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A CONTINUATION LEMMA

AND THE EXISTENCE OF PERIODIC SOLUTIONS

OF PERTURBED PLANAR HAMILTONIAN SYSTEMS

WITH SUB-QUADRATIC POTENTIALS

Zaihong Wang — Tiantian Ma

Abstract. In this paper, we study the existence of periodic solutions of

perturbed planar Hamiltonian systems of the form{
x′ = f(y) + p1(t, x, y),

y′ = −g(x) + p2(t, x, y).

We prove a continuation lemma for a given planar system and further use

it to prove that this system has at least one T -periodic solution provided

that g has some sub-quadratic potentials.

1. Introduction

We are concerned with the existence of periodic solutions of a perturbed

planar Hamiltonian system

(1.1)

x′ = f(y) + p1(t, x, y),

y′ = −g(x) + p2(t, x, y),

where f, g : R → R are continuous, pi : R3 → R (i = 1, 2) are continuous and

T -periodic with respect to the first variable.
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In the case when f(y) = y, p1(t, x, y) ≡ 0 and p2(t, x, y) = p(t), system (1.1)

becomes x′ = y,

y′ = −g(x) + p(t),

which is equivalent to the second order differential equation

(1.2) x′′ + g(x) = p(t).

The periodic problems of equation (1.2) have been widely studied in literature.

In [9], A.C. Lazer proved the existence of periodic solutions of equation (1.2) by

assuming that g(x) satisfies the sublinear condition

(1.3) lim
|x|→+∞

g(x)

x
= 0

together with the sign condition

(1.4) sgn(x)(g(x)− p) ≥ 0, |x| ≥ d,

where

p =
1

T

∫ T

0

p(t) dt,

d is a positive constant. From then on, there have appeared many works which

generalized condition (1.3) in different manners (see [3], [5], [12], [14], [15] and

references therein). In particular, some one-sided growth conditions on g(x) or

its primitive G(x), which is defined by

G(x) =

∫ x

0

g(s) ds,

were introduced to study the periodic solutions of equation (1.2). J. Mawhin

and J.R. Ward proved in [12] the existence of periodic solutions of equation

(1.2) under (1.4) and

(1.5) lim sup
x→+∞

g(x)

x
<

(
π

T

)2

.

L. Fernandes and F. Zanolin [5] generalized (1.5) to condition

(1.6) lim inf
x→+∞

2G(x)

x2
<

(
π

T

)2

.

As to other nonresonance conditions on the potential G(x) for periodic solutions

of equation (1.2) one can check [13].

In the case when f(y) is nonlinear and p1(t, x, y) 6= 0, system (1.1) in gen-

eral can not be transformed into (1.2). The periodic problem of planar system

(1.1) is being studied with an increasing interests ([1], [2], [6]–[8], [16]). In [7],

the existence of periodic solutions of planar Hamiltonian systems of the type
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x′ = g1(t, y), y′ = −g2(t, x) was studied when g1, g2 : R2 → R (i = 1, 2) are con-

tinuous, T -periodic with the first variable and satisfy the asymmetric nonlinear

conditions,

µ± ≤ lim inf
y→±∞

g1(t, y)

y
≤ lim sup

y→±∞

g1(t, y)

y
≤ µ±,

ν± ≤ lim inf
x→±∞

g2(t, x)

x
≤ lim sup

x→±∞

g2(t, x)

x
≤ ν±,

uniformly for t ∈ [0, T ], where µ±, µ±, ν± and ν± are positive constants. It was

proved in [7] that the given system has at least one T -periodic solution provided

that the following condition holds,

[τ1, τ2] ∩
{
T

n
: n ∈ N0

}
= ∅,

where N0 denotes the set of positive integers and

τ1 =
π

2

(
1√
µ+

+
1√
µ−

)(
1√
ν+

+
1√
ν−

)
,

τ2 =
π

2

(
1
√
µ+

+
1
√
µ−

)(
1
√
ν+

+
1
√
ν−

)
.

In the present paper, we shall study the existence of periodic solutions of

system (1.1) when f satisfies the asymmetric nonlinear conditions and g has

some sub-quadratic potential. Assume that f satisfies the conditions as follows,

a+ ≤ lim inf
y→+∞

f(y)

y
≤ lim sup

y→+∞

f(y)

y
≤ a+,(h1)

a− ≤ lim inf
y→−∞

f(y)

y
≤ lim sup

y→−∞

f(y)

y
≤ a−,(h2)

where a± and a± are positive constants. Moreover, assume that there exists a

constant M0 > 0 such that

(h3) |pi(t, x, y)| ≤M0, for all t, x, y ∈ R and i = 1, 2.

Meanwhile, there exists a positive constant d1 such that

(g0) sgn(x)g(x) > M0, |x| ≥ d1.

We prove the following results.

Theorem 1.1. Assume that conditions (hi) (i = 1, 2, 3) and (g0) hold. Then

system (1.1) has at least one T -periodic solution provided that the inequality

lim inf
x→+∞

2G(x)

x2
<

(
cπ

T

)2

holds, where c is a constant defined by

c =
1

2

(√
a+

a+
+

√
a−

a−

)
.
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Corollary 1.2. Assume that conditions (hi) (i = 1, 2, 3) and (g0) hold.

Then system (1.1) has at least one T -periodic solution provided that G satisfies

lim inf
x→+∞

2G(x)

x2
= 0.

In particular, if g satisfies one-sided sublinear condition

(1.7) lim
x→+∞

g(x)

x
= 0,

then system (1.1) has at least one T -periodic solution.

Remark 1.3. In [8], Landesman–Lazer conditions were introduced to ensure

the existence of T -periodic solutions of planar systems

Ju′ = F (t, u), J =

(
0 −1

1 0

)
,

when, referring to equation (1.2), resonance occurs at the first eigenvalue (λ0 =

0) of the T -periodic problem. When g satisfies (1.7), system (1.1) can be con-

sidered as a perturbation of the (possibly) resonant system x′ = f(y), y′ = 0. In

case when f is piecewise linear, i.e. f(y) = ay+ − by−, where y+ = max(y, 0),

y− = max(−y, 0), a, b are two positive constants, we can write (1.1) in the form:

Ju′ = ∇H0(u) + r(t, u),

with u = (x, y) and

H0(u) =
1

2
ay+

2
+

1

2
by−

2
, r(t, u) = (g(x)− p2(t, x, y), p1(t, x, y)).

If (h3), (g0) hold and g satisfies double-sided sublinear condition

lim
|x|→+∞

g(x)

x
= 0,

then we can drive from [8, Corollary 3.1] that system (1.1) has at least one

T -periodic solution. However, the latter conclusion of Corollary 1.2 can not

be obtained from [8, Corollary 3.1] because g only satisfies one-sided sublinear

condition (1.7).

Corollary 1.4. Assume that (h3) and (g0) hold and there are constants

a > 0, b > 0 such that

lim
y→+∞

f(y)

y
= a, lim

y→−∞

f(y)

y
= b.

Then system (1.1) has at least one T -periodic solution provided that G satisfies

(1.8) lim inf
x→+∞

2G(x)

x2
<

(
lπ

T

)2

,
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where l = (1/
√
a+ 1/

√
b)/2. In particular, for any a > 0, b > 0, system

(1.9)

x′ = ay+ − by− + p1(t, x, y),

y′ = −g(x) + p2(t, x, y),

has at least one T -periodic solution provided that (1.8) holds.

Remark 1.5. Corollary 1.4 can be regarded as a generalization of the result

in [5]. In fact, if we take a = b = 1 and p1(t, x, y) ≡ 0, p2(t, x, y) = p(t), then

system (1.9) is equivalent to equation (1.2) and the condition (1.8) is exactly the

condition (1.6).

2. A continuation lemma

It is well known that continuation results based on coincidence theory are

widely used to study the existence of periodic solutions of differential equations.

In this section, we shall prove a continuation lemma for system (1.1). At first,

we imbed system (1.1) into a family of systems with one parameter λ ∈ [0, 1],

(2.1)

x′ = λ(f(y) + p1(t, x, y)),

y′ = λ(−g(x) + p2(t, x, y)).

Lemma 2.1. Assume that conditions (g0), (h3) hold and there exists a positive

constant d2 such that

(f0) sgn(y)f(y) > M0, |y| ≥ d2,

where M0 is from condition (h3). Suppose that there exists a constant ζ > d1
such that if (xλ(t), yλ(t)) is one T -periodic solution of (2.1) for some λ ∈ (0, 1],

then

max{xλ(t) : t ∈ [0, T ]} 6= ζ.

Then system (1.1) has at least one T -periodic solution.

We shall use a classical consequence of Mawhin’s continuation theorem [11]

to prove Lemma 2.1. For reader’s convenience, we restate it here.

Lemma 2.2. Let Ψ = Ψ(t, z;λ) : [0, T ] × Rm × [0, 1] → Rm be a continuous

function and let Ω ⊂ Rm be a (non-empty) open bounded set (with boundary ∂Ω

and closure Ω). Assume that the following conditions are satisfied:

(a) for any T -periodic solution z(t) of z′ = λΨ(t, z;λ) with λ ∈ (0, 1], such

that z(t) ∈ Ω, for all t ∈ [0, T ], it follows that z(t) ∈ Ω, for all t ∈ [0, T ];

(b) Ψ0(z) 6= 0, for each z ∈ ∂Ω and dB(Ψ0,Ω, 0) 6= 0, where

Ψ0(z) =
1

T

∫ T

0

Ψ(t, z; 0), for z ∈ Rm.
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Then the equation z′ = Ψ(t, z; 1) has at least one T -periodic solution z(t) ∈ Ω,

for all t ∈ [0, T ].

Proof of Lemma 2.1. We first prove that there is a constant M > 0

such that, if (x(t), y(t)) is one T -periodic solution of (2.1) with λ ∈ (0, 1] with

x(t) ≤ ζ, for t ∈ [0, T ], it follows that

|x(t)|+ |y(t)| ≤M, t ∈ [0, T ].

Let (x(t), y(t)) be any T -periodic solution of (2.1) satisfying x(t) ≤ ζ, t ∈ [0, T ].

Integrating both sides of y′ = λ(−g(x) + p2(t, x(t), y(t))), we have

(2.2)

∫ T

0

(g(x(t))− p2(t, x(t), y(t))) dt = 0.

Then we obtain

−
∫
I1

g(x(t)) dt =

∫
I2

g(x(t)) dt−
∫ T

0

p2(t, x(t), y(t)) dt,

where I1 = {t ∈ [0, T ] : x(t) ≤ −d1}, I2 = {t ∈ [0, T ] : x(t) ≥ −d1}. Therefore,

we have∫ T

0

|g(x(t))| dt = −
∫
I1

g(x(t)) dt+

∫
I2

|g(x(t))| dt

≤ 2

∫
I2

|g(x(t))| dt+

∫ T

0

|p2(t, x(t), y(t))| dt ≤ T (2M1 +M0),

where M1 = max{|g(x)| : −d1 ≤ x ≤ ζ}. Consequently, we get

(2.3)

∫ T

0

|y′(t)| dt = λ

∫ T

0

|g(x(t))− p2(t, x(t), y(t))| dt

≤
∫ T

0

|g(x(t))| dt+

∫ T

0

|p2(t, x(t), y(t))| dt ≤ 2T (M1 +M0).

Integrating both sides of x′(t) = λ(f(y) + p1(t, x(t), y(t))), we have∫ T

0

(f(y(t)) + p1(t, x(t), y(t))) dt = 0.

According to the mean value theorem, we know that there is t∗ ∈ [0, T ] such

that

f(y(t∗)) + p1(t∗, x(t∗), y(t∗)) = 0,

which implies |f(y(t∗))| ≤ M0. From condition (f0) we know |y(t∗)| < d2. We

infer from (2.3) that

|y(t)| ≤ |y(t∗)|+
∫ T

0

|y′(t)| dt < d2 + 2T (M0 +M1) , c1.
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Set M2 = max{|f(y)| : −c1 ≤ y ≤ c1}. Then we have∫ T

0

|x′(t)| dt = λ

∫ T

0

|f(y(t)) + p1(t, x(t), y(t))| dt ≤ T (M0 +M2).

From (2.2) we know that there is t∗ ∈ [0, T ] such that

g(x(t∗))− p2(t∗, x(t∗), y(t∗)) = 0,

which implies that |g(x(t∗))| ≤ M0. From (g0) we have |x(t∗)| < d1. Hence, we

get

|x(t)| ≤ |x(t∗)|+
∫ T

0

|x′(t)| dt < d1 + T (M0 +M2) , c2.

Set M = c1 + c2. Let us define an open set Ω ⊂ R2,

Ω = {(x, y) ∈ R2 : −M < x < ζ, |y| < M}.

If (x(t), y(t)) is any T -periodic solution of (2.1) satisfying (x(t), y(t)) ∈ Ω for all

t ∈ [0, T ], then x(t) ≤ ζ, t ∈ [0, T ]. From the conclusion above we know that

x(t) > −M , |y(t)| < M for t ∈ [0, T ]. Since max{x(t) : t ∈ [0, T ]} 6= ζ, we have

x(t) < ζ for all t ∈ [0, T ]. Therefore, (x(t), y(t)) ∈ Ω for all t ∈ [0, T ].

Let us define a function h : R2 → R2,

h(x, y) = (f(y) + p1(x, y),−g(x) + p2(x, y)),

where p1, p2 : R2 → R are defined by

p1(x, y) =
1

T

∫ T

0

p1(t, x, y) dt, p2(x, y) =
1

T

∫ T

0

p2(t, x, y) dt.

Obviously, |p1(x, y)| ≤M0, |p2(x, y)| ≤M0, for all (x, y) ∈ R2. We claim that

dB(h,Ω, 0) = 1.

To prove this claim, we consider a map H(x, y, λ) : R2 × [0, 1]→ R2,

H(x, y, λ) = (f(y) + λp1(x, y),−g(x) + λp2(x, y)).

Since M > max{d1, d2} and ζ > d1, we know from (f0) and (g0) that, for

x ∈ [−M, ζ] and λ ∈ [0, 1],

f(M) + λp1(x,M) 6= 0, f(−M) + λp1(x,−M) 6= 0

and for y ∈ [−M,M ] and λ ∈ [0, 1],

g(−M)− λp2(−M,y) 6= 0, g(ζ)− λp2(ζ, y) 6= 0.

Therefore, H(x, y, λ) 6= 0, for any (x, y) ∈ ∂Ω, λ ∈ [0, 1] and thus H is a ho-

motopic mapping. From the homotopy invariance theorem of degree we know

that

dB(h,Ω, 0) = dB(H( · , 1),Ω, 0) = dB(H( · , 0),Ω, 0).
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Since H(x, y, 0) = (f(y),−g(x)), we infer from (f0) and (g0) that

dB(H( · , 0),Ω, 0) = 1.

Thus, the claim is proved. According to Lemma 2.2, system (1.1) has at least

one T -periodic solution (x(t), y(t)) ∈ Ω for all t ∈ [0, T ]. �

Remark 2.3. Assume that (g0), (f0) and (h3) hold and there exists a constant

ζ > d2 such that if (xλ(t), yλ(t)) is a T -periodic solution of (2.1) for some

λ ∈ (0, 1], then max{yλ(t) : t ∈ [0, T ]} 6= ζ. Then we can also prove by using the

same method that system (1.1) has at least one T -periodic solution.

We now give an elementary application of Lemma 2.1.

Example 2.4. Assume that conditions (g0), (f0) and (h3) hold. Moreover,

g, f also satisfy the following conditions

lim sup
x→+∞

g(x)

x
< +∞,(g1)

lim
y→+∞

f(y)

y
= 0.(f1)

Then system (1.1) has at least one T -periodic solution.

Proof. From (g0) and (g1) we know that there exist constants a > 0, b > 0

such that

0 < g(x) ≤ ax+ b, x ≥ d1.

According to (f1), we have that, for any sufficiently small ε > 0, there is Aε > 0

such that

|f(y)| ≤ εy +Aε, y ≥ −d2.

Let (x(t), y(t)) be any T -periodic solution of (2.1) with x(t∗) = max{x(t) : t ∈
[0, T ]} > d1. Then, there is an interval [α, β] containing t∗, with 0 < β −α < T ,

such that

x(α) = x(β) = d1, x(t) > d1, t ∈ (α, β).

Since x′(t∗) = 0, we have that f(y(t∗)) + p1(t∗, x(t∗), y(t∗)) = 0. From condition

(f0) we know that |y(t∗)| < d2. When x(t) ≥ d1, t ∈ [α, t∗], it follows from (g0)

that y′(t) = λ(−g(x(t)) + p2(t, x(t), y(t))) ≤ 0 for t ∈ [α, t∗]. Therefore, y(t) ≥
−d2, t ∈ [α, t∗]. Integrating both sides of x′(t) = λ(f(y(t)) + p1(t, x(t), y(t)))

over the interval [α, t∗], we get

(2.4) x(t∗) ≤ A1 + ε

∫ t∗

α

|y(t)| dt,
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where A1 = d1 + T (Aε +M0). On the other hand, we have that, for t ∈ [α, t∗],

|y(t)| ≤ |y(t∗)|+
∫ t∗

t

|g(x(s))| ds+

∫ t∗

t

|p2(s, x(s), y(s))| ds(2.5)

≤ A2 + a

∫ t∗

t

|x(s)| ds ≤ A2 + aTx(t∗),

where A2 = d2 + T (b+M0). From (2.4) and (2.5) we get that

x(t∗) ≤ A1 + εTA2 + εaT 2x(t∗).

Take a small ε > 0 such that 0 < εaT 2 < 1. Then we have

x(t∗) ≤
A1 + εTA2

1− εaT 2
.

Since A1 > d1 and 0 < εaT 2 < 1, we know that (A1 + εTA2)/(1− εaT 2) > d1.

According to Lemma 2.1, system (1.1) has at least one T -periodic solution. �

3. Periodic solutions of planar systems

with sub-quadratic potentials

In this section, we shall use the continuation Lemma 2.1 to prove the existence

of periodic solutions of (1.1) under sub-quadratic potentials.

Proof of Theorem 1.1. From conditions (hi) (i = 1, 2) we know that

there exists d2 > 0 such that (f0) holds. Set

% = lim inf
x→+∞

2G(x)

x2
<

(
cπ

T

)2

.

Let us take a fixed constant η > 0 such that %η = %+ η < (cπ/T )2. From [4] we

know that there is a sequence {xn} such that lim
n→+∞

xn = +∞ and

(3.1) 2(G(xn)−G(x)) ≤ %η(x2n − x2), x ∈ (0, xn).

We claim that the condition of Lemma 2.1 holds with ζ = xn for a sufficiently

large n. Let (x(t), y(t)) be any T -periodic solution of system (2.1) and assume

by contradicition that max
t∈[0,T ]

x(t) = xn > d1 for a sufficiently large n.

Set max
t∈[0,T ]

x(t) = x(t∗), t∗ ∈ [0, T ]. Since∫ T

0

(g(x(t))− p2(t, x(t), y(t))) dt = 0,

there is t̃ ∈ [0, T ] such that g(x( t̃ )) = p2( t̃, x( t̃ ), y( t̃ )) and then |g(x( t̃ ))| ≤M0.

From condition (g0) we have that |x( t̃ )| < d1. Hence, there is an interval [α, β]

containing t∗, with 0 < β − α < T , such that

x(α) = x(β) = d1, x(t) > d1, t ∈ (α, β),

x′(t∗) = 0, y′(t) < 0, t ∈ [α, β].
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From (2.1) we have

(3.2) (−g(x(t)) + p2(t, x(t), y(t)))x′(t) = (f(y(t)) + p1(t, x(t), y(t)))y′(t).

Integrating both sides of (3.2) over interval [t, t∗] with α ≤ t ≤ t∗, we get

(3.3) F (y(t))− F (y(t∗)) = G(x(t∗))−G(x(t))

+

∫ t∗

t

p1(s, x(s), y(s))y′(s) ds−
∫ t∗

t

p2(s, x(s), y(s))x′(s) ds.

Since y′(t) < 0, t ∈ [α, t∗], we have that, for t ∈ [α, t∗],∣∣∣∣ ∫ t∗

t

p1(s, x(s), y(s))y′(s) ds

∣∣∣∣ ≤ ∫ t∗

t

|p1(s, x(s), y(s))||y′(s)| ds(3.4)

≤M0

∫ t∗

t

−y′(s) ds = M0(y(t)− y(t∗)).

Meanwhile, ∣∣∣∣ ∫ t∗

t

p2(s, x(s), y(s))x′(s) ds

∣∣∣∣ ≤M0

∫ t∗

t

|x′(s)| ds.

Note that x′(t∗) = 0, we have f(y(t∗))+p1(t∗, x(t∗), y(t∗)) = 0. Hence, |f(y(t∗))|
≤ M0. Furthermore, |y(t∗)| < d2. Set M = sup{|f(y)| + |p1(t, x, y)| : |y| ≤
d2, x ∈ R, t ∈ [0, T ]}. If t ∈ [α, t∗] and |y(s)| ≤ d2 for every s ∈ [t, t∗] , then

|f(y(s))|+ |p1(s, x(s), y(s))| ≤M, s ∈ [t, t∗].

In this case, we have∫ t∗

t

|x′(s)| ds ≤
∫ t∗

t

(|f(y(s))|+ |p1(s, x(s), y(s))|) ds ≤MT.

If t ∈ [α, t∗] and there is t ∈ [t, t∗] such that y(s) ≥ d2, s ∈ [t, t]; |y(s)| ≤ d2,

s ∈ [t, t∗], then we know from (f0) that x′(t) > 0, t ∈ [t, t]. In this case, we get

that∫ t∗

t

|x′(s)| ds =

∫ t

t

|x′(s)| ds+

∫ t∗

t

|x′(s)| ds

≤ x(t)− x(t) +MT ≤ x(t∗)− x(t) +MT.

It follows that, for t ∈ [α, t∗],

(3.5)

∣∣∣∣∫ t∗

t

p2(s, x(s), y(s))x′(s)ds

∣∣∣∣ ≤M0

∫ t∗

t

|x′(s)|ds ≤M0(x(t∗)−x(t))+M1,

where M1 = M0MT . From (3.3)–(3.5) we infer that, for t ∈ [α, t∗],

F (y(t))−F (y(t∗)) ≤ G(x(t∗))−G(x(t))+M0(y(t)−y(t∗))+M0(x(t∗)−x(t))+M1.

Since |y(t∗)| < d2, there is a constant D > 0 such that |F (y(t∗))| ≤ D. Therefore,

we get

(3.6) F (y(t))−M0y(t) ≤ G(x(t∗))−G(x(t)) +M0(x(t∗)− x(t)) +M2,
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where M2 = M1 + d2M0 + D. From (h1) we know that, for any 0 < ε < a+,

there is Mε > 0 such that

(3.7) (a+ − ε)y −Mε ≤ f(y) ≤ (a+ + ε)y +Mε, y ≥ −d2.

Hence, there is M ′ε > 0 such that

F (y) ≥ 1

2
(a+ − ε)y2 −Mεy −M ′ε, y ≥ −d2,

which, together with (3.6), implies that, for t ∈ [α, t∗],

(a+ − ε)y(t)2 − 2(Mε +M0)y(t)

≤ 2(G(x(t∗))−G(x(t))) + 2M0(x(t∗)− x(t)) + 2(M2 +M ′ε).

It follows that(
y(t)− Mε +M0

a+ − ε

)2

≤ 2

a+ − ε
(G(x(t∗))−G(x(t)) +M0(x(t∗)− x(t))) + c1.

where

c1 =
2(M2 +M ′ε)

a+ − ε
+

(
Mε +M0

a+ − ε

)2

.

Consequently, we obtain that, for t ∈ [α, t∗],

y(t) ≤

√
2

a+ − ε
(G(x(t∗))−G(x(t)) +M0(x(t∗)− x(t))) +

Mε +M0

a+ − ε
+
√
c1.

Since

x′(t) = λ(f(y(t)) + p1(t, x(t), y(t))),

we know from (3.7) that, for t ∈ [α, t∗],

(3.8) x′(t) ≤ a+ + ε√
a+ − ε

√
2(G(x(t∗))−G(x(t)) +M0(x(t∗)− x(t))) + c2,

where

c2 = (a+ + ε)

(
Mε +M0

a+ − ε
+
√
c1

)
+Mε +M0.

As a result, we infer from (3.8) that

t∗ − α ≥
√
a+ − ε
a+ + ε

∫ x∗

d1

dx√
2(G(x∗)−G(x)) + 2M0(x∗ − x) + c3

,

where x∗ = x(t∗) and c3 = c2
√
a+ − ε/(a+ + ε). From (3.1) we get

t∗ − α ≥
√
a+ − ε
a+ + ε

∫ x∗

d1

dx√
%η(x2∗ − x2) + 2M0(x∗ − x) + c3

=

√
a+ − ε
a+ + ε

∫ 1

0

dt√
%η(1− t2)

+ o(1) =
π
√
a+ − ε

2(a+ + ε)
√
%η

+ o(1),
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where the notation o(1) means an infinitesimal as x∗ → +∞. Similarly, we can

obtain

β − t∗ ≥
π
√
a− − ε

2(a− + ε)
√
%η

+ o(1).

Therefore, we have

β − α ≥ π

2
√
%η

(√
a+ − ε
a+ + ε

+

√
a− − ε
a− + ε

)
+ o(1).

Since

ρη <

(
cπ

T

)2

and c =
1

2

(√
a+

a+
+

√
a−

a−

)
,

we get

lim
ε→0+

π

2
√
%η

(√
a+ − ε
a+ + ε

+

√
a− − ε
a− + ε

)
=

cπ
√
%η

> T,

which implies that there is ε0 > 0 such that, for 0 < ε < ε0, β − α > T . This

is a contradicition. Therefore, there is a sufficiently large xn > d1 such that, for

any T -periodic solution (x(t), y(t)) of (2.1), we have max{x(t) : t ∈ [0, T ]} 6= xn.

According to Lemma 2.1, system (1.1) has at least one T -periodic solution. �

Remark 3.1. In [10], the existence of periodic solutions of Rayleigh equations

(3.9) x′′ + f(t, x′) + g(x) = p(t)

was studied, where f : R×R is continuous and T -periodic with the first variable,

g, p : R → R are continuous and p is T -periodic. Obviously, equation (3.9) is

equivalent to the planar system

(3.10)

x′ = y,

y′ = −g(x)− f(t, y) + p(t),

which is of the form of system (1.1). Assume that the following conditions hold:

(c1) There is a constant d > 0 such that

sgn(x)g(x) > sup{|f(t, 0)|+ |p(t)| : t ∈ R}, |x| ≥ d;

(c2) f satisfies sublinear condition:

lim
|y|→+∞

f(t, y)

y
= 0 uniformly with t ∈ [0, T ];

(c3) The primitive G of g satisfies

lim inf
x→+∞

2G(x)

x2
<

(
π

T

)2

.
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It was proved in [10] that equation (3.9) has at least one T -periodic solution,

which implies that system (3.10) has at least one T -periodic solution. We can

see that there are similarities between the conditions of the result in [10] and

the conditions of Theorem 1.1. However, it follows from (c2) that f(t, y) maybe

unbounded and in this case, the conditions (h3), (g0) of Theorem 1.1 are not

satisfied. Thus Theorem 1.1 does not include the result in [10].

Acknowledgments. The authors are grateful to the referee for many valu-

able suggestions to make the paper more readable.
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