use of these possible-translations semanticg;fowe may now make ex-
plicit PTin, a possible-translations semantics Gfy,. It is the pair ({Ch}1<n<w,
{*n}1<n<w), Where each functios, is an identity map from the formulas ¢f;n, into
the formulas of;,. The consequence relation®T i, is obviously defined as

def
I ELlim A<:e> for all x,, we havel™ =, A™, that s, for alln, we havel” =, A.

In such a way, one may refer to the calcullug, and to the formulas validated by it.
One can indeed provide a decision procedure for the formulékef Indeed, as a
consequence of (1), the set defined as

def

Pt(A.Lim) =" ] Pt(A,n)

1<n<w

is finite, and we know its content. So we may effectively test all the formulas in it
with the three-valued matrices above mentioned (&&ldr [L9]).

The reader should note that while the possible-translations semantics offered
for Gmin in Sectiorl3lwas obtained through the suitable combination of an infinite
number of fragments 01/1/33 (and similarly in the case af,, mentioned above), the
possible-translations semantics just proposedifgr made use of an infinite number
(of possible-translations semantics) of different logics, namely, alithfor n < w.

The whole procedure, nevertheless, is quite the same.

How could we define a non-truth-functional semantics of bivaluation§ fgy?
Should we maintain clausel[vii] and just erase clauseal[vi] andval[viii] of ann-
valuation? And how could we characterize axiomatically,? Would it be possible
to define a strong negation in this calculus, and how? These questions are still open.

5.1 Ancther limit So far we have been able to define semantiaglly, the great-
est deductive lower bound of the hierarafly 1 < n < w. Surely, now we can look
for deductive upper bounds for this same hierarehywould be such an upper bound,
as it is strictly stronger than any of the other calculi which follow it.

But let us note that both da Costa an8klawski, commonly held as the founders
of paraconsistent logic, intended their paraconsistent calculi to be so strong as to con-
tain most classical schemas and rules compatible with their paraconsistent character
(see [[4] and Jaskowski [LE]). One suchmaximalparaconsistent calculus extending
each(G, was devised by Sette (s@) and is known a#P®. It isinteresting to note
that P! is also a three-valued calculus.

Bearing in mind the objective of approximating the calculy$o the classical,
afirst obvious strengthening we might propose would be the addition to it as a new
axiom of the schema(N): A — ——A. Given a calculug;, for 1 < n < w, we cefine
G, by the axioms of, plus (AN). A possible-translations semantics for a slightly
stronger version of the hierarcliiy ™, 1 < n < w, was presented iffland the model-
theoretic properties of a first-order calculus with equality based ohwas studied
by Alves [2]. The greatest deductive lower bound for the hierar€fly, 1 < n < o,
may be obtained as above.
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Nevertheless, the calcul@® does not extend angj;"~, for (AN) isnot a theo-
rem of PL. Itispossible although to define another three-valued maximal paraconsis-
tent calculus, this time extending the strengthened new hierarchy—and consequently
also the previous hierarchy. Such a calculus was céftfeahd was first introduced by
Mortensen, in, and then rediscovered by one of us,IE, where one may also
learn which axioms may be added to afso as to obtaifP* andP2.! Mortensen has
also raised the question as to whether there could exist other maximal three-valued
paraconsistent logics “sufficiently similar” yet distinct fraft andP?. The answer
is definitely affirmative: We finish this section noting thatin Carnielli and Mat&a [
and an unpublished paper by Marcos, “8K solutions and semi-solutions to a problem
of da Costa” the reader may find the axiomatization and the truth-tables of nothing
but 2'3 such logics.

6 A dual paracomplete calculus Possible-translations semantics actually opens to
us a new possibility of defining logical systems. We may combine logics for spe-
cific needs. Do we have a group of interesting logics whose semantical properties we
wish to simultaneously preserve? Then look for a way of combining their semantics.
Do we want to build a paraconsistent calculus with a possible-worlds interpretation?
Mix possible-worlds interpretations of intuitionistic calculi, as showrlzh Po we
want a logic that is paraconsistent only at the level of propositions, but not in relation
to complex propositions? Carnielli and Lima-Marquég][have indicated how to
combine two copies of classical logic (by means of a particularization of the possible-
translations semantics—the so-calitiety semanti¢so as to obtain such a logic,
and then have shown that the logic they obtained coincided with the above-mentioned
Pl

Possible-translations semantics have also been used to investigate the problem
of duality between logical systems (for an overview of this topic, see Qudary [
In [10], the calculiP* and? (for the latter, consult Sette and Carnid¢lig]) are shown
to respect a precise definition of duality. As pointed out by Syl{zaih jone should
expect the dual of a paraconsistent calculus to be a paracomplete caltul[i] a
hierarchy of paracomplete calculi in some sense dual to a slightly stronger version of
the hierarchy, is introduced.

6.1 And the dual to Gyin? Intuitively, we would defineDyin, the dual toGnin,

as the logic characterized by the possible-translations semantics obtained when we
consider the selr of translations subjected to the very same conditibm4. to Tr

3. as in Section 3, and the following three-valued matrice¥/gf(instead ofi1}>):

> NEE > BE - aEe |- -

TIF|IFIERTIT|7T |l T|F|E F|F
i) - BN - EAEES il B s
Fle(rlIl el B8 rlr]r |

Here T is the only distinguished value. The interpretations to the values and connec-
tives above are “dual” to those given in Section 3.
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This logic has some very interesting properties.

Proposition 6.1 Dy, is not characterizable by finite matrices.

Proposition 6.2 A non-truth-functional bivaluation fof),;, is obtainable from a
min-valuation just substituting claus@l[iv]: vmin(A) = 0 = vmin(—A) = 1 for
val[ivl]: vmin(A) = 1 = vmin(—A) = 0, and substituting/al[V]: vmin(——A) =
1= vmin(A) = Lfor val[V]: vpmin(=—A) = 0= vmin(A) = 0.

Proposition 6.3 A dmple quasi matrix procedure fdby,;, is obtained if one only
substitutes the rule for negation @, for

[-] If Ais of the form—B, and the value of B in a line k i%, write O under A in
this line; if the value of B in a line k i6, bifurcate this line and writ® in the
first part and, in the second, write

Proposition 6.4 Dy, is axiomatized agyn, just substituting the schema (9):\A
—Afor (99): A - (=A — B), and substituting the schema (103%—A — A for
(109): A > ——A.

The proofs of Propositio. 1H6 4lare entirely analogous to the case(if,, above.
The semantics aDy,;, also inform the following.

Proposition 6.5 The following formulagre nottheorems ofDyin:

O Av-A (i) —=(AA-A);
@iy —-—A—> A (iv) (A— B)— ((A— —=B) » —=A).

The fact thatDni, does not prove (i) and (ii) makes it a proper candidate to answer to
Brouwer’s well-known requirements fdine Intuitionistic Logic. Some of the more
striking differences ofD,i, from Heyting’s Intuitionistic CalculusHIC) reside in

the dismissal of (iii) and (iv) byDnin. So, while HIC) rejects a part of positive
logic, while maintaining noncontradiction and reductio ad absurdid, rejects

both noncontradiction and reductio ad absurdum, while maintaining the whole of pos-
itive logic.
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NOTES

1. Actually, in , Mortensen introduce®? under the namé, ,, but for some reason he
insisted that this logic should have ordnedesignated value. Consequently, his com-
pleteness proof holds, but the soundness of his systemnadésld, for (M P) will not
preserve validity. This problem is nevertheless fixed if we pvet designated values,
instead of one. (More details may be found in Carnielli and Maf&dk §3.11 and Mar-
cos, “8K solutions and semi-solutions to a problem of da Costa,” unpublished.)

2. Justus Diller (personal communication) had already pointed out this possibility to one
of the authors.
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