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Abstract. A second order semilinear impulsive functional differential in-
clusion in a separable Hilbert space is considered. Without imposing hy-
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where the multivalued nonlinearity of the inclusion is a completely continu-
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1. Introduction

In this paper we consider the following approximate controllability problem

for second order semilinear impulsive functional differential inclusion with delay:

(CIP)


(x′′ −Ax)(t) ∈ F (t, xt) +Bu(t), a.e. t ∈ I \ {t1, . . . , tm}, I = [0, a];

x(t+k )− x(t−k ) = ϕk(x(t−k )), k = 1, . . . ,m;

x′(t+k )− x′(t−k ) = ψk(x(t−k )), k = 1, . . . ,m;

x(t) = φ(t), x′(0) = ξ, t ∈ J0, J0 = [−r, 0],

where 0 < r, a < +∞ and 0 = t0 < t1 < . . . < tm < tm+1 = a; the linear operator

A : D(A) ⊂ X → X is the infinitesimal generator of a strongly continuous cosine

family {C(t)} in a real separable Hilbert space X; x : [−r, a] → X is a state

function; u( · ) ∈ L2(I, U) is a control function, U is a Hilbert space and B is

a compact linear operator from U into X. The nonlinearity F : I × Θ ( X, is

a multivalued map, Θ is called a phase space consisting of a class of functions

from J0 into X; ϕk, ψk : X → X are all single valued mappings, x(t+k ) and x(t−k )

represent the right and left limits of x(t) at t = tk, respectively; φ ∈ Θ, ξ ∈ X.

For any function x defined on [−r, a] and any t ∈ I, xt ∈ Θ is defined by

xt(θ) = x(t+ θ), θ ∈ J0 = [−r, 0].

Here xt( · ) represents the history of the state up to the present time t.

In the mathematical control theory, controllability plays an important role

(see Klamka [18], [22]). In the past decades, the study of controllability problems

described as abstract differential equations or inclusions in infinite-dimensional

spaces acquired an growing interest for many researchers, see [1], [2], [11], [19],

[23], [26], [28], [29], [38], [41] and the references therein. It should be mentioned

that there are many different definitions of controllability. Constrained control-

lability problems for linear or semilinear systems in infinite-dimensional spaces

were discussed (see [20], [21] for examples). Two basic concepts of controllability

can be distinguished which are exact and approximate controllability. In general

infinite-dimensional spaces, the concept of exact controllability is usually too

strong; the one of approximate controllability is more useful in applications (see

[9], [27], [32], [37], [31] for examples). Approximate controllability of semilinear

functional equations was considered by Dauer and Mahmudov [8]. In addition,

Rykaczewski [31] studied approximate controllability for semilinear differential

inclusion. Approximate controllability of semilinear impulsive functional dif-

ferential systems was discussed by Grudzka et al. in [13] and Sakthivel et al.

in [33]. Henŕıquez and Hernández M [15] studied approximate controllability of

second-order distributed implicit functional systems.

In many cases, it is advantageous to treat the second order differential sys-

tems directly rather than to convert them to first order systems. It is known
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that the study for second order semilinear systems in abstract spaces relies on

the theory of cosine families. Some strict compactness assumptions imposed on

the cosine families imply that the underlying space is of finite dimension (see [4]).

But there is a lot of difficulty in discuss under some noncompactness assump-

tions. Recently, Obukhovskĭı et al. [29] studied the controllability problem for

a system governed by a semilinear differential inclusion in a Banach space with

a noncompact semigroup; Das et al. [7] studied approximate controllability of

a second order neutral differential equation with state dependent delay. In their

approach to overcoming the difficulty, computing measures of noncompactness

plays a key role.

Our purpose in this paper is to establish criteria for the approximate con-

trollability problem (CIP) without imposing hypotheses of compactness on the

cosine family of operators. Up to now, to the best of our knowledge, no results

are available for approximate controllability concerning second-order impulsive

functional differential inclusion, when the main conditions only depend on the lo-

cal properties of multivalued map on bounded sets. Motivated by the work in [7],

[13], [15], [24], [29], [39], in this paper, we establish some sufficient conditions

for approximate controllability in the case where the multivalued nonlinearity

of the inclusion is a completely continuous map dominated by a function. By

using a fixed point theorem for condensing multivalued maps and developing

appropriate computing techniques for the Hausdorff product measures of non-

compactness, we derive some results of approximate controllability for position

and velocity.

2. Preliminaries and problem formulation

Throughout this paper, we denote by R, R+ and Z+ the sets of real numbers,

nonnegative real numbers and positive integers, respectively.

For a1, a2 ∈ R, we denote by a1∨a2 = max{a1, a2} and a1∧a2 = min{a1, a2}.
Moreover, J0 = [−r, 0], I = [0, a], I1 = [0, t1], and Ik = (tk−1, tk], k = 2, . . . ,

m+ 1.

Let X be a real separable Hilbert space with the norm ‖ · ‖. For E ⊂ X, the

notation E stands for the closure of E.

Let U be another Hilbert space. By B(U,X) we mean the Banach space of all

bounded linear operators from U into X with the norm | · |∗, and we abbreviate

this notation to B(X) when U = X.

For B ∈ B(U,X), B∗ denotes its adjoint. Let J∗ be a compact interval in R.

By C(J∗, X) we denote the Banach space consisting of continuous function

from J∗ into X with the norm

‖x‖C = sup
t∈J∗
‖x(t)‖
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and C1(J∗, X) the Banach space of continuously differentiable functions endowed

with the norm

‖x‖C1 = sup
t∈J∗

[
‖x(t)‖+ ‖x′(t)‖

]
.

We will consider the space of piece-wise continuous functions

PC1(I) =
{
x : I → X | x′(t) is continuous at t 6= tk,

and x(t) is left continuous at t = tk,

and x(t+k ), x′(t+k ), x′(t−k ) exist, k = 1, . . . ,m
}
.

When endowed with the norm ‖x‖� = sup
t∈I

[
‖x(t)‖+‖x′(t)‖

]
, PC1(I) is a Banach

space. For x ∈ PC1(I) we have x′−(tk) = x′(t−k ), where x′−(tk) is the left

derivative of x(t) at t = tk. We will consider the phase space Θ. Suppose

that

Θ =
{
x : J0 → X; x is continuously differentiable everywhere

except for a finite number of points at which

x(s+), x(s−), x′(s+) and x′(s−) exist and x(s) = x(s−)
}
.

Endowed with the integral norm

‖x‖Θ =
1

r

∫ 0

−r

[
‖x(t)‖+ ‖x′(t)‖

]
dt,

it is clear that Θ is a linear normed space. We do not consider the space Θ with

the sup norm, because it creates problems: the function xt is not necessarily

measurable (see Example 3.1 in [14]). Notice that the same construction can be

applied also in [6], [13]. The phase space Θ is a one of initial trajectories, from

which solutions of System (CIP) start their lives. Set J = J0 ∪ I = [−r, a]. For

a function x : J → X, xbI denotes the restriction of x to I. Let

PC1(J) =
{
x : J → X | xbI∈ PC1(I) and xbJ0∈ Θ

}
.

For x ∈ PC1(J), the norm of x is defined by ‖x‖∗ = max{‖x‖Θ, ‖x‖�}. Clearly,

PC1(J) is a linear normed space. It is evident that xn → x in PC1(J) if and

only if xn → x in Θ and in PC1(I).

We denote by P(X) the family of all nonempty subsets of X and put

Pcl(X) = {Z ∈ P(X) : Z is closed},

Pbd(X) = {Z ∈ P(X) : Z is bounded},

Pcp(X) = {Z ∈ P(X) : Z is compact},

Pcv,cp(X) = {Z ∈ P(X) : Z is compact and convex}.

Let Y be a metric space. For Z ⊂ Y and y ∈ Y , we denote by d(y, Z) the distance

from y to Z. Let T : Y ( X be a multivalued map. A point z ∈ Y ⊂ X is
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called a fixed point of T if z ∈ T (z). The fixed point set of T will be denoted

by Fix(T ). T is a closed graph map if the graph of T is closed in Y × X. For

V ⊂ X, suppose that T+(V ) = {y ∈ Y : T (y) ∩ V 6= ∅}. T is called upper

semicontinuous (u.s.c. for short) if for each nonempty closed set V ⊂ X, T+(V )

is closed in Y . T is said to be precompact if T (D) is relatively compact in X

for each bounded subset D of Y . T is said to be completely continuous (see [5])

if it is u.s.c. and precompact. T is said to be quasicompact if T (D) is relatively

compact in X for each relatively compact set D ⊂ Y .

Lemma 2.1 (see [10]). If T : Y → Pcp(X) is quasicompact and has closed

graph, then T is an u.s.c. map.

Let βH be the Hausdorff measure of noncompactness. A multivalued map

T : Y ( X is said to be βH-condensing if, for each bounded non-relatively-

compact subset E of Y , T (E) is bounded and satisfies βH(T (E)) < βH(E).

The following fixed point theorem for condensing multivalued maps will be

needed.

Lemma 2.2 (see [25], [30]). Let X be a Banach space and T : X → Pcp,cv(X)

an u.s.c. βH-condensing multivalued map. Then either

(a) Fix(T ) 6= ∅, or

(b) the set Ω = {u ∈ X : ∃λ > 1, λu ∈ T (u)} is unbounded.

Let L(I) be the Lebesgue σ-algebra of I. A multivalued map T : I ( X

is said to be measurable if for each closed set V ⊂ X, T+(V ) ∈ L(I). If T is

measurable and has nonempty closed values, then T admits a measurable selector

(see [3]). By L1(I,X) we denote the Banach space of all Bochner integrable

mapping from I into X with the norm

‖x‖L1 =

∫ a

0

‖x(t)‖ dt

and L2(I, U) the Hilbert space of all Bochner square integrable mapping from I

into U with the norm

‖u‖L2 =

(∫ a

0

‖u(t)‖2 dt
)1/2

.

A multivalued map T : I ( X is said to be integrable if it admits a integrable

selector; and to be integrably bounded if there exists a function p0 ∈ L1(I,R+)

such that sup
z∈T (t)

‖z‖ ≤ p0(t) for almost every t ∈ I. If T : I ( X is an integrable,

integrably bounded multivalued map such that βH(T (t)) ≤ α(t) for almost every

t ∈ I, where α ∈ L1(I,R+), then (see [16], [29])

βH

(∫ t

0

T (s) ds

)
≤
∫ t

0

α(s) ds, for all t ∈ I.
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For the Hausdorff product measures of noncompactness, the following inequali-

ties will be needed.

Lemma 2.3 (see [40]). Let X1, X2 be two Banach spaces, and P ∈ B(X1, X2).

The norm in X1 ×X2 is defined by

‖(x1, x2)‖ = ‖x1‖+ ‖x2‖, for (x1, x2) ∈ X1 ×X2.

(a) If D ⊂ X1 is bounded, then βH(PD) ≤ |P |∗βH(D).

(b) If D1 ⊂ X1 and D2 ⊂ X2 are bounded, then

βH(D1 ×D2) ≤ βH(D1) + βH(D2).

Lemma 2.4 (see [40]). Let J∗ be a compact interval in R, Q ⊂ C1(J∗, X) and

t ∈ J∗. Let Q(t), Q(J∗), Q
′(t), Q′(J∗) be subsets of X defined respectively by

Q(t) = {x(t) : x ∈ Q}, Q(J∗) = {x(t) : x ∈ Q, t ∈ J∗},

Q′(t) = {x′(t) : x ∈ Q}, Q′(J∗) = {x′(t) : x ∈ Q, t ∈ J∗}.

If Q is bounded in C1(J∗, X) and Q′ is equicontinuous in C(J∗, X), then

(a) βH(Q(J∗)) = max
t∈J∗

βH(Q(t)) and βH(Q′(J∗)) = max
t∈J∗

βH(Q′(t)).

(b) βH(Q(J∗)) ∨ βH(Q′(J∗)) ≤ βH(Q) ≤ βH(Q(J∗)) + βH(Q′(J∗)).

Let F : I ×Θ( X be a multivalued map. F is said to be locally integrably

bounded (or αλ-locally integrably bounded) if for each λ > 0, there exists αλ ∈
L1(I,R+) such that

‖u‖Θ ≤ λ ⇒ sup{‖z‖ : z ∈ F (t, u)} ≤ αλ(t) for a.e. t ∈ I.

For x ∈ PC1(J), we use the notation S1
F (x) to denote the set of integrable

selectors (possibly empty), i.e.

(2.1) S1
F (x) =

{
f ∈ L1(I,X) : f(t) ∈ F (t, xt) for a.e. t ∈ I

}
.

The following lemma is a consequence of Lemma 3.8 in [40].

Lemma 2.5 (see [40]). Let F : I × Θ → Pcp,cv(X) be a map such that t 7→
F (t, xt) is measurable and u 7→ F (t, u) is u.s.c. and locally integrably bounded.

Then:

(a) the map S1
F : PC1(J)( L1(I,X) has nonempty, closed, convex values;

(b) if Γ: L1(I,X) → PC1(J) is a continuous linear operator, then Γ ◦
S1
F : PC1(J)( PC1(J) is a closed graph map.

A one-parameter family {C(t) : t ∈ R} of bounded linear operators is called

a strongly continuous cosine family in X if

(C1) C(0) = IX (IX is the identity operator);

(C2) C(t+ τ) + C(t− τ) = 2C(t)C(τ) for all t, τ ∈ R;

(C3) for each x ∈ X, the mapping C(t)x is continuous in t ∈ R.
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If {C(t) : t ∈ R} is a strongly continuous cosine family, then {S(t) : t ∈ R}
is the associated sine family defined by

S(t)x =

∫ t

0

C(τ)x dτ, x ∈ X, t ∈ R.

The infinitesimal generator A : D(A) ⊂ X → X of a cosine family is a linear

operator defined by

Ax =
d2

dt2
C(t)x

∣∣∣∣
t=0

, x ∈ D(A),

where D(A) = {x ∈ X : C(t)x is twice continuously differentiable in t}. Also, E

denotes the space E = {x ∈ X : C(t)x is once continuously differentiable in t}.
We refer to Travis and Webb [35], [36] for the detailed study of the family of

cosine and sine operators. It is knows that A is a closed linear operator in D(A),

D(A) ⊂ E and D(A) = X. Moreover, {S(t) : t ∈ R} is uniformly continuous,

and there exist M0 ≥ 1 and ω > 0 such that

|C(t)|∗ ≤M0e
ω|t| and |S(t)− S(r)|∗ ≤M0

∣∣∣∣ ∫ t

r

eω|τ | dτ

∣∣∣∣, for t, r ∈ R.

Let M = (1 ∨ a)M0e
ωa. For t, r ∈ I and τ ∈ [0, t ∧ r], we have the following

inequalities: |C(t)|∗ ≤M , |S(t)|∗ ≤M and

(2.2) |S(t− τ)− S(r − τ)|∗ ≤ 2M |S((t− r)/2))|∗.

It is known from Kisińsky [17], that E endowed with the norm ‖x‖E = ‖x‖ +

sup
t∈I
‖AS(t)x‖ is a Banach space. From this definition it follows that MA =

sup
t∈I
|AS(t)|∗ ≤ 1 in B(E,X). If an operator W ∈ B(X), then we have W ∈

B(E,X) and |W |∗B(E,X) ≤ |W |∗B(X) since ‖ · ‖ ≤ ‖ · ‖E . Therefore, for t, s ∈ I,

τ ∈ [0, t ∧ r] we have

(2.3) |C(t− τ)− C(s− τ)|∗ ≤ 2MA|S((t− s)/2)|∗ in B(E,X).

For the sake of explicit, the space E mentioned in the sequel means (E, ‖ · ‖E).

In order to address the problem, we shall introduce some operators as prepa-

ration.

Definition 2.6. A function x ∈ PC1(J) is said to be a mild solution of class

C1 (see [34]) or C1-solution of the system (CIP) if there exists f ∈ L1(I,X) such

that f(t) ∈ F (t, xt) almost everywhere on I, and x(t) is given by

x(t) =

φ(t), t ∈ J0,

z(t), t ∈ I,
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where

z(t) =C(t)φ(0) + S(t)ξ(2.4)

+
∑

0<tk<t

[
C(t− tk)ϕk(x(tk)) + S(t− tk)ψk(x(tk))

]
+

∫ t

0

S(t− τ)f(τ) dτ +

∫ t

0

S(t− τ)Bu(τ) dτ ;

its derivative is given by

x′(t) =

φ′(t), t ∈ J0,

z′(t), t ∈ I,

where

z′(t) =AS(t)φ(0) + C(t)ξ(2.5)

+
∑

0<tk<t

[
AS(t− tk)ϕk(x(tk)) + C(t− tk)ψk(x(tk))

]
+

∫ t

0

C(t− τ)f(τ)dτ +

∫ t

0

C(t− τ)Bu(τ) dτ.

Definition 2.7. For every initial state φ ∈ Θ with φ(0) ∈ E and ξ ∈ E,

system (CIP) is said to be position approximate controllable on J if

R(a;φ, ξ) = X, where R(a;φ, ξ) = {x(a;φ, ξ;u) | u ∈ L2(I, U)};

and is said to be velocity approximate controllable on J if

R′(a;φ, ξ) = X, where R′(a;φ, ξ) = {x′(a;φ, ξ;u) | u ∈ L2(I, U)}.

Next, we introduce the following two resolvent operators. Let

(2.6)

Υa
0 =

∫ a

0

S(a− τ)BB∗S∗(a− τ) dτ,

Ψa
0 =

∫ a

0

C(a− τ)BB∗C∗(a− τ) dτ

be two controllability Gramian operators. Then the resolvent operators

R(δ,−Υa
0), R(δ,−Ψa

0) ∈ B(X) for δ > 0

are given by

(2.7) R(δ,−Υa
0) = (δIX + Υa

0)−1 and R(δ,−Ψa
0) = (δIX + Ψa

0)−1,

where IX is the identity operator on X. Since the operators Υa
0 and Ψa

0 are

clearly positive, R(δ,−Υa
0) and R(δ,−Ψa

0) are well defined.
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Definition 2.8. Let F : I × Θ ( X be a multivalued map and S1
F (x) 6= ∅

for all x ∈ PC1(J), where S1
F (x) is defined by (2.1). For every xa, x

1
a ∈ X,

x ∈ PC1(J) and f ∈ S1
F (x), define the control maps

(2.8) ux(t) = B∗S∗(a− t)R(δ,−Υa
0)
{
p(x) : f ∈ S1

F (x)
}
, for t ∈ I,

where

p(x) =

[
xa − C(a)φ(0)− S(a)ξ −

∫ a

0

S(a− τ)f(τ) dτ

−
m∑
k=1

C(a− tk)ϕk(x(tk)) + S(a− tk)ψk(x(tk))

]
.

And u1
x(t) = B∗C∗(a− t)R(δ,−Ψa

0)
{
p1(x) : f ∈ S1

F (x)
}

, for t ∈ I, where

p1(x) =

[
x1
a −AS(a)φ(0)− C(a)ξ −

∫ a

0

C(a− τ)f(τ) dτ

−
m∑
k=1

AS(a− tk)ϕk(x(tk)) + C(a− tk)ψk(x(tk))

]
.

It is evident that ux and u1
x are all multivalued maps, and ux, u

1
x ⊂ L2(I, U).

Definition 2.9. Let F : I × Θ ( X be a multivalued map and S1
F (x) 6= ∅

for all x ∈ PC1(J), where S1
F (x) is defined by (2.1). Let Γ: L1(I,X)→ PC1(I)

and Γ� : L2(I, U)→ PC1(I) be linear operators defined by

(Γf)(t) =

∫ t

0

S(t− τ)f(τ) dτ, t ∈ I;(2.9)

(Γ�ux)(t) =

∫ t

0

S(t− τ)Bux(τ) dτ, t ∈ I.(2.10)

Let Λ0,Λ: PC1(I)→ PC1(I) be single valued mappings (t ∈ I) defined by

(Λ0x)(t) = C(t)φ(0) + S(t)ξ;(2.11)

(Λx)(t) =
∑

0<tk<t

[C(t− tk)ϕk(x(tk)) + S(t− tk)ψk(x(tk))].(2.12)

For x ∈ PC1(I), we define a multivalued map T : PC1(I)( PC1(I) by

(2.13) Tx =
{
y ∈ PC1(I) : y(t) = (Λ0x)(t) + (Λx)(t)

+ (Γ�ux)(t) + (Γf)(t), f ∈ S1
F (x)},

i.e. Tx = Λ0x+ Λx+ Γ�ux +
(
Γ ◦ S1

F

)
(x). Replacing ux by u1

x in the definition

of T , we define a multivalued map T1 : PC1(I)( PC1(I) by

(2.14) T1x = {y ∈ PC1(I) : y(t) = (Λ0x)(t) + (Λx)(t)

+ (Γ�u
1
x)(t) + (Γf)(t), f ∈ S1

F (x)},
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i.e. T1x = Λ0x+ Λx+ Γ�u
1
x +

(
Γ ◦ S1

F

)
(x).

Let Γ̂ : L1(I,X) → PC1(J) and Γ̂� : L2(I, U) → PC1(J) be linear operators

defined by

(
Γ̂f
)
(t) =

0, t ∈ J0,

(Γf)(t), t ∈ I;
and

(
Γ̂�ux

)
(t) =

0, t ∈ J0,

(Γ�ux)(t), t ∈ I.

Let Λ̂0, Λ̂ : PC1(J)→ PC1(J) be single valued mappings defined by

(Λ̂0x)(t) =

φ(t), t ∈ J0,

(Λ0x)(t), t ∈ I;
and (Λ̂x)(t) =

0, t ∈ J0,

(Λx)(t), t ∈ I.

For x ∈ PC1(J), we define multivalued maps T̂ , T̂1 : PC1(J)( PC1(J) by

T̂ x = Λ̂0x+ Λ̂x+ Γ̂�ux + (Γ̂ ◦ S1
F )(x);

T̂1x = Λ̂0x+ Λ̂x+ Γ̂�u
1
x + (Γ̂ ◦ S1

F )(x).

Note that T̂ bΘ and T̂1bΘ are constant functors, T̂ bPC1(I)= T and T̂1bPC1(I)= T1.

It is clear that, if there exists x ∈ Fix(T ) or x ∈ Fix(T1), and let

x̂(t) =

φ(t), t ∈ J0,

x(t), t ∈ I,

then x̂ ∈ Fix(T̂ ) or x̂ ∈ Fix(T̂1). Hence, from (2.4) and (2.5) we see that x̂ is

a C1-solution of the system (CIP).

Concerning the operators A and B, we assume the following hypothesis

(where Υa
0 , Ψa

0 , R(δ,−Υa
0) and R(δ,−Ψa

0) are defined by (2.6) and (2.7)):

(HA) A is an infinitesimal generator of a strongly continuous cosine family

{C(t) : t ∈ R}; {S(t) : t ∈ R} is a sine family; and MA = sup
t∈I
|AS(t)|∗

in B(E,X).

(HB) δR(δ,−Υa
0)→ 0 as δ → 0+, in operator strong topology (pointwise).

(H1
B) δR(δ,−Ψa

0)→ 0 as δ → 0+, in operator strong topology (pointwise).

3. Criteria for approximate controllability

Theorem 3.1. Let φ ∈ Θ with φ(0) ∈ E and ξ ∈ E. Let (HA), (HB) and

the following conditions be satisfied:

(HI) For the mappings ϕk, ψk : X → E, there exist constants ak, bk > 0 (k =

1, . . . ,m) such that for all x, y ∈ X,

‖ϕk(x)− ϕk(y)‖E ≤ ak‖x− y‖, ‖ψk(x)− ψk(y)‖E ≤ bk‖x− y‖.
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(HF ) F : I × Θ → Pcp,cv(E) is a completely continuous map such that t 7→
F (t, xt) is measurable for x ∈ PC1(J) and almost every t ∈ I and there

exist a function α ∈ L1(I,R+) and a continuous nondecreasing function

Φ: R+ → R+ \ {0} such that for all w ∈ Θ and almost every t ∈ I,

sup{‖z‖E : z ∈ F (t, w)} ≤ α(t)Φ(‖w‖Θ).

If γ = 2(M ∨MA)
m∑
k=1

(ak + bk) < 1 and

(3.1)

∫ +∞

1

dτ

Φ(τ)
= +∞,

then the system (CIP) is position approximate controllable on J .

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2. Let T be a multivalued map defined by (2.13). If S1
F (x) 6= ∅ for

all x ∈ PC1(J), then Tx ⊂ PC1(I) for all x ∈ PC1(I), i.e. T is well defined.

Proof. Let Γ, Γ�, Λ0, Λ be defined by (2.9)–(2.12), respectively. Suppose

that x ∈ PC1(I), f ∈ S1
F (x) and t ∈ I. From the strong continuity of S(t) and

C(t) we see that Γf,Γ�ux,Λ0x ∈ C(I,X). Suppose that

x(t) =

x(t), t ∈ Ik;

x(t+k−1), t = tk−1,
and x′(t) =

x′(t), t ∈ Ik;

x′(t+k−1), t = tk−1.

It is clear that x ∈ PC1(I) if and only if x ∈ C1(Ik, X) for k = 1, . . . ,m + 1.

Hence, from the strong continuity of S(t) and C(t) it is easy to check that Λx is

continuous in each Ik and (Λx)(t+k−1) exists. Moreover, for t ∈ I we have

(Γf)′(t) =

∫ t

0

C(t− τ)f(τ) dτ ;(3.2)

(Γ�ux)′(t) =

∫ t

0

C(t− τ)Bux(τ) dτ ;(3.3)

(Λ0x)′(t) = AS(t)φ(0) + C(t)ξ;(3.4)

(Λx)′(t) =
∑

0<tk<t

[AS(t− tk)ϕk(x(tk)) + C(t− tk)ψk(x(tk))].(3.5)

From (3.2)–(3.5) it is easy to see that (Γf)′, (Γ�ux)′, (Λ0x)′ ∈ C(I,X) and

(Λx)′(t) is continuous in each Ik and (Λx)′(t+k−1) exists. Hence, Γf , Γ�ux, Λ0x,

Λx in PC1(I), and so we obtain Tx ⊂ PC1(I). �

Lemma 3.3. Suppose that (HA) is satisfied. Then Γ: L1(I,X) → PC1(I)

and Γ� : L2(I, U)→ PC1(I) are all continuous linear operators, and

‖Γf‖� ≤ 2M‖f‖L1 ;(3.6)

‖Γ�u‖� ≤ 2M
√
a |B|∗‖u‖L2 .(3.7)



364 J.-Z. Xiao — X.-H. Zhu

Proof. It is enough to check that Γ and Γ� are bounded. In fact, for

f ∈ L1(I,X) and u ∈ L2(I, U), from (2.9), (3.2), (2.10), (3.3) and (2.2) we have

‖Γf‖� = sup
t∈I

[‖(Γf)(t)‖+ ‖(Γf)′(t)‖]

≤ sup
t∈I

[ ∫ t

0

‖S(t− τ)f(τ)‖ dτ +

∫ t

0

‖C(t− τ)f(τ)‖ dτ
]
≤ 2M‖f‖L1 ;

‖Γ�u‖� = sup
t∈I

[‖(Γ�u)(t)‖+ ‖(Γ�u)′(t)‖]

≤ 2M |B|∗
∫ a

0

‖u(τ)‖ dτ ≤ 2M
√
a |B|∗‖u‖L2 ,

which shows that (3.6) and (3.7) hold, and so Γ and Γ� are bounded. �

Lemma 3.4. Let S1
F be defined by (2.1) and (HF ) be satisfied. Then S1

F (x) 6=∅
and S1

F (x) is convex and closed for all x ∈ PC1(I).

Proof. If λ > 0 is given and ‖u‖Θ ≤ λ, then from (HF ) we have

sup{‖z‖E : z ∈ F (t, u)} ≤ α(t)Φ(λ), for a.e. t ∈ I.

This shows that F is α( · )Φ(λ)-locally integrably bounded. Since t 7→ F (t, xt) is

measurable, by Lemma 2.5 (a) we see that S1
F (x) 6= ∅ and S1

F (x) is convex and

closed for all x ∈ PC1(J). This implies that S1
F (x) 6= ∅ and S1

F (x) is convex and

closed for all x ∈ PC1(I). �

Lemma 3.5. Γ ◦ S1
F is precompact in PC1(I).

Proof. If D is a bounded subset of PC1(J), then there exists λ1 > 0 such

that ‖x‖∗ ≤ λ1 for all x ∈ D. This implies that ‖x‖Θ ≤ λ1. Thus, by (HF )

there exists α ∈ L1(I,R+) such that ‖f(t)‖E ≤ α(t)Φ(λ1) for all f ∈ S1
F (D) and

almost every t ∈ I. Since for each f ∈ S1
F (D),

‖S(t− τ)f(τ)‖ ≤MΦ(λ1)α(τ) and ‖C(t− τ)f(τ)‖ ≤MΦ(λ1)α(τ),

we see that {S(t− τ)f(τ) : f ∈ S1
F (D)} and {C(t− τ)f(τ) : f ∈ S1

F (D)} are all

integrably bounded multivalued maps at τ ∈ I. By (HF ), {f(τ) : f ∈ S1
F (D)} ⊂

{F (τ, xτ ) : x ∈ D} is relatively compact. Thus, according to Lemma 2.3 (a), we

obtain

βH{S(t− τ)f(τ) : f ∈ S1
F (D)} = 0 and βH{C(t− τ)f(τ) : f ∈ S1

F (D)} = 0.

Hence, for each fixed t ∈ I we have

βH

(∫ t

0

{
S(t− τ)f(τ) : f ∈ S1

F (D)
}
dτ

)
= 0,

βH

(∫ t

0

{
C(t− τ)f(τ) : f ∈ S1

F (D)
}
dτ

)
= 0.
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This shows that, for each fixed t ∈ I,{∫ t

0

S(t− τ)f(τ)dτ : f ∈ S1
F (D)

}
and

{∫ t

0

C(t− τ)f(τ) dτ : f ∈ S1
F (D)

}
are all relatively compact inX. Next we show that Γ̂◦S1

F (D) is an equicontinuous

family of PC1(J). Let f ∈ S1
F (D), t, r ∈ I and 0 ≤ r < t ≤ a. Then, using (2.2)

and (2.3), from (2.9) and (3.2) we have∥∥(Γf)(t) − (Γf)(r)
∥∥

≤
∥∥∥∥∫ t

0

[S(t− τ)− S(r − τ)]f(τ) dτ

∥∥∥∥+

∥∥∥∥ ∫ t

r

S(r − τ)f(τ) dτ

∥∥∥∥
≤ 2MΦ(λ1)‖α‖L1 |S((t− r)/2)|∗ +MΦ(λ1)

∫ t

r

α(τ) dτ ;∥∥(Γf)′(t) − (Γf)′(r)
∥∥

≤
∥∥∥∥∫ t

0

[C(t− τ)− C(r − τ)]f(τ) dτ

∥∥∥∥+

∥∥∥∥∫ t

r

C(r − τ)f(τ) dτ

∥∥∥∥
≤ 2

∥∥∥∥AS((t− r)/2)

∫ t

0

S((t+ r)/2− τ)f(τ) dτ

∥∥∥∥+MΦ(λ1)

∫ t

r

α(τ)dτ.

Hence, from the uniform continuity of S(t), the absolutely integral continuity

of α, the relative compactness of
{ ∫ t

0
S((t + r)/2 − τ)f(τ) dτ : f ∈ S1

F (D)
}

we

see that ‖(Γf)(t)− (Γf)(r)‖ → 0 and ‖(Γf)′(t)− (Γf)′(r)‖ → 0 hold uniformly

as t− r → 0. This shows that Γ̂ ◦S1
F (D) is an equicontinuous subset of PC1(J).

As a consequence of the Arzela–Ascoli theorem, Γ̂ ◦S1
F (D) is relatively compact

in PC1(J). Hence Γ̂ ◦ S1
F is precompact in PC1(J). This follows that Γ ◦ S1

F is

precompact in PC1(I). �

Lemma 3.6. Γ ◦ S1
F : PC1(I)→ Pcp,cv(PC1(I)) is a closed graph map.

Proof. By Lemmas 3.3–3.5, Γ ◦ S1
F (x) is convex and compact for all x ∈

PC1(I). From the proof of Lemma 3.4 we see that F is α( · )Φ(λ)-locally in-

tegrably bounded. Since F is an u.s.c. map, the assertion is valid by Lem-

ma 2.5 (b). �

Lemma 3.7. Λ is γ-Lipschitz, where γ = 2(M ∨MA)
m∑
k=1

(ak + bk).

Proof. Let x, y ∈ PC1(I) be fixed and t ∈ I. By (2.12), (3.5) and (HI) we

have

‖Λx− Λy‖� = sup
t∈I

[‖(Λx)(t)− (Λy)(t)‖+ ‖(Λx)′(t)− (Λy)′(t)‖]

≤ ‖x− y‖�
[
2(M ∨MA)

m∑
k=1

ak + 2M

m∑
k=1

bk

]
≤ γ‖x− y‖�,

which shows that Λ is γ-Lipschitz. �
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Lemma 3.8. Γ�ux : PC1(I)→ Pcp,cv(PC1(I)) is a closed graph map.

Proof. Since Γ� : L2(I, U) → PC1(I) is continuous by Lemma 3.3, it is

enough to prove that ux : PC1(I)( L2(I, U) is a closed graph map with compact

and convex values. From (2.8) we see that

(3.8) ux(t) = B∗S∗(a− t)R(δ,−Υa
0)p(x),

where p(x) = xa − (Λ0x)(a)− (Λx)(a)− (Γ ◦ S1
F (x))(a).

It is evident that Λ0 : PC1(I) → PC1(I) is continuous. In view of Lemma 3.7,

Λ: PC1(I) → PC1(I) is also continuous. Hence, from (3.8) and Lemma 3.6

it follows that ux has closed graph. Also, according to (3.8) and Lemmas 3.4

and 3.5, ux has compact and convex values. �

Proof of Theorem 3.1. Let T be a multivalued map defined by (2.13).

By Lemmas 3.4 and 3.2, T (x) ⊂ PC1(I) for all x ∈ PC1(I). Next, we show that

T is a βH -condensing multivalued map. Suppose that D is a bounded subset

of PC1(I). It is evident that βH(Λ0(D)) = 0. From Lemma 3.5 we see that

βH(Γ ◦ S1
F (D)) = 0. We claim that

(3.9) βH{Γ�ux : x ∈ D} = 0.

In fact, using the same manner as the proof of Lemm 3.5 we can check that

{(Γ�ux)′ : x ∈ D} is equacontinuous in I. It is easy to see that {p(x) : x ∈ D} is

bounded. Since B is compact, B∗ is compact, and so is B∗S∗(a− τ)R(δ,−Υa
0).

From (3.8) we have βH{ux(τ) : x ∈ D} = 0. In view of Lemmas 2.3 (a) and 2.4

we obtain

βH{Γ�ux : x ∈ D} ≤ max
t∈I

βH

{∫ t

0

S(t− τ)Bux(τ) dτ : x ∈ D
}

+ max
t∈I

βH

{∫ t

0

C(t− τ)Bux(τ) dτ : x ∈ D
}

≤ 2

∫ a

0

M |B|∗βH{ux(τ) : x ∈ D} dτ = 0,

i.e. (3.9) holds. Therefore, from (3.9) and Lemma 3.7 we have

βH(T (D)) ≤ βH(Λ0(D)) + βH(Λ(D)) + βH{Γ�ux : x ∈ D}

+ βH(Γ ◦ S1
F (D)) = βH(Λ(D)) ≤ γβH(D),

which shows that T is a βH -condensing map due to γ < 1. This implies that T

is quasicompact. From Lemmas 3.6 and 3.8 it is easy to see that T : PC1(I) →
Pcp,cv(PC1(I)) has closed graph. Therefore, we conclude that T is u.s.c. with

compact and convex values due to Lemma 2.1. It remains to show that the set

Ω = {y ∈ PC1(I) : ∃λ > 1, λy ∈ T (y)} is bounded. Let y ∈ Ω be any element.
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Then there exist λ > 1 and fy ∈ S1
F (y) such that λy = Λ0y + Λy + Γfy + Γ�uy.

Thus, for each t ∈ I, from λ−1 < 1 we have

(3.10) ‖y(t)‖+ ‖y′(t)‖ ≤ ‖(Λ0y)(t)‖+ ‖(Λ0y)′(t)‖+ ‖Λy)(t)‖

+ ‖Λy)′(t)‖+ ‖Γfy(t)‖+ ‖(Γfy)′(t)‖+ ‖Γ�uy(t)‖+ ‖(Γ�uy)′(t)‖.

Suppose that C1 and C2 are constants given by

C1 = (M +MA)‖φ(0)‖E + 2M‖ξ‖E ;

C2 = 2(M ∨MA)

m∑
k=1

[‖ϕk(0)‖E + ‖ψk(0)‖E ].

Then, for t ∈ I, from (HF ) and (HI) we have the following estimates:

‖(Λ0y)(t)‖+ ‖(Λ0y)′(t)‖ ≤ (M +MA)‖φ(0)‖E + 2M‖ξ‖E = C1;(3.11)

‖(Γfy)(t)‖+ ‖(Γfy)′(t)‖ ≤ 2M

∫ t

0

α(τ)Φ(‖yτ‖Θ) dτ ;(3.12)

‖(Λy)(t)‖+ ‖(Λy)′(t)‖ ≤ 2(M ∨MA)
∑

0<tk<t

(ak + bk)‖y(tk)‖+ C2.(3.13)

By (HB) and (2.8) we have ‖δR(δ,−Υa
0)p(y)‖ → 0 as δ → 0+. This implies that,

for all t ∈ I,

δ[‖Γ�uy(t)‖+ ‖(Γ�uy)′(t)‖]→ 0 as δ → 0+.

Hence, we can suppose that

(3.14) ‖Γ�uy(t)‖+ ‖(Γ�uy)′(t)‖ ≤ δ−1, t ∈ I.

Consider the function µ(t) defined by

µ(t) = sup{‖y(τ)‖+ ‖y′(τ)‖ : τ ∈ [0, t]}, t ∈ I.

Let ν(t), σ(t) be functions defined by ν(t) = ‖φ‖Θ + µ(t) and

σ(t) =
‖φ‖Θ + C1 + C2 + δ−1

1− γ
+

2M

1− γ

∫ t

0

α(τ)Φ(ν(τ)) dτ.

Then ‖y(tk)‖ ≤ µ(t) if 0 < tk < t. From λy ∈ T (y) we see that

‖y‖Θ ≤ λ−1‖φ‖Θ ≤ ‖φ‖Θ.

Thus, for each t ∈ I, we have ‖yt‖Θ ≤ max{‖φ‖Θ, µ(t)} ≤ ν(t). Since Φ is

nondecreasing, we have Φ(‖yt‖Θ) ≤ Φ(ν(t)). From (3.11)–(3.14) and (3.10) it

follows that

(3.15) µ(t) ≤ C1 + C2 + δ−1 + γν(t) + 2M

∫ t

0

α(τ)Φ(ν(τ)) dτ.

Thus, by (3.15) and γ < 1 we have

(3.16) ν(t) ≤ ‖φ‖Θ + C1 + C2 + δ−1

1− γ
+

2M

1− γ

∫ t

0

α(τ)Φ(ν(τ)) dτ = σ(t).
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Note that σ(0) = (‖φ‖Θ + C1 + C2 + δ−1)/(1− γ) < +∞. Using the nonde-

creasing character of the function Φ we obtain

σ′(t) =
2M

1− γ
α(t)Φ(ν(t)) ≤ 2M

1− γ
α(t)Φ(σ(t)).

This implies that

(3.17)

∫ σ(t)

σ(0)

dτ

Φ(τ)
≤ 2M

1− γ

∫ a

0

α(τ) dτ < +∞.

From (3.1) and (3.17) it follows that σ(t) is bounded in I. Hence, there exists

a constant ρ� such that σ(t) ≤ ρ� for all t ∈ I; and so, for each y ∈ Ω we have

‖y‖� = µ(a) ≤ ν(a) ≤ σ(a) ≤ ρ�, which shows that Ω is bounded.

Notice that PC1(I) is a Banach space. As a consequence of Lemma 2.2 we

deduce that T has at least one fixed point, and so T̂ has at least one fixed point.

Let x be a fixed point of T̂ , then x( · ;φ, ξ;u) is the mild solution of System (CIP)

under the control u given by (2.4). Thus, there is f ∈ S1
F (x) such that

x(a) =x(a;φ, ξ;u) = (Λ0x)(a) + (Λx)(a) + (Γ�ux)(a) + (Γf)(a)

= (Λ0x)(a) + (Λx)(a) + (Γf)(a)

+

∫ a

0

S(a− τ)BB∗S∗(a− τ)R(δ,−Υa
0)p(x) dτ,

where p(x) = xa−(Λ0x)(a)−(Λx)(a)−(Γf)(a). By the definition of the operators

Υa
0 and R(δ,−Υa

0), we have

(3.18) x(a)− xa = −δR(δ,−Υa
0)[xa − (Λ0x)(a)− (Λx)(a)− (Γf)(a)].

From (3.18) and assumption (HA) we know that the system (CIP) is position

approximate controllable on the interval J . �

In the same manner as the proof of Theorem 3.1, by means of the resolvent

operator R(δ,−Ψa
0) and the operator T1 defined by (2.14), we have the following

consequence.

Theorem 3.9. Let φ ∈ Θ with φ(0) ∈ E and ξ ∈ E. Let (HA), (H1
B) hold

and conditions (HI), HF ) in Theorem 3.1 be satisfied. If

γ = 2(M ∨MA)

m∑
k=1

(ak + bk) < 1 and

∫ +∞

1

dτ

Φ(τ)
= +∞,

then the system (CIP) is velocity approximate controllable on J .
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4. An example

In this section, as an application of our results we consider the following

controllability problem for second order partial delay differential inclusions:

(PCIP)



ytt(t, ω)− yωω(t, ω) ∈ F (t, y(t− s, ω)) +Bu(t),

t ∈ I \ {tk}mk=1,

ω ∈ Ω, s ∈ J0;

y(t, 0) = y(t, π) = 0, t ∈ I;

y(t+k , ω)− y(tk, ω) = ϕk(y(tk, · ), ω), k = 1, . . . ,m;

yt(t
+
k , ω)− yt(t−k , ω) = ψk(y(tk, · ), ω), k = 1, . . . ,m;

y(s, ω) = φ(s, ω), yt(0, ω) = ξ(ω), s ∈ J0,

where I = [0, a], J0 = [−r, 0], Ω = [0, π]; u( · ) ∈ L2(I,R); tk ∈ (0, a), ξ( · ) ∈
L2(Ω,R); B is a compact linear operator; F : I×R( R is a multivalued function

and φ : J0 × Ω → R is a single function such that φ( · , ω) : J0 → L2(Ω,R) is

continuously differentiable.

We put y(t, · ) = x(t) and choose the space X = L2(Ω,R). Define A : D(A) ⊂
X → X by Ax = x′′ with domain

D(A) = {x ∈ X : x and x′ are absolutely continuous,

x′′ ∈ X and x(0) = x(π) = 0},

then yωω(t, ω) = Ax(t), and it is well known that (see [12], [17], [35] for more

details)

E = {x ∈ X : x are absolutely continuous, x′ ∈ X and x(0) = x(π) = 0};

A has the spectral representation

Ax =

∞∑
n=1

−n2〈x, en〉en, x ∈ D(A),

where {−n2 : n ∈ Z+} is the discrete spectrum of A and{
en : en(ω) =

√
2

π
sinnω, ω ∈ Ω, n ∈ Z+

}
is the orthogonal set of normalized eigenfunctions. Also, it can be shown that A is

the infinitesimal generator of the strongly continuous cosine family {C(t) : t ∈ R}
given by

C(t)x =

∞∑
n=1

cosnt 〈x, en〉 en, x ∈ X,

and the associated sine family is given by

S(t)x =

∞∑
n=1

sinnt

n
〈x, en〉 en, x ∈ X,
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We endow E with the norm ‖ · ‖E and take the spaces Θ and PC1 as above.

Then the control system (PCIP) is converted into (CIP). Let conditions (HA),

(HB), (H1
B), (HF ) and (HI) in Theorems 3.1 and 3.9 are satisfied. If γ < 1 and∫ +∞

1
dτ/Φ(τ) = +∞, then the system (PCIP) is approximately controllable for

position and velocity.
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