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ON FINDING THE GROUND STATE SOLUTION

TO THE LINEARLY COUPLED BREZIS–NIRENBERG

SYSTEM IN HIGH DIMENSIONS:

THE COOPERATIVE CASE

Yuanze Wu

Abstract. Consider the following elliptic system−∆ui + µiui = |ui|2
∗−2ui + λ

k∑
j=1, j 6=i

uj in Ω,

ui = 0, i = 1, . . . , k, on ∂Ω,

where k ≥ 2, Ω ⊂ RN (N ≥ 4) is a bounded domain with smooth boundary

∂Ω, 2∗ = 2N/(N − 2) is the Sobolev critical exponent, µi ∈ R for all
i = 1, . . . , k are constants and λ ∈ R is a parameter. By the variational

method, we mainly prove that the above system has a ground state for all

λ > 0. Our results reveal some new properties of the above system that
imply that the parameter λ plays the same role as in the following well-

known Brezis–Nirenberg equation{
−∆u = λu+ |u|2∗−2u in Ω,

u = 0 on ∂Ω,

and this system has a very similar structure of solutions as the above Brezis–

Nirenberg equation for λ.
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1. Introduction

In this paper, we mainly consider the following elliptic system

(1.1)

−∆ui + µiui = |ui|2
∗−2ui + λ

k∑
j=1, j 6=i

uj in Ω,

ui = 0, i = 1, . . . , k on ∂Ω,

where k ≥ 2, Ω ⊂ RN (N ≥ 4) is a bounded domain with smooth boundary ∂Ω,

2∗ = 2N/(N − 2) is the Sobolev critical exponent, µi ∈ R for all i = 1, . . . , k are

constants and λ ∈ R is a parameter.

Over the last 25 years, owing to important applications in biology and physics

in low dimensions (1 ≤ N ≤ 3), there has been significant interest in studying

the existence, multiplicity, and qualitative properties of solutions to the following

elliptic system

(1.2)

−∆ui + µiui = |ui|p−2ui + λFui(u) in Ω,

ui ∈ H1
0 (Ω), i = 1, . . . , k,

where u = (u1, . . . , uk), k ≥ 2, Ω ⊂ RN (N ≥ 1) is a domain (bounded or

unbounded), 2 < p < 2∗ for N = 1, 2 and 2 < p ≤ 2∗ for N ≥ 3 with 2∗ = +∞
for N = 1, 2 and 2∗ = 2N/(N − 2) for N ≥ 3 being the Sobolev critical exponent,

µi ∈ R for all i = 1, . . . , k are constants, and λ ∈ R is a parameter. For example,

let k = 2, p = 4, and F (u) = u2
1u

2
2/2, then the system (1.2) has the following

nonlinearly coupled form

(1.3)


−∆u1 + µ1u1 = u3

1 + λu2
2u1 in Ω,

−∆u2 + µ2u2 = u3
2 + λu2

1u2 in Ω,

ui ∈ H1
0 (Ω), i = 1, 2,

which are also known in the literature as the Gross–Pitaevskĭı equations (see

e.g. [17]). Such a system can be used to describe the Bose–Einstein condensation

in two different hyperfine spin states in the Hartree–Fock theory (cf. [8]), which

also arises in nonlinear optics to describe the behavior of the beam in Kerr-

like photorefractive media (cf. [1]). From the viewpoint of mathematics, an

important characteristic of the system (1.3) is that it is weakly coupled, that is,

system (1.3) has semi-trivial solutions (the definitions are given in Definition 1.1

below). Indeed, let uµi be the solution to the following equation−∆u+ µiu = u3 in Ω,

u ∈ H1
0 (Ω).

Then it is easy to see that (uµ1 , 0) and (0, uµ2) are solutions of system (1.3). On

the other hand, if we set k = 2, Ω = RN and F (u) = u1u2, then system (1.2)
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has the following linearly coupled form

(1.4)


−∆u1 + µ1u1 = |u1|p−2u1 + λu2 in RN ,
−∆u2 + µ2u2 = |u2|p−2u2 + λu1 in RN ,
ui ∈ H1(RN ), i = 1, 2,

which is also used to describe some phenomena in nonlinear optics in low dimen-

sions (1 ≤ N ≤ 3) (cf. [1]). From the viewpoint of mathematics, an important

characteristic of system (1.4) is that it is strongly coupled, that is, system (1.4)

does not have semi-trivial solutions. Since it seems almost impossible for us

to give a complete list of references, we simply refer the reader to [6], [9], [14],

[23], [24], [32] and references therein for system (1.3) and [2], [3], [12], [20] and

references therein for system (1.4).

Recently, system (1.2) with Sobolev critical exponent has begun to attract

attention, see, for example, [10]–[12], [25], [31] and references therein. It should

be pointed out that, compared with the subcritical case, the existence of a non-

trivial solution is always very fragile for the Sobolev critical equation or system.

For example, Chen and Zou considered the following critical system in [10],

(1.5)


−∆u1 + µ1u1 = |u1|p1−2u1 + λu2 in RN ,
−∆u2 + µ2u2 = |u2|p2−2u2 + λu1 in RN ,
ui ∈ H1(RN ), i = 1, 2,

where N ≥ 3, 2 < p1, p2 ≤ 2∗ with 2∗ = 2N/(N − 2) being the Sobolev critical

exponent, µ1, µ2 > 0, and 0 < λ <
√
µ1µ2. By using the variational method, it

has been proved in [10] that system (1.5) has only zero solution with µ1, µ2 > 0

and 0 < λ <
√
µ1µ2 for p1 = p2 = 2∗ whereas for p1 < p2 = 2∗, there exists

a number λµ1,µ2
∈ (0,

√
µ1µ2] such that the existence of positive ground state

solutions is strongly dependent on the relation between λ and λµ1,µ2
. Moreover,

as pointed out by Chen and Zou in [10, Remark 1.1], λµ1,µ2
can be seen as

a critical value for the existence of positive ground state solutions and it remains

open whether system (1.5) has a ground state solution for λ = λµ1,µ2
. In the

very recent work [25], Peng et al. studied the following critical system

(1.6)


−∆u1 + µ1u1 = |u1|2

∗−2u1 + λu2 in Ω,

−∆u2 + µ2u2 = |u2|2
∗−2u2 + λu1 in Ω,

u1 = u2 = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain. By using the variational method,

it has been proved in [25] that system (1.6) has a positive ground state solution

with −α1 < min{µ1, µ2} < 0 and 0 < λ <
√

(α1 + µ1)(α1 + µ2), whereas

system (1.6) has only zero solution with µ1, µ2 > 0 and 0 < λ <
√
µ1µ2 if Ω

is star-shaped. Moreover, some new results about the multiplicity of nontrivial
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solutions to system (1.6) for λ > 0 small enough were also established in [25].

Here α1 > 0 is the first eigenvalue of −∆ in H1
0 (Ω).

We also note that the general k-component case of system (1.2) with

F (u) =
2

p

k∑
i,j=1, j 6=i

|uj |p/2|ui|p/2

have already been studied by the variational method and many results involv-

ing the critical case for k = 2 have been extended to the general case k ≥ 2,

see, for example, [21], [22], [29], [31] and references therein. We remark that the

k-component case of system (1.2) also has a physical background and a condensa-

tion has been experimentally observed in the triplet states (cf. [26]). Moreover,

from the viewpoint of mathematics, it has been observed that the general k-

component case of such system with the critical Sobolev exponent may have some

new phenomena and properties (cf. [31]) that are somewhat different from the

2-component case (cf. [11], [13]). Thus, inspired by the above facts, it is natural

to ask what will happen for the k-component critical system (1.1)? In particular,

will recent results in [25] for k = 2 still hold for the general case k ≥ 2? Is the

general k-component case of (1.1) different from the 2-component case? To the

best of the author’s knowledge, these questions have not yet been studied in the

literature, thus the main purpose of the current paper is to provide an answer

to these questions.

Clearly, system (1.1) has a variational structure. Indeed, for every i =

1, . . . , k, let Hi be the Hilbert space of H1
0 (Ω) equipped with the inner product

〈u, v〉i =

∫
Ω

∇u∇v + µiuv dx.

Then if µi > −α1 for all i = 1, . . . , k, Hi are also the Hilbert spaces and the

corresponding norms are given by ‖u‖i = 〈u, u〉1/2i , respectively. Set H =
k∏
i=1

Hi.

Then H is a Hilbert space with the inner product

〈u,v〉 =

k∑
i=1

〈ui, vi〉i.

The corresponding norm is given by ‖u‖ = 〈u,u〉1/2. Here, ui, vi are the ith

component of u, v, respectively. Define

(1.7) Eλ(u) =

k∑
i=1

(
1

2
‖ui‖2i −

1

2∗

∫
Ω

|ui|2
∗
dx

)
− λ

k∑
i,j=1, i<j

∫
Ω

uiuj dx.

Then it is easy to see that Eλ(u) is of C2 in H and Eλ(u) is the corresponding

functional of the system (1.1).

Definition 1.1. We call u a nonzero solution to (1.1) if u is a solution

to (1.1) with u 6= 0. We call u a nontrivial solution to (1.1) if u is a solution
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to (1.1) with ui 6= 0 for all i = 1, . . . , k. We call u a semi-trivial solution to (1.1)

if u is a nonzero solution to (1.1) that is not a nontrivial solution.

Definition 1.2. We call u a nonnegative solution to (1.1) if u is a nonzero

solution with ui ≥ 0 for all i = 1, . . . , k. We call u a positive solution to (1.1) if u

is a nonnegative solution with ui > 0 for all i = 1, . . . , k. We call u a nonpositive

solution to (1.1) if −u is a nonnegative solution. We call u a negative solution

to (1.1) if −u is a positive solution. Here, −u = (−u1, . . . ,−uk). We call

u a sign-constant solution to (1.1) if either u is a nonnegative solution or u

is a nonpositive solution. We call u a sign-changing solution to (1.1) if u is

a nonzero solution that is not a sign-constant solution.

Definition 1.3. We call u ∈ H a ground state solution to (1.1) if u is

a nonzero solution and Eλ(u) ≤ Eλ(v) for all nonzero solutions v.

Let us briefly sketch our main idea in studying (1.1). Let

F = diag
(
(−∆ + µ1)−1, . . . , (−∆ + µk)−1)

and

I =


0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

 .

Then system (1.1) is equivalent to the following operator equation in H

(1.8) u = λT u + T ∗u,

where T = F ◦ I and T ∗ = F ◦ Z with Z(u) =
(
|u1|2

∗−2u1, . . . , |uk|2
∗−2uk

)
.

By (1.8), it seems that, from the viewpoint of operators, system (1.1) has

a very similar structure to the following well-known Brezis–Nirenberg equation

(1.9)

∆u = λu+ |u|2∗−2u in Ω,

u = 0 on ∂Ω.

Note that the existence of solutions to the above well-known Brezis–Nirenberg

equation is heavily dependent on the relations between λ and αm (cf. [4], [28]

and references therein). Thus, to study system (1.1) for λ > 0, it seems neces-

sary to provide a clear understanding of the eigenvalue problem u = λF ◦ Iu
corresponding to (1.1), which is equivalent to

(1.10)


−∆ui + µiui = λ

k∑
j=1, j 6=i

uj in Ω,

ui = 0, i = 1, . . . , k on ∂Ω.
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Here λ > 0 and {αm}m∈N are the eigenvalues of −∆ in H1
0 (Ω), which are in-

creasing for m.

Based on these observations, we first need to study the system (1.10). Clearly,

system (1.10) is the linearization of (1.1) at the trivial solution 0. Let Nm be the

corresponding eigenspace of αm. Then our first result can be stated as follows.

Theorem 1.4. Let N ≥ 1, µi > −α1 for all i = 1, . . . , k and λ > 0. Then

there exists a sequence {λm} ⊂ R+ with λm ↗ +∞ as m → ∞ such that

system (1.10) has nonzero solution if and only if λ = λm. Moreover, we also

have:

(a) For every m ∈ N, λm is the unique solution to the following equation

(1.11)

k∑
j=1

λ

αm + µj + λ
= 1.

(b) Here u = (u1, . . . , uk) is a solution to system (1.10) corresponding to λm
if and only if u ∈ N ∗m = {ϕem | ϕ ∈ Nm}, where em is the unique basic

of the algebra equation D∗mX = 0 with

D∗m =


αm + µ1 −λm −λm . . . −λm
−λm αm + µ2 −λm . . . −λm
−λm −λm αm + µ3 . . . −λm

...
...

...
. . .

...

−λm −λm −λm . . . αm + µk

 .

(c) We have λm = inf
u∈Mm−1

‖u‖2/2, where

Mm−1 =
{

u ∈
(
Ñ ∗m−1

)⊥ | G(u) = 1
}

with

G(u) =

k∑
i,j=1, i<j

∫
Ω

ujui dx and
(
Ñ ∗m−1

)⊥
=

∞⊕
l=m

N ∗l .

In particular,
(
Ñ ∗0
)⊥

= H.

Remark 1.5. (a) Some early studies on the eigenvalue problem related to an

elliptic system that is linearly coupled are given in [7], [15], [18] and references

therein. However, to the best of the author’s knowledge, Theorem 1.4 seems to

present the first completed results devoted to system (1.10) for all λ > 0.

(b) By Theorem 1.4, we also have the decomposition H =
∞⊕
l=1

N ∗l of the

space H. Moreover, if λm ≤ λ < λm+1 for some m ∈ N, then ‖u‖2/2 − λG(u),

the order-two part of the functional Eλ(u), is positive definite in (Ñ ∗m)⊥ and

nonpositive definite in Ñ ∗m. In particular, ‖u‖2/2 − λG(u) is positive definite
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in H for 0 < λ < λ1. These properties are very important in applying the

variational method to study system (1.1).

(c) If k = 2, then by (1.11), λm =
√

(αm + µ1)(αm + µ2) for all m ∈ N.

Since the Brezis–Nirenberg equation (1.9) has only zero solution for λ ≤ 0

if Ω is star-shaped, by our above observations, it is also natural to study the

nonexistence result of System (1.1). Our results in this aspect can be stated as

follows.

Theorem 1.6. Let N ≥ 3 and µi > 0 for all i = 1, . . . , k. If Ω is also star-

shaped, then system (1.1) only has zero solution for 0 < λ ≤ λ∗1, where λ∗1 < λ1

is the unique solution to the following equation

(1.12)

k∑
j=1

λ

µj + λ
= 1

and λ1 is given by Theorem 1.4.

Remark 1.7. If k = 2, then by (1.12), λ∗1 =
√
µ1µ2, which implies Theo-

rem 1.6 for k = 2 is just the observation by Peng et al. in [25, Remark 1.1].

However, to the best of the author’s knowledge, Theorem 1.6 for k ≥ 3 is to-

tally new. Moreover, we also give a uniform and precise formula to describe the

number λ∗1 for all k ≥ 2.

Since system (1.1) may only have zero solution if µi > 0 for all i = 1, . . . , k,

it is natural to study the existence of nonzero solutions of system (1.1) under

the condition min{µ1, . . . , µk} < 0. In what follows, to state our main results

about this aspect, we first introduce some notation. Let

Jν(u) =
1

2

(∫
Ω

|∇u|2 dx+ ν

∫
Ω

|u|2 dx
)
− 1

2∗

∫
Ω

|u|2
∗
dx.

Then it is well known that (cf. [4], [28]) in the case N ≥ 4, mν = SN/2/N for

ν > 0 whereas mν can be attained for ν < 0 in one of the following two cases:

(1) N = 4 and ν 6= −αm for all m ∈ N,

(2) N ≥ 5.

Moreover, we also have 0 < mν < SN/2/N in these two cases. Here,

(1.13) mν = inf
u∈Qν

Jν(u)

with Qν =
{
u ∈ H1

0 (Ω) \ {0} | J ′ν(u)u = 0
}

. Now, our main results can be

stated as follows.

Theorem 1.8. Let N ≥ 4 and µi > −α1 for all i = 1, . . . , k. If we also have

min{µ1, . . . , µk} < 0, then we have:

(a) System (1.1) has a positive ground state solution uλ for 0 < λ < λ1.

Moreover, system (1.1) has no sign-constant solution for λ ≥ λ1.
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(b) System (1.1) has a ground state solution ũλ that is also sign-changing

in one of the following two cases:

(1) N = 4 and λ ≥ λ1 with λ 6= λm for all m ∈ N,

(2) N ≥ 5 and λ ≥ λ1.

Moreover, if k = 2 or k ≥ 3 with

(1.14) Eλ(ũλ) < min
i,j=1,...,k, i 6=j

{mµi+λ +mµj+λ},

then ũλ is also nontrivial.

Remark 1.9. (a) The existence of positive ground state solutions to sys-

tem (1.1), described by (a) of Theorem 1.8, was predicted by Peng et al. in [25,

Remark 1.4]. However, the novelty of (a) of Theorem 1.8 is that we give a global

description of the existence and nonexistence of positive ground state solutions

to system (1.1) for all λ > 0, which is based on Theorem 1.4.

(b) To the best of the author’s knowledge, part (b) of Theorem 1.8 is totally

new even for k = 2.

(c) The condition (1.14) is easy to achieve. Indeed, it has been proved

in Lemma 5.7 that Eλ(ũλ) < SN/2/N , where S is the best Sobolev embed-

ding constant from H1(RN ) to L2∗
(RN ). On the other hand, if either λ >

max{−µ1, . . . ,−µk} or there is only one µj < 0, then we must have

min
i,j=1,...,k, i 6=j

{
mµi+λ +mµj+λ

}
≥ 1

N
SN/2,

which implies that the condition (1.14) holds.

(d) The condition (1.14) also implies that the case k ≥ 3 is somewhat different

from the case k = 2. Indeed, as we stated above, the 2-component case of

system (1.1) is strongly coupled, that is, it has no semi-trivial solutions. However,

the general k-component case of system (1.1) with k ≥ 3 could be weakly coupled,

that is, it may have semi-trivial solutions. For example, let µ1 = µ2 = −µ < 0.

Then for λ < µ, we can see that m−µ+λ can be attained by some ũ−µ+λ in one

of the following two cases:

(1) N = 4 and −µ+ λ 6= −αm for all m ∈ N,

(2) N ≥ 5.

Set Ũλ = (ũ−µ+λ,−ũ−µ+λ, 0, . . . , 0). Then it is easy to see that Ũλ is a semi-

trivial solution to system (1.1).

(e) The condition (1.14) also seems to be technical for k ≥ 3. For example,

in the case k = 3, we can see from Remark 5.10 that any nonzero solution must

be nontrivial if µ1 6= µ2, µ1 6= µ3, and µ2 6= µ3. Thus, it will be very interesting

to discuss the most general condition to ensure that ũλ is nontrivial.

(f) Recall that (cf. [4], [28]) the well-known Brezis–Nirenberg equation (1.9)

has a ground state solution in one of the following two cases:



Linearly Coupled Brezis–Nirenberg System 705

(1) N = 4, λ > 0 and λ 6= αm for all m ∈ N,

(2) N ≥ 5, λ > 0.

Moreover, the ground state solution is positive for 0 < λ < α1 and cannot be

sign-constant for λ ≥ α1. Now, by Theorem 1.8, we can see that system (1.1)

has a very similar structure of solutions to the well-known Brezis–Nirenberg

equation (1.9).

In this paper, we also obtain the following result.

Theorem 1.10. Let uλ be the positive ground state solution to system (1.1)

obtained by Theorem 1.8 for 0 < λ < λ1. Then uλ → 0 strongly in H as λ→ λ1.

Remark 1.11. To the best of the author’s knowledge, Theorem 1.10 is also

totally new for system (1.1) even for k = 2. Moreover, from the viewpoint of

bifurcation, we can see from Theorem 1.10 that (0, λ1) is a bifurcation point at

the trivial branch (0, λ), which is also very similar to the well-known Brezis–

Nirenberg equation (1.9).

Remark 1.12. By (f) of Remark 1.9 and Remark 1.11, we call system (1.1)

the linearly coupled Brezis–Nirenberg system.

Notation. Throughout this paper, C and C ′ are indiscriminately used to

denote various absolute positive constants. We also list some notation used

frequently below:

u = (u1, . . . , uk), Lr(Ω) = (Lr(Ω))k,

{̂t,u} = (t1u1, . . . , tkuk), u|u| = (|u1|, . . . , |uk|),

tu = (tu1, . . . , tuk), un = (un1 , . . . , u
n
k ).

We use O(|b|) to denote the quantities that tend towards zero as |b| → 0, where

|b| is the usual norm in Rk of the vector b. We also denote the eigenvalues

of −∆ in H1
0 (Ω) by {αm}m∈N, which are increasing for m. The corresponding

eigenspaces of αm are denoted by Nm.

2. The spectrum of the operator T

Recall F = diag((−∆ + µ1)−1, . . . , (−∆ + µk)−1) and

I =


0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 · · · 0

 .

Then it is easy to see that T = F ◦ I is a linear operator from L2(Ω) to H.
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Lemma 2.1. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then T is

compact from H to H.

Proof. Let {un} be a bounded sequence in H. Then without loss of gene-

rality, we may assume that un ⇀ u0 weakly in H as n → ∞. By the Sobolev

embedding and without loss of generality once more, we may assume that un →
u0 strongly in L2(Ω) as n→∞. Denote vn = T un, then we have

(2.1)


−∆vni + µiv

n
i =

k∑
j=1,j 6=i

unj in Ω,

vni = 0, i = 1, . . . , k on ∂Ω.

It follows that

‖vni ‖2i =

k∑
j=1, j 6=i

∫
Ω

unj v
n
i dx

≤
k∑

j=1, j 6=i

(∫
Ω

|unj |2 dx
)1/2(∫

Ω

|vni |2 dx
)1/2

≤ 1
k∏
j=1

√
µj

k∑
j=1, j 6=i

‖unj ‖j‖vni ‖i,

which implies {vn} is bounded in H. Without loss of generality, we may assume

that vn ⇀ v0 weakly in H as n→∞. Then, by (2.1), we can see that

(2.2)


−∆v0

i + µiv
0
i =

k∑
j=1, j 6=i

u0
j in Ω,

v0
i = 0, i = 1, . . . , k on ∂Ω.

Thus, v0 = T u0. On the other hand, since un → u0 strongly in L2(Ω) as n→∞
and {vn} is bounded in H, we have from (2.1) once more and (2.2) that

‖v0
i ‖2i ≤ ‖vni ‖2i + o(1) =

k∑
j=1,j 6=i

∫
Ω

unj v
n
i dx+ o(1)

=

k∑
j=1,j 6=i

(∫
Ω

u0
jv
n
i dx+

∫
Ω

(
unj − u0

j

)
vni dx

)
+ o(1)

=

k∑
j=1, j 6=i

∫
Ω

u0
jv

0
i dx+ o(1) = ‖v0

i ‖2i + o(1).

Hence, we must have vn → v0 strongly in H as n → ∞. That is, T un → T u0

strongly in H as n→∞. �
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Denote the spectrum of T in H by σ(T ). Then by Lemma 2.1, we can see

that σ(T ) = σp(T ), where σp(T ) is the point spectrum of T in H. Recall that

{αm}m∈N are the eigenvalues of −∆ in H1
0 (Ω), which are increasing for m, and

the corresponding eigenspaces of αm are denoted by Nm.

Lemma 2.2. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then there

exists a positive sequence {σ′m} with σ′m → 0 as m → ∞ such that {σ′m} ⊂
σ(T ) ∩ (0,+∞).

Proof. For every m ∈ N, let us consider the following function

(2.3) fm(λ) =

k∑
j=1

λ

αm + µj + λ
.

It is easy to see that fm(0) = 0, lim
λ→+∞

fm(λ) = k and fm(λ) is strictly increasing

for λ > 0. Since k ≥ 2, there exists a unique λ′m > 0 such that fm(λ′m) = 1. Let

D′m =


αm + µ1 −λ′m −λ′m . . . −λ′m
−λ′m αm + µ2 −λ′m . . . −λ′m
−λ′m −λ′m αm + µ3 . . . −λ′m

...
...

...
. . .

...

−λ′m −λ′m −λ′m . . . αm + µk

 .

Then, by a direct calculation, we can see from αm + µi + λ′m > 0 for all m ∈ N
and i = 1, . . . , k that

det(D′m) =

k∏
i=1

(αm + µi + λ′m)

(
1−

k∑
i=1

λ′m
αm + µi + λ′m

)
.

It follows from fm(λ′m) = 1 that det(D′m) = 0. Now, let um = bϕm, where

ϕm ∈ Nm and b is a constant vector. Since ϕm is the eigenfunction of αm, by

a direct calculation, we can see that

−∆umi + µiu
m
i − λ′m

k∑
j=1,j 6=i

umj =

(
bi(αm + µi)− λ′m

k∑
j=1,j 6=i

bj

)
ϕm

for all i = 1, . . . , k. Since det(D′m) = 0, there exists bm 6= 0 such that

−∆umi + µiu
m
i − λ′m

k∑
j=1, j 6=i

umj = 0 for all i = 1, . . . , k.

Let σ′m = 1/λ′m. Then {σ′m} ⊂ σ(T ) ∩ (0,+∞). Moreover, since αm ↗ +∞ as

m→∞, we can see from fm(λ′m) = 1 that λ′m ↗ +∞ as m→∞, which implies

σ′m ↘ 0 as m→∞. �

By Lemma 2.2, we may assume that σ(T )∩ (0,+∞) = {0} ∪ {σm}m∈N with

σm 6= 0 and σm ↘ 0 as m → ∞. We also denote the corresponding eigenspace

of σm by N ∗m.
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Proposition 2.3. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k and λm =

1/σm for all m ∈ N. Then λm is the unique solution to the following equation

k∑
j=1

λ

αm + µj + λ
= 1 for all m ∈ N.

Moreover, we also have

(2.4) N ∗m = {ϕem | ϕ ∈ Nm},

where em is the unique basic of the algebra equation D∗mX = 0 with

(2.5) D∗m =


αm + µ1 −λm −λm . . . −λm
−λm αm + µ2 −λm . . . −λm
−λm −λm αm + µ3 . . . −λm

...
...

...
. . .

...

−λm −λm −λm . . . αm + µk

 .

Proof. It is well known that Hi =
∞⊕
m=1
Nm for all i = 1, . . . , k. It follows

that

(2.6) H =

k∏
i=1

Hi =

k∏
i=1

( ∞⊕
m=1

Nm
)

=

∞⊕
m=1

(Nm)k.

Clearly, dim(Nm) < ∞ for all m ∈ N. Without loss of generality and for the

simplicity, we assume that dim(Nm) = 1 for all m ∈ N in what follows. Let

u ∈ N ∗m \ {0}, then by (2.6), we have u =
∞∑
j=1

̂{aj ,vj}, where aj ∈ Rk are

constant vectors and vj ∈ N 0
j with N 0

j = (Nj)k for all j ∈ N. That is

ui =

∞∑
j=1

ajiv
j
i for all i = 1, . . . , k.

Since we assume dim(Nm) = 1 for all m ∈ N, we have vji = ϕj for all i = 1, . . . , k.

It follows from u ∈ N ∗m that

∞∑
j=1

aji (αj + µi)ϕj = −∆ui + µiui = λm

k∑
l=1, l 6=i

ul =

∞∑
j=1

(
λm

k∑
l=1, l 6=i

ajl

)
ϕj

for all i = 1, . . . , k. Since ϕj are linear independent and orthorhombic in L2(Ω),

by multiplying the above equation with ϕj and integrating, we must have that

aji (αj + µi) = λm

k∑
l=1, l 6=i

ajl
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for all i = 1, . . . , k and j ∈ N, which implies Dm,jaj = 0 for all j ∈ N. Here

Dm,j =


αj + µ1 −λm −λm . . . −λm
−λm αj + µ2 −λm . . . −λm
−λm −λm αj + µ3 . . . −λm

...
...

...
. . .

...

−λm −λm −λm . . . αj + µk

 .

It follows that, for every j ∈ N, either

(1) aj = 0, or

(2) det(Dm,j) = 0.

Since u 6= {0}, there exists jm ∈ N such that det(Dm,jm) = 0. By a direct

calculation, we can see from αj + µi + λm > 0, for all j,m ∈ N and i = 1, . . . , k,

that

det(Dm,jm) =

k∏
i=1

(αjm + µi + λm)

(
1−

k∑
i=1

λm
αjm + µi + λm

)
.

Note that µi > −α1 for all i = 1, . . . , k and λm > 0, thus we must have

(2.7)

k∑
i=1

λm
αjm + µi + λm

= 1.

Note that λm ↗ +∞ as m → ∞ and fjm(λ) is increasing for λ > 0, we also

have that αjm+1 > αjm for all m ∈ N. It follows that jm ≥ m for all m ∈ N.

Since λ′jm is the unique solution to fjm(λ) = 1 in (0,+∞), we can see from (2.7)

that λm = λ′jm . By jm ≥ m, we can see from the fact that λ′m is increasing that

λm ≥ λ′m for all m ∈ N. On the other hand, by λm ↗ +∞ as m →∞, we also

have λm ≤ λ′m for all m ∈ N. Thus, we must have λm = λ′m for all m ∈ N. That

is, λm is the unique solution to the following equation

(2.8)

k∑
j=1

λ

αm + µj + λ
= 1 for all m ∈ N.

It remains to show (2.4). Indeed, it suffices to show that 0 is the eigenvalue

of D∗m with degree 1 for all m ∈ N, where D∗m is given by (2.5). By a direct

calculation, we can see from αm + µi + λm > 0 f or all m ∈ N and i = 1, . . . , k

that

det(D∗m) =

k∏
i=1

(αm + µi + λm)

(
1−

k∑
i=1

λm
αm + µi + λm

)
.

It follows from the fact that λm is the unique solution to (2.8) that det(D∗m) = 0

for all m ∈ N. Thus, 0 must be the eigenvalue of D∗m for all m ∈ N. Now, for

every m ∈ N, let us consider the following equation

det(D∗m − νE) = 0,
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where E is the identity matrix and ν ∈ R is a constant. If ν 6= αm +µi +λm for

all i = 1, . . . , k, then by the fact that λm is the unique solution to (2.8), we can

see that

det(D∗m − νE) =

k∏
i=1

(αm + µi + λm − ν)

(
1−

k∑
i=1

λm
αm + µi + λm − ν

)
(2.9)

=

k∏
i=1

(αm + µi + λm − ν)

−
k∑
i=1

k∏
j=1, j 6=i

λm(αm + µj + λm − ν)

=

k∏
i=1

(αm + µi + λm)−
k∑
i=1

k∏
j=1, j 6=i

λm(αm + µj + λm)

−
k∑
i=1

( k∏
j=1, j 6=i

(αm + µj + λm)

−
k∑

j=1,j 6=i

k∏
l=1, l 6=i,j

λm(αm + µj + λm)

)
ν + ρm(ν)ν2

= −
k∑
i=1

( k∏
j=1, j 6=i

(αm + µj + λm)

−
k∑

j=1,j 6=i

k∏
l=1, l 6=i,j

λm(αm + µj + λm)

)
ν + ρm(ν)ν2,

where ρm(ν) is a polynomial of degree at most k − 2. For every i = 1, . . . , k, by

the fact that λm is the unique solution to (2.8) once more, we have

k∏
j=1,j 6=i

(αm + µj + λm)−
k∑

j=1, j 6=i

k∏
l=1, l 6=i,j

λm(αm + µj + λm)

=

k∏
j=1, j 6=i

(αm + µj + λm)

(
1−

k∑
l=1,l 6=i

λm
αm + µl + λm

)

=
λm

αm + µi + λm

k∏
j=1, j 6=i

(αm + µj + λm) > 0.

Therefore, by (2.9), we can see that 0 is the eigenvalue of D∗m with degree 1 for

all m ∈ N. �
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3. A variational characteristic of λm

Let M0 = {u ∈ H | G(u) = 1}, where

(3.1) G(u) =

k∑
i,j=1, i<j

∫
Ω

ujui dx.

Set

λ∗1 = inf
u∈M0

‖u‖2.

Lemma 3.1. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then λ∗1 is

attained and λ∗1 = 2λ1.

Proof. Clearly, λ∗1 ≥ 0. Let {un} ⊂ M0 be a minimizing sequence. Then it

is easy to see that {un} is bounded in H. It follows from the Sobolev embedding

that un → u0 strongly in L2(Ω) as n→∞, which implies that G(u0) = 1. Thus,

by the weakly semi-continuity of the norm ‖ · ‖, we have ‖u0‖2 = λ∗1. It remains

to show that λ∗1 = 2λ1. Indeed, by Proposition 2.3, we can see that

ϕe1 = λ1T ϕe1,

where ϕ is the eigenfunction corresponding to α1 and α1 is the first eigenvalue

of −∆ in H1
0 (Ω). It follows from T = F ◦ I that

(3.2)


e1
i (−∆ϕ+ µiϕ) = λ1

k∑
j=1, j 6=i

e1
jϕ in Ω,

ϕ = 0, i = 1, . . . , k on ∂Ω.

Multiplying (3.2) with e1
iϕ and integrating by parts, we have

‖ϕ e1‖2 = 2λ1G(ϕ e1).

Let ũ = ϕ e1/
√
G(ϕ e1). Then, by the fact that G(ϕ e1) and ‖ϕ e1‖2 have the

same order, we can see that ũ ∈M0, which implies

2λ1 =
‖ϕ e1‖2

G(ϕ e1)
= ‖ũ‖2 ≥ λ∗1.

On the other hand, it is easy to see that M0 is a C1 manifold in H. Thus, by

the method of Lagrange multipliers, there exists δ ∈ R such that

(3.3) u0 − δ G′(u0) = 0,

Since G′(u0) u0 = 2G(u0) = 2, by multiplying (3.3) with u0, we can see that

δ = λ∗1/2. It follows from T = F ◦ I that

u0 =
1

2
λ∗1T u0.

Thus 2/λ∗1 is a eigenvalue of T . Note that σ1 > σm for all m ≥ 2, we must have

λ∗1 ≥ 2λ1. Hence, we obtain that λ∗1 = 2λ1. �
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By Proposition 2.3 and (2.6), we have the following decomposition of H:

(3.4) H =

∞⊕
m=1

N ∗m.

Let

(3.5) Ñ ∗m =

m⊕
k=1

N ∗k and
(
Ñ ∗m
)⊥

=

∞⊕
k=m+1

N ∗k .

We also define

λ∗2 = inf
u∈M1

‖u‖2, where M1 =
{

u ∈
(
Ñ ∗1
)⊥ ∣∣ G(u) = 1

}
with G(u) given by (3.1).

Lemma 3.2. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then λ∗2 is

attained and λ∗2 = 2λ2.

Proof. Since the proof is similar to that of Lemma 3.1, we only sketch it and

point out the differences. Indeed, by a similar argument as used in the proof of

Lemma 3.1, we can see that there exists u1 ∈M1 such that ‖u1‖2 = λ∗2. In what

follows, we prove that λ∗2 = 2λ2. In fact, by (3.4), we can see that N ∗2 ⊂ (Ñ ∗1 )⊥.

Now, also by a similar argument as used in the proof of Lemma 3.1, we can

show that 2λ2 ≥ λ∗2. On the other hand, since it is easy to see that M1 is a C1

manifold in the space (Ñ ∗1 )⊥, also by a similar argument as used in the proof of

Lemma 3.1, we have

u1 =
1

2
λ∗2T u1 in

(
Ñ ∗1
)⊥
,

which, together with Proposition 2.3, implies

u1 =
1

2
λ∗2T u1.

Thus 2/λ∗2 is a eigenvalue of T . Similar to that of Lemma 3.1, we must have

λ∗2 ≥ 2λ2. Hence, we obtain that λ∗2 = 2λ2. �

Now, by iteration, we define λ∗m (m ≥ 3) as

λ∗m = inf
u∈Mm−1

‖u‖2, where Mm−1 =
{

u ∈
(
Ñ ∗m−1

)⊥ ∣∣ G(u) = 1
}
.

Then by a similar argument as used for Lemma 3.2, we have the following lemma.

Lemma 3.3. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then λ∗m is

attained and λ∗m = 2λm for all m ≥ 3.

Combining Lemmas 3.1–3.3, we actually have the following result.

Proposition 3.4. Let N ≥ 1 and µi > −α1 for all i = 1, . . . , k. Then λ∗m
is attained and λ∗m = 2λm for all m ≥ 1.

Proof of Theorem 1.4 follows immediately from Propositions 2.3 and 3.4.



Linearly Coupled Brezis–Nirenberg System 713

4. The nonexistence result

Define

(4.1) f0(λ) =

k∑
j=1

λ

µj + λ
.

If µi > 0 for all i = 1, . . . , k, then by a similar argument as used for fm(λ),

which is given by (2.3), we can see that f0(λ) is increasing for λ > 0 with

lim
λ→0+

f0(λ) = 0 and lim
λ→+∞

f0(λ) = k. Thus, there exists unique λ∗1 > 0 such

that f0(λ∗1) = 1. Moreover, since α1 > 0, it is also easy to see from the fact that

f1(λ) is increasing for λ > 0 that λ∗1 < λ1.

Lemma 4.1. Let N ≥ 1 and µi > 0 for all i = 1, . . . , k. Then

(4.2)

∫
Ω

( k∑
j=1

µj |uj |2 − 2λ

k∑
i,l=1, i<l

uiul

)
dx ≥ 0

for all u ∈ H if and only if 0 < λ ≤ λ∗1.

Proof. Let

U =


µ1 −λ −λ . . . −λ
−λ µ2 −λ . . . −λ
−λ −λ µ3 . . . −λ
...

...
...

. . .
...

−λ −λ −λ . . . µk

 .

For every γ ∈ R, by a direct calculation, we have

det(U − γE) =



k∏
j=1

(µj + λ−γ)

(
1−

k∑
j=1

λ

µj + λ−γ

)
, γ 6= µj + λ, for all j,

λ2−i
k∏

j=1, j 6=i

(µj + λ− γ), γ = µi + λ, for some i.

Let

g(γ) = 1−
k∑
j=1

λ

µj + λ− γ
.

Then g(0) = 1− f0(λ). It follows that g(0) ≥ 0 if and only if 0 < λ ≤ λ∗1. Note

that g(γ) is decreasing for γ < 0 with lim
γ→−∞

g(γ) = 1, thus there exists a unique

γ∗ < 0 such that g(γ∗) = 0 if and only if λ > λ∗1. It follows that U has a negative

eigenvalue if and only if λ > λ∗1. On the other hand, since g(γ) is decreasing in

(µj + λ, µj+1 + λ) with lim
γ→(µj+λ)−

g(γ) = −∞ and lim
γ→(µj+λ)+

g(γ) = +∞, k − 1

eigenvalues of U must lie in [λ + µ1, λ + µk]. Hence, the eigenvalues of U have

the following two properties:

(1) all k eigenvalues lies in [0, λ+ µk] if 0 < λ ≤ λ∗1,
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(2) there is a unique negative eigenvalue and other k − 1 eigenvalues lie

in [λ+ µ1, λ+ µk] if λ > λ∗1.

Therefore, U is nonnegative definite if and only if 0 < λ ≤ λ∗1, which implies

(4.2) holds if and only if 0 < λ ≤ λ∗1. �

We close this section with a proof.

Proof of Theorem 1.6. Let u ∈ H be a solution to system (1.1), then

by the classical regularity theories, ui ∈ C2(Ω) for all i = 1, . . . , k. Now, by the

Pohozaev identity, we can see that

N − 2

2N

k∑
j=1

∫
Ω

|∇uj |2 dx+
1

2N

k∑
j=1

∫
∂Ω

(x, n)|∇uj |2 ds

= −1

2

∫
Ω

( k∑
j=1

µj |uj |2 − 2λ

k∑
i,l=1, i<l

uiul

)
dx+

N − 2

2N

k∑
j=1

∫
Ω

|uj |2
∗
dx,

where n is the unit outer normal vector of Ω. It follows from u ∈ H being

a solution to system (1.1) that

1

2N

k∑
j=1

∫
∂Ω

(x, n)|∇uj |2 ds = − 1

N

∫
Ω

( k∑
j=1

µj |uj |2 − 2λ

k∑
i,l=1, i 6=l

uiul

)
dx.

Since Ω is star-shaped, we must have from Lemma 4.1 that u = 0 for 0<λ≤λ∗1.�

5. Existence of ground states

5.1. The definite case 0 < λ < λ1. Let

(5.1) P0 =
{
u ∈ H \ {0} | E ′λ(u)u = 0

}
.

Then P0 is the well-known Nehari manifold of Eλ(u), where Eλ(u) is given

by (1.7). Since

E ′λ(u)u = ‖u‖2 − 2λG(u)−
k∑
i=1

∫
Ω

|ui|2
∗
dx,

it is easy to see that P0 is a C1 manifold in H, where G(u) is given by (3.1). Let

(5.2) cλ = inf
u∈P0

Eλ(u).

Lemma 5.1. Let N ≥ 4, µi > −α1 for all i = 1, . . . , k and 0 < λ < λ1. If

we also have min{µ1, . . . , µk} < 0, then 0 < cλ < SN/2/N , where S is the best

Sobolev embedding constant from H1(RN ) to L2∗
(RN ).

Proof. Let u ∈ P0. Then, by the Sobolev embedding, we have from p > 2

that

(5.3) ‖u‖2 − 2λG(u) =

k∑
i=1

∫
Ω

|ui|2
∗
dx ≤ C

k∑
i=1

‖ui‖2
∗

i ≤ C ′‖u‖2
∗
.
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It follows from Proposition 3.4 that

(5.4)

(
1− λ

λ1

)
≤ C ′‖u‖2

∗−2,

which, together with 0 < λ < λ1 and Proposition 3.4 once more, implies

(5.5) Eλ(u) = Eλ(u)− 1

2∗
E ′λ(u)u =

1

N

(
‖u‖2 − 2λG(u)

)
≥ 1

N

(
1− λ

λ1

)
‖u‖2.

Since u ∈ P0 is arbitrary, we must have from (5.4) that

cλ ≥
1

N

(
1− λ

λ1

)2

C ′.

It remains to show that cλ < SN/2/N . Recall that mν can also be attained by

some uν for −α1 < ν < 0, where mν is given by (1.13). Now, without loss of

generality, we assume −α1 < µ1 < 0 and set Uµ1
= (uµ1

, 0, . . . , 0). Then it is

easy to see that Uµ1
∈ P0. It follows that

cλ ≤ Eλ(Uµ1
) = Jµ1

(uµ1
) = mµ1

<
1

N
SN/2,

which completes the proof. �

Now, we can obtain the following.

Proposition 5.2. Let N ≥ 4, µi > −α1 for all i = 1, . . . , k and 0 < λ < λ1.

If we also have min{µ1, . . . , µk} < 0, then there exists uλ ∈ P0 such that uλ is

a positive ground state solution to system (1.1).

Proof. Let

(5.6) Aλ(u) = E ′λ(u)u.

Then it is easy to see that Aλ(u) is C1 in H. Moreover, for every u ∈ P0, we

have from Theorem 1.4 and (5.4) that

A′λ(u)u = 2
(
‖u‖2 − 2λG(u)

)
− 2∗

k∑
i=1

∫
Ω

|ui|2
∗
dx(5.7)

= (2− 2∗)
(
‖uλ‖2 − 2λG(uλ)

)
≤ −C.

Thus, by applying Ekeland’s variational principle and the implicit function the-

orem in a standard way, we can obtain a (PS) sequence of Eλ(u) in P0, denoted

by {un}, at the energy level cλ. By (5.5), we can see that {un} is bounded in

H. Without loss of generality and by the Sobolev embedding, we may assume

that un ⇀ u0 weakly in H and un → u0 strongly in Lq(Ω) for all 1 ≤ q < 2∗ as

n→∞. Clearly, E ′λ(u0) = 0. If u0 = 0, then we have

(5.8)

∫
Ω

|∇uni |2 dx =

∫
Ω

|uni |2
∗
dx+ o(1)
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for all i = 1, . . . , k. Note that by (5.4), we have

k∑
i=1

∫
Ω

|∇uni |2 dx ≥ C + o(1).

Thus, there is at least one i0 ∈ {1, . . . , k} such that∫
Ω

|∇uni0 |
2 dx ≥ C ′ + o(1).

It follows from (5.8) and Sobolev’s inequality that∫
Ω

|∇uni0 |
2 dx ≥ SN/2 + o(1),

which together with (5.8) once more, implies

cλ + o(1) = Eλ(un) = Eλ(un)− 1

2
E ′λ(un)un(5.9)

=
1

N

k∑
j=1

∫
Ω

|unj |2
∗
dx ≥ 1

N
SN/2 + o(1).

It contradicts to Lemma 5.1. Thus, we must have that u0 ∈ H \ {0}, which

implies u0 ∈ P0. Hence

cλ + o(1) = Eλ(un) ≥ Eλ(u0) + o(1) ≥ cλ + o(1).

Therefore, cλ is attained by u0. Let u∗i = |u0
i | for all i = 1, . . . , k. Then it is

easy to see that G(u0) ≤ G(u∗), where u∗ = (u∗1, . . . , u
∗
k). Since λ > 0, we can

see from a standard argument that there exists tλ ∈ (0, 1] such that tλu∗ ∈ P0.

A standard argument also implies Eλ(u0) ≥ Eλ(tu0) for all t ≥ 0. Thus, by

λ > 0, we have

cλ = Eλ(u0) ≥ Eλ(tλu0) ≥ Eλ(tλu∗) ≥ cλ.

Let uλ = tλu∗. Then cλ is attained by uλ with uλi ≥ 0 for all i = 1, . . . , k. It

remains to show that uλ is a nontrivial solution to system (1.1). Indeed, since

P0 is C1 in H, by the method of Lagrange multipliers, there exists δ ∈ R such

that

(5.10) E ′λ(uλ)− δA′λ(uλ) = 0.

By multiplying (5.10) with uλ, we can see from (5.7) that δ = 0 and E ′λ(uλ) = 0,

which implies uλ is a solution to system (1.1) with uλi ≥ 0 for all i = 1, . . . , k. By

the maximum principle, we have that either ui > 0 or ui = 0 for all i = 1, . . . , k.

Now, suppose uλ is not a nontrivial solution, then there exists j ∈ {1, . . . , k} such

that uλj = 0. Since uλ 6= 0, without loss of generality, we assume that uλi > 0

for i = 1, . . . , i0 and uλi = 0 for i = i0 + 1, . . . , k with some i0 ∈ {1, . . . , k − 1}.
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Since uλ is a solution to system (1.1), we have from uλi = 0 for i = i0 + 1, . . . , k

that uλ is also a solution to the following system

(5.11)



−∆ui + µiui = |ui|2
∗−2ui + λ

i0∑
j=1, j 6=i

uj in Ω,

i0∑
i=1

ui = 0 in Ω,

ui = 0, i = 1, . . . , i0 on ∂Ω.

It is impossible since uλi > 0 for i = 1, . . . , i0. �

5.2. The indefinite case λ ≥ λ1. Without loss of generality, we may as-

sume λm ≤ λ < λm+1 for some m ∈ N by Theorem 1.4.

Proposition 5.3. Let N ≥ 3 and µi > −α1 for all i = 1, . . . , k and λm ≤
λ < λm+1 for some m ∈ N. Suppose u is a nonzero solution to system (1.1),

then u must be a sign-changing solution to system (1.1).

Proof. Suppose the contrary, then u is either nonnegative or nonpositive.

Without loss of generality, we assume that u is nonnegative. Now, multiplying

system (1.1) with v1 and integrating by parts, where v1 ∈ N ∗1 = {ϕ e1 | ϕ ∈ N1}
is the corresponding eigenfunction of λ1 given by Theorem 1.4, we have from

λ ≥ λm that

λ1G′(u)v1 = λ1G′(v1)u = 〈u,v1〉

=

k∑
j=1

∫
Ω

|uj |2
∗−2ujv

1
j dx+ λG′(u)v1 > λ1G′(u)v1,

which is impossible. Thus, u is a sign-changing solution to system (1.1). �

For simplicity, we assume that dim(Nm) = 1 for all m ∈ N in what follows.

Now, by Theorem 1.4 once more, we also have that dim(N ∗m) = 1 for all m ∈ N.

Let

Fλ(u) = (Aλ(u), E ′λ(u)w1, . . . , E ′λ(u)wm),

where wi ∈ N ∗i for all i = 1, . . . ,m and Aλ(u) is given by (5.6). Then it is easy

to see that Fλ(u) is C1 in H.

Lemma 5.4. Let N ≥ 3, µi > −α1 for all i = 1, . . . , k and λm ≤ λ < λm+1

for some m ∈ N. Then Pm is a C1 manifold in H with codimension m+1, where

(5.12) Pm =
{
u ∈ H \ Ñ ∗m | Fλ(u) = 0

}
and Ñ ∗m is given by (3.5).
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Proof. Since Fλ(u) is C1 in H, Pm is a C1 manifold in H. It remains

to show that the codimension of Pm is m + 1. For every u ∈ Pm, we set

z =
m∑
i=1

aiwi + su. Then

F ′λ(u)z =
(
A′λ(u)z,F ′λ,1(u)z, . . . ,F ′λ,m(u)z

)
∈ Rm+1,

where Fλ,i(u) = E ′λ(u)wi for all i = 1, . . . ,m. By a direct calculation, we have

(5.13) A′λ(u)z = 2(〈u, z〉 − λG′(u)z)− 2∗
k∑
j=1

∫
Ω

|uj |2
∗−2ujzj dx,

where G(u) is given by (3.1). On the other hand, for every i = 1, . . . ,m, we have

(5.14) F ′λ,i(u)z = 〈z,wi〉 − λG′(z)wi − (2∗ − 1)

k∑
j=1

∫
Ω

|uj |2
∗−2zjw

i
j dx.

Set t = (s, a1, . . . , am). Then by (5.13) and (5.14), we can see from u ∈ Pm that

(F ′λ(u)z) · t =

m∑
i=1

(
‖aiwi‖2 − 2λG(aiwi)

)
(5.15)

−
k∑
j=1

∫
Ω

|uj |2
∗−2

( m∑
i=1

aiw
i
j

)2

dx

− (2∗ − 2)

k∑
j=1

∫
Ω

|uj |2
∗−2(suj +

m∑
i=1

aiw
i
j)

2 dx.

Here t · s is the usual inner product in Rm+1. Since u ∈ H \ Ñ ∗m and
m∑
i=1

aiw
i
j ∈

Ñ ∗m, we can see from Theorem 1.4 that∫
Ω

|uj |2
∗−2

(
suj +

m∑
i=1

aiw
i
j

)2

dx > 0 for all j = 1, . . . , k.

Thus, by (5.15), we have from Theorem 1.4 once more that (F ′λ(u)z) · t < 0 for

all t 6= 0. Thus, for every u ∈ Pm, F ′λ(u) is onto. It follows that

H = Ñ ∗m ⊕ Ru⊕ TuPm

for all u ∈ Pm, where TuPm is the tangent space of Pm at u. Therefore, the

codimension of Pm is m+ 1. �

We also need the following two technique lemmas.

Lemma 5.5. Let N ≥ 1, µi > −α1 for all i = 1, . . . , k and λm ≤ λ < λm+1

for some m ∈ N. Then, for every u ∈ Pm, we have

(5.16) Eλ(u) ≥ Eλ
(
tu +

m∑
i=1

aiwi

)
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for all t ≥ 0 and ai ∈ R, where Pm is given by (5.12) and wi ∈ N ∗i . Moreover,

(5.16) is equal if and only if t = 1 and ai = 0 for all i = 1, . . . ,m.

Proof. Let z =
m∑
i=1

aiwi. Then by u ∈ Pm and Proposition 3.4, we have

Eλ(tu + z)− Eλ(u) =
(t2 − 1)

2
‖u‖2 + t〈u, z〉(5.17)

+
1

2
‖z‖2 − λ

((
t2 − 1

)
G(u)− t

k∑
j,l=1, l<j

∫
Ω

ujzl dx

)

− 1

2∗

k∑
j=1

∫
Ω

(
|tuj + zj |2

∗
− |uj |2

∗)
dx

≤
k∑
j=1

∫
Ω

t2 − 1

2
|uj |2

∗
− 1

2∗
(
|tuj + zj |2

∗
− |uj |2

∗
− 2∗|uj |2

∗−2tujzj
)
dx,

where G(u) is given by (3.1). For every j = 1, . . . , k, we consider the following

function

fj(t) =
t2 − 1

2
|uj |2

∗
− 1

2∗
(
|tuj + zj |2

∗
− |uj |2

∗
− 2∗|uj |2

∗−2tujzj
)
.

If there exists t0 ≥ 0 such that f ′j(t0) = 0, then we must have

(5.18)
(
|uj |2

∗−2 − |t0uj + zj |2
∗−2
)
(t0uj + zj)uj = 0.

Since u ∈ H \ Ñ ∗m and z ∈ Ñ ∗m, we can see from (5.18) that uj = 0, where Ñ ∗m
is given by (3.5). It follows that fj(t) = −|zj |2

∗
/2∗ ≤ 0. Note that fj(t)→ −∞

as t → +∞ if uj 6= 0 whereas fj(t) ≡ −|zj |2
∗
/2∗ ≤ 0 if uj = 0, thus we must

have that fj(t) ≤ 0 for all t ≥ 0, which, together with (5.17), implies (5.16).

Moreover, since u ∈ H \ Ñ ∗m and z ∈ Ñ ∗m, it is also easy to see from (5.17) that

(5.16) is equal if and only if t = 1 and ai = 0 for all i = 1, . . . ,m. �

Lemma 5.6. Let N ≥ 3, µi > −α1 for all i = 1, . . . , k and λm ≤ λ < λm+1

for some m ∈ N. Then, for every u ∈ H \ Ñ ∗m, there exist unique tu > 0 and

vu ∈ Ñ ∗m such that tuu + vu ∈ Pm, where Ñ ∗m is given by (3.5) and Pm is given

by (5.12).

Proof. Let u ∈ H \ Ñ ∗m and consider the following function

f(t) = Eλ
(
tu +

m∑
i=1

aiwi

)
,
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where t = (t, a1, . . . , am) ∈ R+ × Rm. By Theorem 1.4, from λm ≤ λ < λm+1

we have that

(5.19) f(t) ≤ |t|2
(∥∥u⊥∥∥2 − 2λG

(
u⊥
))

− |t|2
∗

k∑
j=1

1

2∗

∫
Ω

∣∣∣∣ 1

|t|

(
tuj +

m∑
i=1

aiw
i
j |t|
)∣∣∣∣2∗

dx,

where u = ǔ + u⊥ with ǔ ∈ Ñ ∗m and u⊥ ∈
(
Ñ ∗m
)⊥

. Since u ∈ H \ Ñ ∗m and

aiwi ∈ N ∗i for all i = 1, . . . ,m, by the Lebesgue dominated convergence theorem

and Theorem 1.4 once more, there exists R > 0 such that

(5.20) inf
|t|≥R

∫
Ω

∣∣∣∣ 1

|t|

(
tuj +

m∑
i=1

aiw
i
j

)∣∣∣∣2∗

dx ≥ C,

which together with (5.19) and 2∗ > 2, implies f(t)→ −∞ as |t| → +∞. On the

other hand, since λm ≤ λ < λm+1, we have from Theorem 1.4 and a standard

argument that f(t) ≤ 0 if t = 0 and f(t) > 0 if ai = 0 for all i = 1, . . . ,m and

t > 0 small enough. Thus, there exists tu > 0 and ai,u ∈ R for all i = 1, . . . ,m

such that f(tu) = max
t∈R+×Rm

f(t), where tu = (tu, a1,u, . . . , am,u). It follows that

tuu +

m∑
i=1

ai,uwi ∈ Pm.

Thanks to Lemma 5.5, tu must be unique. �

Set

(5.21) c̃λ = inf
u∈Pm

Eλ(u),

where Pm is given by (5.12).

Lemma 5.7. Let N ≥ 4, µi > −α1 for all i = 1, . . . , k and λm ≤ λ < λm+1

for some m ∈ N. If min{µ1, . . . , µk} < 0 and either

(a) N = 4, λm < λ < λm+1, or

(b) N ≥ 5,

then 0 < c̃λ < SN/2/N .

Proof. Let u ∈ Pm. Then u = ǔ + u⊥, where ǔ ∈ Ñ ∗m and u⊥ ∈
(
Ñ ∗m
)⊥

.

Now, by Lemma 5.5, we have Eλ(u) ≥ Eλ(tu⊥) for t > 0 small enough. Since

λm ≤ λ < λm+1, a standard argument implies Eλ(u) ≥ C. Note that u ∈ Pm is

arbitrary, we must have c̃λ > 0. We next show that c̃λ < SN/2/N . Let

(5.22) Vε(x) =

(
N(N − 2)ε2

(ε2 + |x|2)2

)(N−2)/4

.
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Then it is well known that Vε is the unique positive solution to the following

equation up to a translation

(5.23) −∆u = |u|2
∗−2u, u ∈ D1,2(RN ),

where D1,2(RN ) =
{
u ∈ L2∗

(RN ) | |∇u| ∈ L2(RN )
}

. Moreover, we have∫
RN
|∇Vε|2dx =

∫
RN
|Vε|2

∗
dx = S N2 ,

where S is the best Sobolev embedding constant from H1
0 (Ω) to L2∗

(RN ). Let

ϕ(r) be a nonnegative smooth radial cut-off function on [0,+∞) such that

ϕ(r) = 1 on a ball contained in Ω and suppϕ ⊂ Ω. Define vε(x) = Vε(x)ϕ(|x|),
then we have from [28, Lemma 3.4] that∫

Ω

|vε|2
∗
dx = SN/2 +O

(
εN
)
,

∫
Ω

|∇vε|2 dx = SN/2 +O
(
εN−2

)
,(5.24) ∫

Ω

|vε|2
∗−1 dx = O

(
ε(N−2)/2

)
,

∫
Ω

|∇vε| dx = O
(
ε(N−2)/2

)
,(5.25)

and

(5.26)

∫
Ω

|vε|2 dx ≥

Cε2| ln(ε)|+O
(
ε2
)

for N = 4,

Cε2 +O
(
εN−2

)
for N ≥ 5.

Without loss of generality, we may assume that µ1 < 0. Now, set Vε =

(vε, 0, . . . , 0). Since Ω \ suppϕ is a nonempty open set in Ω, by [28, Lemma 3.3],

vε ∈ H1
0 (Ω) \ Ñm, where Ñm =

m⊕
i=1

Ni. It follows that Vε ∈ H \ Ñ ∗m, where Ñ ∗m
is given by (3.5). By Lemma 5.6, it suffices to show that

sup
t≥0,w∈Ñ∗

m

Eλ(tVε + w) <
1

N
SN/2.

Indeed, let Ω∗ = Ω\ suppϕ, then, by the convexity, we have that, for every t > 0

and w ∈ Ñ ∗m,

(5.27)

∫
Ω

|tvε +w1|2
∗
dx ≥

∫
Ω

(tvε)
2∗
dx+ 2∗

∫
Ω

(tvε)
2∗−1w1 dx+

∫
Ω∗

|w1|2
∗
dx,

which together with dim(Ñ ∗m) <∞ implies∫
Ω

|tvε + w1|2
∗
dx ≥

∫
Ω

(tvε)
2∗
dx+ 2∗

∫
Ω

(tvε)
2∗−1w1 dx+ C‖w1‖2

∗

1 .
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It follows from the Hölder inequality, the Sobolev embedding and dim
(
Ñ ∗m
)
<∞

that

Eλ(tVε + w) ≤ 1

2
‖tvε‖21 +

1

2
‖w‖2 − λG(w) + 〈tvε, w1〉1

− λ
∫

Ω

tvε

k∑
j=2

wj dx−
1

2∗

k∑
j=2

∫
Ω∗

|wj |2
∗
dx

− 1

2∗

∫
Ω

|tvε|2
∗
dx−

∫
Ω

(tvε)
2∗−1w1 dx− C‖w1‖2

∗

1

≤ 1

2
‖tvε‖21 −

1

2∗

∫
Ω

|tvε|2
∗
dx+

1

2
‖w‖2 − λG(w)

+

k∑
j=2

(
C‖wj‖j

∫
Ω

|∇tvε| dx− C ′‖wj‖2
∗

j

)

+ ‖w1‖1
(∫

Ω

|∇tvε| dx+

∫
Ω

|tvε|2∗−1 dx

)
− C ′‖w1‖2

∗

1 ,

which, together with (5.24), implies

Eλ(tVε + w) ≤ 1

2
‖tvε‖21 −

1

2∗

∫
Ω

|tvε|2
∗
dx+

1

2
‖w‖2 − λG(w)(5.28)

+

k∑
j=1

((
t+ t2

∗−1
)
O
(
ε(N−2)/2

)
‖wj‖j − C‖wj‖2

∗

j

)
.

We claim that there exists R0 > 0 independent of ε > 0 small enough such that

Eλ(tVε + w) ≤ 0 for t2 + ‖w‖2 ≥ R2
0.

Indeed, we redefine wj = ajw̃j , where ‖wj‖j = 1. We also use the notation

s = (t, a1, . . . , ak) ∈ R+ × Rk and R =

√
t2 +

k∑
j=1

a2
j . Since |aj/R| ≤ 1, by

(5.24)–(5.25) and (5.27), we have from the Sobolev embedding that

R−2∗
(∫

Ω

|tvε + w1|2
∗
dx+

k∑
j=2

∫
Ω

|wj |2
∗
dx

)
(5.29)

=

∫
Ω

∣∣∣∣ tR vε +
a1

R
w̃1

∣∣∣∣2∗

dx+

k∑
j=2

∫
Ω

∣∣∣∣ajR w̃j

∣∣∣∣2∗

dx

≥
(
t

R

)2∗

SN/2 +O
(
ε(N−2)/2

)
+

k∑
j=1

(
aj
R

)2∗

C

∫
Ω

|w̃j |2
∗
dx,

where O
(
ε(N−2)/2

)
is independent of t, aj , and R. Since |t/R| ≤ 1, we may

assume that t/R → t0 as R → +∞. If t0 = 0, then by R =

√
t2 +

k∑
j=1

a2
j , we
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must have from dim
(
Ñ ∗m
)
<∞ that

k∑
j=1

(
aj
R

)2∗

C

∫
Ω

|w̃j |2
∗
dx ≥ C ′ > 0

for R large enough. Otherwise, we have t0 > 0. It follows that (t/R)2∗SN/2 > C ′

for R large enough. Thus, by (5.29), there exists R′ > 0 independent of ε > 0

small enough such that

(5.30) R−2∗
(∫

Ω

|tvε + w1|2
∗
dx+

k∑
j=2

∫
Ω

|wj |2
∗
dx

)
≥ C ′

for ε > 0 small enough and R ≥ R′, where C ′ > 0 is independent of ε. Thanks

to 2∗ > 2, we have from (5.30) that there exists R0 ≥ R′ independent of ε > 0

small enough such that

Eλ(tVε + w) < 0 for R ≥ R0.

Now, let t ≤ R0. If N ≥ 5, then by (5.25), (5.26), and (5.28), we have from

Theorem 1.4, µ1 < 0 and a similar calculation as used in the proof of [28,

Lemma 3.5] that

Eλ(tVε + w) ≤ 1

N
SN/2 − Cε2 +O

(
εN(N−2)/(N+2)) <

1

N
SN/2

with ε > 0 small enough. If N = 4 and λm < λ < λm+1, then, by Theorem 1.4,

we have
1

2
‖w‖2 − λG(w) ≤ −C‖w‖2.

Thus, also by (5.25), (5.26), and (5.28), we have from µ1 < 0 and a similar

calculation as used in the proof of [28, Lemma 3.5] once more that

Eλ(tVε + w) ≤ 1

4
S2 − Cε2| ln(ε)|+O

(
ε2
)
<

1

4
S2

with ε > 0 small enough. Hence, we must have c̃λ < SN/2/N . �

Let B+
1,m =

{
u ∈

(
Ñ ∗m
)⊥ | ‖u‖ = 1

}
, where

(
Ñ ∗m
)⊥

is given by (3.5). For

every u ∈ B+
1,m, by Lemma 5.6, there exist unique tu > 0 and vu ∈ Ñ ∗m such

that tuu + vu ∈ Pm, where Pm is given by (5.12).

Now, let us consider the functional Ψλ : B+
1,m → R given by

(5.31) Ψλ(u) = Eλ(m(u)),

where m(u) = tuu + vu.

Lemma 5.8. Let N ≥ 3, µi > −α1 for all i = 1, . . . , k and λm ≤ λ < λm+1

for some m ∈ N. Then we have:

(a) Ψλ(u) is of C1 on B+
1,m. Moreover,

(5.32) Ψ′λ(u)w = E ′λ(m(u))[tuw] for all u,w ∈ B+
1,m.
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(b) ĉλ = c̃λ, where ĉλ = inf
B+
1,m

Ψλ(u) and c̃λ is given by (5.21).

(c) {un} is a (PS) sequence of Ψλ(u) if and only if {m(un)} is a (PS)

sequence of Eλ(u).

Proof. (a) We first assert that m(u) is continuous on B+
1,m. Let {un} ⊂ B+

1,m

such that un → u strongly in H as n → ∞. Then, by a similar argument as

used for (5.20), we can see that {m(un)} is bounded in H. Since dim(Ñ ∗m) <∞,

we may assume that tun → t0 and vun → v0 strongly in H as n→∞. It follows

that t0u + v0 ∈ Pm, where Pm is given by (5.12). Thanks to Lemma 5.6, we

must have t0u+v0 = m(u). Thus, m(u) is continuous on B+
1,m. Let u,w ∈ B+

1,m

and use the notation us = u + sw, where s ∈ R. Now, since vus ,vu ∈ Ñ ∗m, we

have from Taylor’s expansion and the definition of Pm that

Ψλ(us)−Ψλ(u) = Eλ(m(us))− Eλ(m(u)) = Eλ(tusus + vus)− Eλ(tuu + vus)

≤ Eλ(tusus + vus)− Eλ(tusu + vus) = E ′λ(tusu + vus)[tussw] + o(s)

and

Ψλ(us)−Ψλ(u) = Eλ(m(us))− Eλ(m(u)) = Eλ(tusus + vus)− Eλ(tuu + vu)

≥ Eλ(tuus + vu)− Eλ(tuu + vu) = E ′λ(tuu + vu)[tusw] + o(s).

By the continuity of m(u), we can see that tus → tu and vus → vu as s → 0.

Thus
∂Ψλ(u)

∂w
= lim
s→0

Ψλ(us)−Ψλ(u)

s
= E ′λ(m(u))[tuw].

Since ∂Ψλ(u)/∂w is continuous for u,w and is linear for w, by [30, Proposi-

tion 1.3], Ψ′λ(u) exists and (5.32) holds.

(b) By the definition of ĉλ and c̃λ, it is easy to see that ĉλ ≥ c̃λ. On the

other hand, by Lemma 5.5, for every u ∈ Pm, we have u⊥/‖u⊥‖ ∈ B+
1,m, where

u = ǔ+u⊥ with ǔ ∈ Ñ ∗m and u⊥ ∈
(
Ñ ∗m
)⊥

. By Lemmas 5.5 and 5.6, we can see

that there exists unique t = ‖u⊥‖ and v = ǔ such that m(u⊥/‖u⊥‖) = u ∈ Pm.

It follows that

Eλ(u) = Eλ
(
m

(
1

‖u⊥‖
u⊥
))

= Ψλ

(
1

‖u⊥‖
u⊥
)
≥ ĉλ.

Thus, we also have ĉλ ≤ c̃λ, which implies ĉλ = c̃λ.

(c) B1 = {u ∈ H | ‖u‖ = 1}. It is easy to see that B1 =
(
Ñ ∗m ∩ B1

)
⊕ B+

1,m.

Since E ′λ(m(u)) = 0 in Ñ ∗m⊕Ru by the definition of Pm, we have from (5.32)

that

‖Ψ′λ(u)‖ = sup
w∈B+

1,m

Ψ′λ(u)w = sup
w∈B+

1,m

E ′λ(m(u))[tuw](5.33)

= tu sup
z∈B1

E ′λ(m(u))z = tu‖E ′λ(m(u))‖.
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Since ĉλ = c̃λ > 0 by Lemma 5.7, we can see that {tun} is bounded away

from 0 if {un} is a (PS) sequence of Ψλ(u). On the other hand, if {m(un)}
is a (PS) sequence of Eλ(u), then by Lemma 5.7, we can apply a similar argu-

ment as used for (5.9) to show that {m(un)} is bounded in L2∗
(Ω). Recall that

m(un) = tunun + vun with {vun} ⊂ Ñ ∗m and dim
(
Ñ ∗m
)
< +∞, thus, {vun} is

also bounded, which together with {m(un)} ⊂ Pm and {un} ⊂ B+
1,m, implies

{tun} is bounded. Thus, by (5.33), {un} is a (PS) sequence of Ψλ(u) if and only

if {m(un)} is a (PS) sequence of Eλ(u). �

Recall that in the case N ≥ 4, mν = SN/2/N for ν > 0, whereas 0 < mν <

SN/2/N can be attained for ν < 0 in one of the following two cases:

(1) N = 4 and ν 6= −αm for all m ∈ N,

(2) N ≥ 5,

where mν is given by (1.13).

Proposition 5.9. Let N ≥ 4, µi > −α1 for all i = 1, . . . , k and λm ≤ λ <

λm+1 for some m ∈ N. If min{µ1, . . . , µk} < 0 and either

(a) N = 4, λm < λ < λm+1, or

(b) N ≥ 5,

then there exists ûλ ∈ Pm such that ûλ is a ground state solution to system (1.1)

that is also sign-changing. Moreover, if k = 2 or k ≥ 3 with

c̃λ < min
i,j=1,...,k, i 6=j

{mµi+λ +mµj+λ},

then ûλ is also nontrivial.

Proof. Since B+
1,m is a natural constraint in

(
Ñ ∗m
)⊥

, by applying Ekeland’s

variational principle and the implicit function theorem, we can see that Ψλ(u)

has a (PS) sequence {un} at the energy level ĉλ, where
(
Ñ ∗m
)⊥

is given by (3.5).

By Lemma 5.7, we can apply a similar argument as used for (5.9) to show

that {m(un)} is bounded in L2∗
(Ω). Recall that m(un) = tunun + vun with

{vun} ⊂ Ñ ∗m and dim
(
Ñ ∗m
)
< +∞, thus {vun} is also bounded, which to-

gether with {m(un)} ⊂ Pm and {un} ⊂ B+
1,m, implies {tun} is bounded. Hence,

{m(un)} is bounded in H. For simplicity, we denote m(un) by wn. By the

Sobolev embedding theorem and without loss of generality, we may assume that

wn ⇀ w0 weakly in H and wn → w0 strongly in Lq(Ω) for all 1 ≤ q < 2∗

as n→∞. Thanks to Lemma 5.7, by a similar argument as used in the proof of

Proposition 5.2, we must have w0 6= 0. Clearly, E ′λ(w0) = 0.

Let ŵn = wn − w0. Then ŵn ⇀ 0 weakly in H and ŵn → 0 strongly in

Lq(Ω) for all 1 ≤ q < 2∗ as n→∞. It follows from the Brezis–Lieb lemma that

Eλ(wn) = Eλ(wn) +

k∑
j=1

(
1

2

∫
Ω

|∇ŵnj |2 dx−
1

2∗

∫
Ω

|ŵnj |2
∗
dx

)
+ o(1)
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and

E ′λ(wn)wj
n = E ′λ(ŵn)ŵj

n + E ′λ(w0)wj
0 + o(1) for all j = 1, . . . , k,

where u1 = (u1, 0, . . . , 0) and uj = (0, . . . , uj , 0, . . . , 0) for j = 2, . . . , k. It follows

that ∫
Ω

∣∣∇ŵnj ∣∣2 dx =

∫
Ω

∣∣ŵnj ∣∣2∗

+ o(1)

for all j = 1, . . . , k. If ‖ŵn‖ ≥ C + o(1), then by a standard argument, we must

have that
k∑
j=1

(
1

2

∫
Ω

∣∣∇ŵnj ∣∣2 dx− 1

2∗

∫
Ω

∣∣ŵnj ∣∣2∗

dx

)
≥ 1

N
SN/2 + o(1),

which contradicts Lemma 5.7 and the fact that Eλ(w0) ≥ 0. Hence, wn → w0

strongly in H as n → ∞. Denote w0 by ûλ, then by Proposition 5.3, ûλ is

a ground state solution to system (1.1) that is also sign-changing. It remains to

show that ûλ is also nontrivial. If k = 2, then by the fact that system (1.1) is

strong coupled for k = 2, it is easy to see that ûλ is nontrivial. Let us show that

ûλ is also nontrivial for k ≥ 3 with

(5.34) c̃λ < min
i,j=1,...,k, i 6=j

{
mµi+λ +mµj+λ

}
.

Suppose the contrary, then there exists j ∈ {1, . . . , k} such that ûλj = 0. Without

loss of generality, we assume that ûλi 6= 0 for i = 1, . . . , i0 and ûλi = 0 for

i = i0 + 1, . . . , k with some i0 ∈ {1, . . . , k − 1}. By the fact that system (1.1) is

strong coupled for k = 2, it is easy to see i0 ≥ 2. On the other hand, since ûλ
is a solution to system (1.1), we have from ûλi = 0 for i = i0 + 1, . . . , k that ûλ
is also a solution to system (5.11), which implies that ûλi (i = 1, . . . , i0) are also

solutions to the following equation:−∆ui + (µi + λ)ui = |ui|2
∗−2ui in Ω,

ui = 0 on ∂Ω.

By the definition of mµi+λ given by (1.13), we must have from ui 6= 0 for all

i = 1, . . . , i0 that

(5.35) Jµi+λ
(
ûλi
)
≥ mµi+λ.

Note that by (5.11) once more, we have

G(u) =

i0∑
i,j=1 ,i6=j

∫
Ω

uiuj dx = −
i0∑
i=1

B2
ui,2,

which together with (5.35) and i0 ≥ 2, implies

Eλ
(
ûλ
)

=

i0∑
i=1

Jµi+λ
(
ûλi
)
≥ min
i,j=1,...,k, i 6=j

{
mµi+λ +mµj+λ

}
.



Linearly Coupled Brezis–Nirenberg System 727

This contradicts (5.34), which implies ûλ must be nontrivial if (5.34) holds. �

Remark 5.10. In the case k = 3, we can show that any nonzero solution u

must be nontrivial if µ1 6= µ2, µ1 6= µ3 and µ2 6= µ3. Indeed, suppose the

contrary, then as in the proof of Proposition 5.9, we must have i0 = 2 and u

satisfies: 
−∆u1 + µ1u1 = |u1|p−2u1 + λu2 in Ω,

−∆u2 + µ2u2 = |u2|p−2u2 + λu1 in Ω,

u1 + u2 = 0 in Ω,

u1 = u2 = 0 on ∂Ω.

It follows that (µ2 − µ1)u2 = 0 in Ω, which contradicts u2 6= 0 and µ1 6= µ2.

Proof of Theorem 1.8 follows immediately from Propositions 5.2–5.9.

6. The concentration behavior of uλ as λ→ λ1

Recall that uλ is the ground state solution obtained by Theorem 1.8 for

0 < λ < λ1 such that uλ ∈ P0 and Eλ(uλ) = cλ, where P0 and cλ are respectively

given by (5.1) and (5.2).

Proposition 6.1. Let N ≥ 4 and µi > −α1 for all i = 1, . . . , k. If we

also have min{µ1, . . . , µk} < 0, then for every {βn} ⊂ (0, λ1) with βn → λ1

as n → ∞, there exists a subsequence, which still denoted by {βn}, such that

uβn → 0 strongly in H as n→∞.

Proof. Let {βn} ⊂ (0, λ1) with βn → λ1 as n → ∞. Without loss of

generality, we may also assume that βn ↗ λ1 as n → ∞. Recall (5.2), we can

see from a similar argument as used in the proof of [19, Lemma 5.1] that cλ
is nonincreasing for λ ∈ (0, λ1). It follows from (5.5) that {uβn} is bounded

in H. Without loss of generality, we may assume that uβn ⇀ u0 weakly in H as

n → ∞. Since sup
n∈N

cβn < SN/2/N , by a similar argument as used in the proof

of Proposition 5.2, we can show that u0 6= 0 if lim
n→∞

cβn > 0, which contradicts

Proposition 5.3 owing to the fact that uβn are positive. Now, the conclusion

follows immediately from (5.5) once more. �

Finally, we get proof of Theorem 1.10. Since Proposition 6.1 holds, we can

obtain the conclusion by a standard arguments.
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