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ON EXACT MULTIPLICITY

FOR A SECOND ORDER EQUATION

WITH RADIATION BOUNDARY CONDITIONS

Pablo Amster — Mariel P. Kuna

Abstract. A second order ordinary differential equation with a superlin-

ear term g(x, u) under radiation boundary conditions is studied. Using
a shooting argument, all the results obtained in the previous work [2] for

a Painlevé II equation are extended. It is proved that the uniqueness or

multiplicity of solutions depend on the interaction between the mapping
∂g
∂u

( · , 0) and the first eigenvalue of the associated linear operator. Fur-

thermore, two open problems posed in [2] regarding, on the one hand, the

existence of sign-changing solutions and, on the other hand, exact multi-
plicity are solved.

1. Introduction

In [2], the following problem arising on a two-ion electro-diffusion model (see

[3], [5]) was studied:

(1.1) u′′(x) = Ku(x)3 + L(x)u(x) +A

with

(1.2) u′(0) = a0u(0), u′(1) = a1u(1).
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Here, K and A some given positive constants and L(x) := a20 + (a21 − a20)x.

Unlike the standard Robin condition, both coefficients a0 and a1 in the radiation

boundary condition (1.2) are assumed to be positive.

It was proven that the problem has a negative solution; moreover, if a1 ≤ a0
then there are no other solutions. When a1 > a0, the solution is still unique

for A � 0 but, if A is sufficiently small, then the problem has at least three

solutions. Numerical evidence in [2] suggests that the number of solutions cannot

be arbitrarily large and it was proven that, indeed, there exists exactly one

negative solution, at most two positive solutions and that the set of solutions

is bounded. It was conjectured that the maximum number of solutions is 3

(typically, one of them negative and the other two positive) but, however, none of

the results in [2] prevents against the existence of many sign-changing solutions.

In this work, we study a generalization of the previous problem, namely the

equation

(1.3) u′′(x) = g(x, u(x)) + p(x)

where p ∈ C([0, 1]) and g : [0, 1]×R→ R is continuous, of class C1 with respect

to u and superlinear, that is:

(1.4) lim
|u|→+∞

g(x, u)

u
= +∞

uniformly in x ∈ [0, 1]. Without loss of generality, we shall assume that g(x, 0) =

0 for all x ∈ [0, 1]. As before, we look for those solutions satisfying the radiation

boundary condition (1.2) with a0, a1 > 0. In the spirit of [2], we shall assume that

g is strictly increasing in u,(1.5)

p(x) > 0 for all x.(1.6)

For general multiplicity results avoiding conditions (1.5) and (1.6) see [1]. In the

present setting, we shall demonstrate that all the results in [2] can be retrieved in

a simple manner; furthermore, we shall give an answer to two questions that were

left open. Specifically, it shall be seen that the set of solutions is bounded and

contains always a negative solution, which tends uniformly to −∞ as p → +∞
uniformly. Moreover, we shall extend the uniqueness statement in [2] by imposing

the condition that −(∂g/∂u)(x, u) is smaller than the first eigenvalue λ1 of the

associated linear operator for all u. Under a weaker condition, it shall be proved

that uniqueness holds also if p is large. As a complement of the uniqueness

results, we shall also prove that if −(∂g/∂u)(x, 0) lies above λ1 then the problem

has at least three solutions, provided that ‖p‖∞ is small. Furthermore, under an

extra condition, which is fulfilled in (1.1), the multiplicity result is sharp. This

extends the corresponding result for the particular problem (1.1) and gives an

answer to a question, sustained by numerical evidence but not proven in [2]:
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Theorem 1.1. Assume that (1.4)–(1.6) hold. Then (1.2)–(1.3) has a negative

solution. Moreover, if

(1.7)
∂g

∂u
( · , 0) � −λ1

then there exists a constant p1 > 0 such that problem (1.2)–(1.3) has at least

three solutions, one of them negative, one of them positive and another one sign-

changing, when ‖p‖∞ < p1. If furthermore

∂g

∂u
(x, u) >

g(x, u)

u

for all u 6= 0 and all x, then (1.2)–(1.3) has no other solutions, provided that p1
is small enough.

It follows that, under the previous assumptions, the number of solutions

varies from 3 to 1 as ‖p‖∞ gets large. Similarly, for each fixed p, if we take a1
as a parameter then uniqueness or multiplicity of solutions vary according to its

different values. In general terms, multiplicity arises when a1 is sufficiently large

and should not be expected if a1 is small. More precisely:

Theorem 1.2. Assume that (1.4)–(1.6) hold. Then there exist constants

a∗ > a∗ > 0 such that :

(a) If a1 > a∗ then problem (1.2)–(1.3) has at least three solutions, one of

them negative and another one sign-changing.

(b) If 0 < a1 < a∗ then problem (1.2)– (1.3) has a unique (negative) solution.

The paper is organized as follows. Section 2 is devoted to present several

general aspects of the problem and state uniqueness and related results. In

Section 3, we define a shooting-type operator that will be used to derive the

proofs of Theorems 1.1 and 1.2. Some open questions are briefly exposed in

a last section.

2. Uniqueness and related results

This section is devoted to introduce general results concerning problem (1.2)–

(1.3) that shall be used in the proofs of the main results. In the first place, we

observe that solutions are uniformly bounded:

Theorem 2.1. Assume that (1.4) holds. Then there exists a constant C such

that every solution u of (1.2)–(1.3) satisfies ‖u‖C2 ≤ C.

Proof. Let u be a solution. Multiply the equation by u and integrate to

obtain

a1u(1)2 − a0u(0)2 =

∫ 1

0

[
u′(x)2 + g(x, u(x))u(x) + p(x)u(x)

]
dx.
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Setting ϕ(t) := [(a1 − a0)t+ a0]u(t)2, it is seen that

a1u(1)2 − a0u(0)2 =

∫ 1

0

ϕ′(x) dx ≤ C

ε
‖u‖2L2 + ε‖u′‖2L2

for arbitrary ε > 0 and C depending on ε, a1 and a0. Choose for example

ε = 1/2 and set M > 2C + 1/2, then by superlinearity there exists a constant γ

(depending only on M and ‖p‖L2) such that

1

2
‖u′‖2L2 + 2C‖u‖2L2 ≥ ‖u′‖2L2 +M‖u‖2L2 − γ.

This implies ‖u‖∞ ≤ ‖u‖H1 ≤
√

2γ and the proof follows using (1.3). �

Next, we may state an uniqueness result in terms of the first eigenvalue λ1 of

the (self-adjoint) linear operator −u′′ under the boundary conditions (1.2). To

this end, let us simply recall that, by the standard Sturm–Liouville theory, λ1
can be computed as the minimum of −

∫ 1

0
u′′u dx over all the smooth functions

satisfying (1.2) such that ‖u‖L2 = 1.

Theorem 2.2. Assume there exists an interval I ⊂ R such that, for all u ∈ I,

(2.1)
∂g

∂u
(x, u) ≥ −λ1 for all x ∈ [0, 1]

and the inequality is strict for some x independent of u. Then (1.2)–(1.3) has at

most one solution u such that u(x) ∈ I for all x.

Proof. Let u1, u2 : [0, 1] → I be solutions of (1.2)–(1.3) and define w :=

u1 − u2, then w satisfies the boundary condition and

w′′(x) = g(x, u1(x))− g(x, u2(x)) =
∂g

∂u
(x, ξ(x))w(x)

for some ξ(x) between u1(x) and u2(x). Fix an open interval J 6= ∅ such that

∂g

∂u
(x, ξ(x)) > −λ1 for x ∈ J

and suppose w 6≡ 0 in J , then

0 =

∫ 1

0

(
w′′w − ∂g

∂u
(x, ξ(x))w2

)
dx <

∫ 1

0

(w′′w + λ1w
2) dx ≤ 0,

because λ1 is the first eigenvalue. This contradiction proves that w ≡ 0 over J

and consequently w = 0. �

Remark 2.3. As shown in [1], λ1 is a strictly decreasing continuous function

of a1 and, moreover, λ1 ≥ 0 if and only if a1 ≤ a0/(a0 + 1). In particular,

when (1.5) holds, the latter inequality is a sufficient condition for uniqueness.

However, as proven in [2], the (sharp) condition for uniqueness in the particular

case (1.1) is weaker, namely: a1 ≤ a0. This is due to fact that, in this specific

case, it is verified that λ1 ≥ −a21 and hence

−λ1 ≤ a21 ≤ L(x) + 3Ku2 =
∂g

∂u
(x, u).
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The next result shows that the failure of (2.1) does not necessarily imply

multiplicity: this fact was already observed in [2] where, as mentioned, it was

proven the solution of (1.1)–(1.2) is unique also when A is large. The latter

property can be easily deduced from the general case with p ≡ A as a consequence

of the next two results. The first of them establishes that, for p large, solutions

are negative; the second one proves that, under suitable assumptions, there

cannot be two solutions with the same sign.

Theorem 2.4. Let (1.4) hold. Then there exists p0 such that, if p(x) ≥ p0
for all x ∈ [0, 1], then all the solutions of (1.2)–(1.3) are negative.

Proof. Due to the superlinearity of g, for each M ≥ 0 we may define the

quantity

NM := inf
x∈[0,1],u≥0

{g(x, u)−Mu} > −∞.

Then

(2.2) g(x, u) ≥Mu+NM

for all u ≥ 0. Let M > 0 to be determined, fix p0 > −NM and let u be

a solution of (1.2)–(1.3) such that u(x) ≥ 0 for some x ∈ [0, 1]. In view of (2.2),

the inequality u′′(x) ≥ g(x, u(x)) + p0 implies that

(2.3) u′′(x) > Mu(x)

whenever u(x) ≥ 0. We deduce that, if x0 ∈ [0, 1] is such that u(x0) and u′(x0)

are nonnegative, then u(x) and u′(x) are strictly positive for x > x0. Multiply

(2.3) by u′ and integrate to obtain, for x > x0:

(2.4) u′(x)2 > u′(x0)2 +M(u(x)2 − u(x0)2).

If u(0) > 0, then u′(0) > 0 and

u(1)2 − u(0)2 =

∫ 1

0

2u(x)u′(x) dx > 2a0u(0)2.

Thus,

(2.5) u(1)2 − u(0)2 >
2a0

1 + 2a0
u(1)2

and fixing M = a21(1 + 2a0)/(2a0) we obtain, from (2.4) and (2.5):

a21u(1)2 > M
2a0

1 + 2a0
u(1)2 = a21u(1)2.

This contradiction proves that there are no positive solutions when p0 > −NM .

On the other hand, if u(0) ≤ 0 then u vanishes at a (unique) value x0, with

u′(x0) ≥ 0. Fix M = a21, then (2.4) yields

a21u(1)2 = u′(1)2 > u′(x0)2 + a21u(1)2 ≥ a21u(1)2,

a contradiction. �
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Theorem 2.5. Assume there exists an interval I ⊂ R 6=0 such that

(2.6)
∂g

∂u
(x, u) >

g(x, u) + p(x)

u

holds for all x ∈ [0, 1] and u ∈ I. Then there exists at most one solution u of

(1.2)–(1.3) such that u(x) ∈ I for all x.

Proof. Let u1, u2 : [0, 1]→ I be two different solutions, then u1(0) 6= u2(0).

Suppose for example that u1 < u2 < 0 over [0, x0), then

u′′1(x) =
g(x, u1(x)) + p(x)

u1(x)
u1(x) <

g(x, u2(x)) + p(x)

u2(x)
u1(x)

and hence

u′′1(x)u2(x) > u1(x)u′′2(x) for x < x0.

We conclude that

(2.7) u′1(x0)u2(x0) > u1(x0)u′2(x0),

and a contradiction yields if x0 = 1. Thus, we may assume that u1 and u2 meet

for the first time at x0 < 1, then u1(x0) = u2(x0) and u′1(x0) ≥ u′2(x0). Again,

this contradicts (2.7). The proof is analogous if we assume u2 > u1 > 0 over

some interval [0, x0), obtaining in this case

u′′1(x)u2(x) < u1(x)u′′2(x) for x < x0. �

Remark 2.6. Condition (2.6) implies that the function (g(x, u) + p(x))/u

increases in u when I ⊂ R+ and decreases when I ⊂ R−. Moreover, if 0 ∈ ∂I
then sp ≤ 0, where s denotes the sign of the elements of I. In particular, if

the condition holds for all u 6= 0, then p = 0. This case is well known in

the literature (see e.g. [4]) and implies that if u0 6= 0 is a critical point of the

associated functional J , then u0 is transversal to the Nehari manifold, which

was introduced after the pioneering work [6], namely:

N :=
{
u ∈ H1(0, 1) \ {0} : DJ (u)(u) = 0

}
.

Indeed, setting I(u) := DJ (u)(u) it is readily seen that Tu0N = ker(DI(u0))

and DI(u0)(u0) > 0. For the particular case of problem (1.1), condition (2.6)

simply reads A/u3 < 2K, so the previous result applies with I = (−∞, 0) and

I =
(

3
√
A/(2K),+∞

)
.

The next theorem generalizes another result from [2], concerning the be-

haviour of the solutions as p increases. We know that all solutions are negative

if p ≥ p0 � 0 and it is readily verified (e.g. by the method of upper and lower

solutions) that a solution always exists; however, if the assumptions of Theo-

rem 2.2 or Theorem 2.5 are not satisfied, then there might be more than one

negative solution. As we shall see, all possible solutions tend uniformly to −∞
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as p tends uniformly to +∞. In order to emphasize the dependence on p, any

solution shall be denoted up, despite the fact that it might not be unique.

Theorem 2.7. Assume that (1.4) holds and let up be a solution of (1.2)–(1.3).

Then up → −∞ uniformly when p→ +∞ uniformly.

Proof. Let p ≥ p0 for some large constant p0. From Theorem 2.4, we may

assume up < 0. Fix xp such that max
x∈[0,1]

up(x) = up(xp), then xp < 1. Suppose

up(xp) > −M and fix p0 large enough, such that,

(2.8) g(x, u) + p0 > Ma0, for all u ≥ −(1 + a0)M.

It follows that xp = 0. Consider the maximum value δ ≤ 1 such that u′′p(x) ≥ 0

for all x ∈ [0, δ], then u′p(x) ≥ u′p(0) = a0up(0) > −Ma0, for x ≤ δ. Hence,

up(δ) > up(0)− δMa0 ≥ −M(1 + a0) and by (2.8) we conclude that u′′p(δ) > 0.

Thus, δ = 1 and, in particular, up(x) > −M(1+a0). Using (2.8) again, it follows

that u′′p(x) > Ma0 for all x. Then u′p(1) > u′p(0) +Ma0 > 0, a contradiction. �

Combining the previous result with Theorems 2.2 and 2.5 we deduce that, in

fact, the solution is typically unique when p is large. Indeed, due to superlinearity

we observe that, on the one hand, ∂g
∂u (x, u) cannot remain bounded from above

as u→ −∞ and, on the other hand, the function g(x, u)/u cannot be increasing

in u over any interval (−∞, C). In other words, it is reasonable to expect that

either condition (2.1) holds or

∂g

∂u
(x, u)− g(x, u)

u
≥ k

u

when u � 0. Any of these conditions, which are fulfilled in the particular case

(1.1), ensures the applicability of Theorems 2.2 or 2.5 when p is large. Thus, the

following corollary is obtained:

Corollary 2.8. Assume that (1.4) holds. Moreover, assume there exists

C ≤ 0 such that one of the following conditions holds:

(a) Condition (2.1) holds for all u ≤ C,

(b) sup
x∈[0,1], u≤C

u
∂g

∂u
(x, u)− g(x, u) < +∞.

Then there exists p0 such that problem (1.2)–(1.3) has a unique solution, which

is negative, for all p ≥ p0.

Proof. From Theorem 2.7, there exists p̃ such that if u is a solution for

p ≥ p̃ then u(x) ≤ C for all x. If the first condition holds, then the proof follows

directly from Theorem 2.2. Otherwise, there exists a constant M such that

∂g

∂u
(x, u)− g(x, u)

u
>
M

u
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for all u ≤ C and, by Theorem 2.5, the result follows by taking p0 as the

maximum value between p̃ and M . �

3. A shooting operator for problem (1.2)–(1.3)

This section is devoted to proof Theorems 1.1 and 1.2 by means of a shooting-

type operator. To this end, let us firstly state the following lemma, which ensures

that, if (1.5) holds, then the graphs of two different solutions of (1.3) with initial

condition u′(0) = a0u(0) do not intersect. More generally, observe that such

solutions might blow up before the value t = 1; thus, the following lemma is

established for an arbitrary value b ≤ 1:

Lemma 3.1. Let u1 and u2 be solutions of (1.3) defined over an interval [0, b]

such that u1(0) > u2(0) and u′1(0) > u′2(0) and assume that (1.5) holds. Then

u1 > u2 and u′1 > u′2 on [0, b].

Proof. Set u(x) = u1(x)− u2(x), then

u′′(x) = θ(x)u(x) on [0, b), where θ(x) :=
∂g

∂u
(x, ξ(x)) > 0.

Thus, the result follows since u(0), u′(0) > 0. �

Next, we define our shooting operator as follows. For each fixed λ ∈ R, let

uλ be the unique solution of problem

(3.1)

u′′(x) = g(x, u(x)) + p(x),

u(0) = λ, u′(0) = a0λ

and define the function T : D → R, by

T (λ) =
u′λ(1)

uλ(1)
,

where D ⊂ R is the set of values of λ such that the corresponding solution uλ
of (3.1) is defined on [0, 1], with uλ(1) 6= 0. Thus, solutions of(1.2)–(1.3) that

do not vanish on x = 1 can be characterized as functions uλ, where λ ∈ D is

such that T (λ) = a1. By continuity arguments, it is easy to verify that, for each

s ∈ R, there exists λ such that uλ(1) = s. By Lemma 3.1, this value of λ is

unique; in particular, there exists a unique λ0 such that uλ0
(1) = 0. Thus, we

conclude that

D = (λ∗, λ0) ∪ (λ0, λ
∗) for some λ∗ ≥ −∞ and λ∗ ≤ +∞.

From (1.6), it follows that λ0 < 0 and, furthermore: if λ > 0 then uλ is positive

and if λ0 ≤ λ ≤ 0 then uλ vanishes exactly once in [0, 1]. In particular, uλ0 < 0

in [0, 1) and, since u′′λ0
(x) > 0 when x is close to 1, we conclude that u′λ0

(1) > 0.

Hence,

lim
λ→λ−

0

T (λ) = −∞, lim
λ→λ+

0

T (λ) = +∞.
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We claim that also

lim
λ→(λ∗)−

T (λ) = +∞, lim
λ→(λ∗)+

T (λ) = +∞.

Indeed, observe firstly that, because solutions of (3.1) do not cross each other,

lim
λ→(λ∗)−

uλ(1) = +∞. On the other hand, multiplying (1.3) by u′ it is easy to

see, given M > 0 that

|u′λ(1)| ≥
√
MO(|uλ(1)|)

for |λ| sufficiently large. This implies that

|T (λ)| =
∣∣∣∣u′λ(1)

uλ(1)

∣∣∣∣ > √M
and the claim follows.

The previous considerations show the existence of λmin ∈ (λ0, λ
∗) such that

T (λmin) ≤ T (λ) for all λ ∈ (λ0, λ
∗). The value amin := T (λmin) > 0 depends

on p and, in this context, Theorem 2.4 simply states that if p ≥ p0 for some

large enough constant p0 then amin > a1. Also, we easily deduce some of the

conclusions of Theorems 1.1 and 1.2, as shown in the following figure.

By continuity, there exists λ < λ0 such that T (λ) = a1; the corresponding uλ
is a negative solution. Uniqueness of negative solutions does not follow directly

from this setting, unless an extra assumption like (2.6) is assumed for u < 0

(see Proposition 3.5 below). However, recall (see Remark 2.3) that if a1 <

a0/(a0 + 1), then λ1 > 0 so (2.1) is satisfied; thus uniqueness holds if a1 is small.

Proof of Theorem 1.2. From the previous considerations, the problem

has a negative solution, which is unique if a1 is sufficiently small. Moreover, the

equation T (λ) = a1 has, over the interval (λ0, λ
∗), no solutions when a1 < amin
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and at least two solutions when a1 > amin. Finally, observe that, as the value of

a1 increases, at least one of these solutions is located in (λ0, 0).

Remark 3.2. If λ∗ > 0 or, equivalently, if u0 is defined on [0, 1], then we

deduce that the problem has also a positive solution when a1 � 0.

Under appropriate conditions, a lower bound for amin is easily obtained as

follows:

Proposition 3.3. Assume that (1.5) and (1.6) hold. If there exists r ≤ a0
such that g(x, u) + p(x) > r2u for all u ≥ 0 and all x, then amin > r.

Proof. Fix λ ∈ (λ0, λ
∗) and let v(x) := erx. Define x0 as the minimum

value such that uλ is positive after x0 and observe that

v(x)u′′λ(x) > v(x)r2uλ(x) = v′′(x)uλ(x)

for x > x0. Thus,

v(1)[u′λ(1)− ruλ(1)] > v(x0)[u′λ(x0)− ruλ(x0)] ≥ 0

and we conclude that T (λ) = u′λ(1)/uλ(1) > r. �

Remark 3.4. For problem (1.1), the previous proposition implies that amin >

min{a0, a1}, which provides an alternative proof of the fact that the problem has

no positive nor sign-changing solutions when a1 ≤ a0.

In order to complete the proof of Theorem 1.1, let us make a more careful

description of the graph of T . With this aim, compute

T ′(λ) =
∂

∂λ

(
u′λ(1)

uλ(1)

)
=
uλ(1)

∂u′λ
∂λ

(1)− u′λ(1)
∂uλ
∂λ

(1)

uλ(1)2

and set wλ := ∂uλ/∂λ, then

T ′(λ) =
uλ(1)w′λ(1)− u′λ(1)wλ(1)

uλ(1)2
.

Moreover, observe that wλ solves the linear problem

(3.2)

w′′λ(x) =
∂g

∂u
(x, uλ(x))wλ(x),

wλ(0) = 1, w′λ(0) = a0,

and hence

(3.3) uλ(1)w′λ(1)− u′λ(1)wλ(1) =

∫ 1

0

(
uλ(x)w′′λ(x)− u′′λ(x)wλ(x)

)
dx

=

∫ 1

0

(
uλ(x)

∂g

∂u
(x, uλ(x))− g(x, uλ(x))− p(x)

)
wλ(x) dx.

Taking into account that wλ(x) > 0 for all x and that uλ is negative for λ < λ0
and positive for λ > 0, the following proposition is obtained:
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Proposition 3.5. Assume that (1.4)–(1.6) hold. Then:

(a) T is strictly decreasing for λ < λ0, provided that (2.6) holds for u < 0.

(b) T is strictly increasing for λ>C, provided that (2.6) holds for u>C≥0.

Remark 3.6. In particular, the previous proposition shows that, when (1.5)

and (1.6) are assumed, the conclusions of Theorem 2.5 are retrieved in a simple

manner.

Assume firstly that p = 0. Although (1.6) obviously fails, the operator T is

well defined, with λ0 = 0. Moreover, using the L’Hôpital rule we deduce that

lim
λ→0

T (λ) = lim
λ→0

u′λ(1)

uλ(1)
= lim
λ→0

w′λ(1)

wλ(1)
=

Φ′(1)

Φ(1)
,

where Φ := w0, that is, the unique solution of the linear initial value problem

(3.4) Φ′′(x) =
∂g

∂u
(x, 0)Φ(x), Φ′(0) = a0Φ(0) = a0.

Thus, T can be extended continuously to a positive function defined over (λ∗, λ
∗),

which tends to +∞ as λ→ (λ∗)
+ or λ→ (λ∗)−. Furthermore, if (2.6) holds for

u 6= 0 then it decreases strictly on (λ∗, 0) and increases strictly on (0, λ∗).

We are now in condition of completing the proof of Theorem 1.1. To this

end, we shall need the following lemma:

Lemma 3.7. Assume that (1.5) and (1.7) holds. Then Φ′(1) < a1Φ(1).

Proof. Let ϕ1 be the (unique) eigenfunction corresponding to λ1 such that

ϕ1(0) = 1, then it is readily verified that ϕ1(x) > 0 for all x. Moreover, it is

seen from (3.4) that also Φ(x) > 0 for all x. Then

ϕ1(x)Φ′′(x) =
∂g

∂u
(x, 0)Φ(x)ϕ1(x) ≤ −λ1Φ(x)ϕ1(x) = Φ(x)ϕ′′1(x)

and the inequality is strict for some x. Integration yields

ϕ(1)Φ′(1) < Φ(1)ϕ′(1) = a1Φ(1)ϕ(1)

and the proof follows. �

Proof of Theorem 1.1. In view of the previous lemma, the proof is an

immediate corollary of the following proposition, slightly more general:

Proposition 3.8. Assume that (1.4)–(1.6) hold and that Φ′(1) < a1Φ(1).

Then there exists a constant p1 > 0 such that problem (1.3)–(1.2) has at least

three solutions when ‖p‖∞ < p1. Moreover, one of the solutions is negative, one

of them positive and another one sign-changing. If furthermore (2.6) holds with

p = 0 for all u 6= 0, then there exists p1 such that the problem has exactly three

solutions, provided that ‖p‖∞ < p1. Moreover, exactly one of the solutions is

negative and another one changes sign.
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Proof. From the previous considerations we know that, if p is small, then

λ∗ > 0 and T (0) < a1; thus, the existence of at least three solutions follows.

Clearly, one of the solutions is negative, another one is positive and another one

changes sign.

From now on, assume that (2.6) with p = 0 holds for all u 6= 0. Consider,

for arbitrary p, the mapping

Rp(λ) := u′λ(1)− a1uλ(1).

Let us firstly take p = 0. From the previous computations, we know that

sgn(T ′(λ)) = sgn(uλ) = sgn(λ) for λ 6= 0 and T (0) =
Φ′(1)

Φ(1)
< a1,

whence R0 has exactly three roots {0, λ±} with λ− < 0 < λ+. Moreover, write

as before

T ′(λ) =
uλ(1)w′λ(1)− u′λ(1)wλ(1)

uλ(1)2
=
wλ(1)

uλ(1)

(
w′λ(1)

wλ(1)
− T (λ)

)
to deduce that

w′λ±
(1)

wλ±(1)
> T (λ±) = a1.

Next, observe that

R′0(λ) = w′λ(1)− a1wλ(1) = wλ(1)

(
w′λ(1)

wλ(1)
− a1

)
,

so R′0(λ±) > 0. On the other hand, R′0(0) = Φ′(1) − a1Φ(1) < 0 and, by

continuity, we conclude that if p is close to 0 then Rp has exactly three roots.

Furthermore, T (0) is close to Φ′(1)/Φ(1) < a1, so the equation T (λ) = a1 has at

least one solution in (λ0, 0). Finally, observe that if p is small then u0 is defined

in [0, 1]; thus, λ∗ > 0 and letting p be smaller if necessary we conclude that the

equation T (λ) = a1 has also a solution in (0, λ∗). �

Remark 3.9. In particular, all the assumptions of the previous proposition

are fulfilled for problem (1.1) if (and only if) a1 > a0. Indeed, in this case it is

readily seen that λ1 < −a21 and hence

∂g

∂u
(x, 0) = L(x) ≤ a21 < −λ1.

4. Open questions

(1) Numerical experiments for the particular case (1.1) suggest that T ′′ > 0

for λ > λ0. If this is true, then an exact multiplicity result yields for arbitrary

p, depending on whether amin is smaller, equal or larger than a1. It would be
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interesting to investigate if this fact could be verified for the general case, under

appropriate conditions, using the differential equation for

zλ :=
∂wλ
∂λ

=
∂2uλ
∂λ2

,

namely

z′′λ(x) =
∂g

∂u
(x, uλ(x))zλ(x) +

∂2g

∂u2
(x, uλ(x))wλ(x)2,

zλ(0) = z′λ(0) = 0.

(2) Is it possible to obtain an exact multiplicity result also for a1 large?

Observe that, in such a case, the behaviour of T can be controlled near λ0, but

it is not easy to see what happens as λ gets closer to λ∗ or λ∗. In more precise

terms, we may set ε := 1/a1 and

Rε(λ) := εu′λ(1)− uλ(1).

Then R0(λ) = −uλ(1) decreases from +∞ to −∞ over (λ∗, λ
∗). Furthermore,

R′0(λ) = −wλ(1) < 0 for all λ; thus, if ε is small, then Rε has, near λ0, a unique

root. However, for ε 6= 0 the graph of Rε bends in such a way that it tends to

±∞ as λ gets closer to λ∗ and λ∗, respectively. This ensures the existence of at

least three solutions for ε small, although there might be more. Clearly, there

exists λ1 such that Rε increases with ε for λ > λ1 and decreases when λ < λ1;

moreover, if K ⊂ (λ∗, λ
∗) is a compact neighbourhood of λ0, then Rε vanishes

exactly once in K when ε = ε(K) is small. This is due to the fact that Rε
tends to R0 over K for the C1 norm. However, it is not clear which condition

would be appropriate in order to prevent against a possible ‘strange’ behaviour

of Rε outside compact sets. For example, taking into account the superlinearity,

we might impose the assumption that (∂g/∂u)(x, u) tends uniformly to +∞ as

|u| → +∞. This would ensure that Rε has positive derivative near the endpoints

of its domain but, still, it might change sign many times.

(3) How does the graph of T vary with respect to p? Suppose for simplicity

that p is constant and let yp := ∂uλ/∂p. Then

y′′p =
∂g

∂u
(x, uλ(x))yp + 1, yp(0) = y′p(0) = 0

and the sign of ∂T/∂p coincides with the sign of the integral∫ 1

0

(
uλ(x)

∂g

∂u
(x, uλ(x))− g(x, uλ(x))− p

)
yp(x) + uλ(x) dx.

If (2.6) holds for u < 0, then ∂T/∂p < 0 for λ < λ0. In particular, the (unique)

value λ < λ0 for which T (λ) = a1 moves to the left as p increases. This is

consistent with the fact that the negative solution tends uniformly to −∞ as

p→ +∞. It seems difficult to obtain similar conclusions for λ ∈ (λ0, 0) since uλ
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changes sign but, in general, if (2.6) is satisfied for u > C ≥ 0, then ∂T/∂p > 0

for λ ≥ C. For example, this is the case in problem (1.1), with C = 3
√
A/(2K).
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Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
and

IMAS – CONICET

Ciudad Universitaria
Pabellón I

(1428) Buenos Aires, ARGENTINA

E-mail address: pamster@dm.uba.ar

mpkuna@dm.uba.ar

TMNA : Volume 54 – 2019 – No 1


