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NONOSCILLATORY SOLUTIONS OF
HIGHER ORDER NONLINEAR NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

YONG ZHOU

ABSTRACT. Consider the forced higher order nonlinear
neutral functional differential equation

Lyp(z(t) + cx(t — 1)) + F(t,z(o(¢))) = g(t), ¢>to.

We obtain a global result, with respect to ¢, which are some
sufficient conditions for the existence of a nonoscillatory so-
lution of the above equation. Our results improve essentially
and extend a number of existing results.

1. Introduction. Consider the forced higher order nonlinear neutral
functional differential equation

(1) Ln(z(t) + ca(t — 7)) + F(t,z(c(t)) = g(t), t=>to,
where

Loz(t) = 2(1),

Lyx(t) = rkl(t) (Lp_1z(t)), k=1,2,....,n (’ = %),

Tk : [t07OO) - (0500)7 k = 172a"' y IV — 1a Tn = 1a 0,9 : [to,OO) - Ra
and F': [tp,00) x R — R, tp > 0, are continuous, o(t) — oo as t — oo.

A nontrivial solution = of equation (1) is said to be oscillatory if z
has arbitrarily large zeros. Otherwise, = is said to be nonoscillatory.
That is, x is nonoscillatory if there exists a t; > o such that z(t) # 0
for t > t1. In other words, a nonoscillatory solution must be eventually
positive or eventually negative, see [7, 9].
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Oscillation theory of neutral functional differential equations has
developed very rapidly in recent years. It has concerned itself largely
with the oscillatory and nonoscillatory properties of solutions, see, e.g.,
[1-15] and the references cited therein. The problem of obtaining
sufficient conditions to ensure that all solutions of equation (1) and
the special forms of equation (1) are oscillatory has been studied by a
number of authors, see [1-4, 7, 9, 11, 14]. Existence of nonoscillatory
solutions of first order or higher order neutral differential equations has
also been obtained in [2, 3, 5, 6, 8, 10, 12, 13, 15].

In [7], the authors study the first order functional differential equation

d

2 fl

(2) p

They proved the following result by using the Banach contraction
mapping principle:

(z(t) +cx(t— 7))+ F(t,z(a(t))) = g(t), t>to.

Theorem A [7]. Assume that
(Cl) -l<e<];

(Co) |F(t,x)| < |F(t,y)|, as |z| < |y|, and for each closed interval
[d1,d2], 0 < dy < dg, there exists L(t) such that |F(t,xz) — F(t,y)| <
L)z —y|, z,y € [d1,dz], and j;zo L(s)ds < oo.

Further, assume that

/ |F(s,d)|ds < oo, for some d#0,

to
and

| lats)las < .

to

Then (2) has a bounded nonoscillatory solution.

In [12], Pathi and Rath investigate the existence of nonoscillatory
solutions of first order neutral differential equation

(3) S le(r) +erlt— ]+ QU lt — ) = a(t), 1210,

where @ € C([t,, ), R),0 > 0.
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Theorem B [12]. Assume that
(C3)e>0o0rc<—1;

(Cy) Q(t) > 0, f € C(R,R) is nondecreasing, xf(x) > 0 for any
x # 0 and f satisfy the Lipschitz condition on intervals of the type
[a,b], 0 < a<b.

Further, assume that

AWM@®<W, AMMﬂ®<u»

Then equation (3) has a nonoscillatory solution.

In [3], Agarwal, Grace and O’Regan give an existence criteria for
nonoscillatory solutions of the second order neutral differential equation

(4)  Lo(e(t) + calt — 7)) + F(t,2(0(t)) = g(t), ¢ > to.

Theorem C [3]. Assume the following:
(Cs) [el # 1;
(Co) 2F(t,x) > 0 for z # 0, |[F(t, )| < |[F(t,y)] for |z] <[y, zy > 0.

If
/7“1(81)/ |F(s,K)|dsds; < oo

t() S1
for some constant K # 0, then (4) has a bounded nonoscillatory
solution.

For the second order neutral functional differential equation with
positive and negative coefficients

d2
(5) g @O Fert—1)+Qit)a(t—o1) = Qa(t)at —o2) =0,
t Z t07
where ¢ # +1, o1 > 0, 02 > 0, Q1(t) > 0 and Q2(t) > 0, Kulenovic

and Hadziomerspahic [10] proved the following results by using Banach
contraction mapping principle.
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Theorem D [10]. Assume that
(07) C 75 :|:1,
(Cs) a@Q1(t) — Q2(t) > 0, for every t > T and a > 0.
Further, assume that
(o) o0
/t sQ1(s)ds < o0, / §Q2(s)ds < 0.
0 to

Then equation (5) has a nonoscillatory solution.

In [7], the existence result of nonoscillatory solution for higher order
functional differential equation

(6) (z(t) + cx(t — 7)™ + F(t,z(c(t))) =0, ¢ > to,

has been obtained.

Theorem E [7]. Assume that
(CQ) c< 07
(C1o) F is nondecreasing in x, F(t,z)x <0 for (t,z) € [to,0) X R.

Further, assume that

/ s"YF(s,K)|ds < 0o, forany K #0.

to

Then equation (6) has a nonoscillatory solution.

Our aim in this paper is to investigate the existence of nonoscillatory
solutions of equation (1). By using Krasnoselskii’s and Schauder’s
fixed point theorems and some new techniques, we obtain a global
result, with respect to ¢, which are some sufficient conditions for the
existence of a nonoscillatory solution of equation (1). Our results
improve and extend Theorems A, B, C, D and E by removing the
restrictive conditions (C1)—(Cyg).

2. Main results. The following fixed point theorems will be used
to prove the main results in this section.
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Lemma 1 [7] (Krasnoselskii’s fixed point theorem). Let X be a
Banach space, let Q be a bounded closed convex subset of X and let
S1, So be maps of Q into X such that Six + Soy € Q for every pair
x,y € Q. If S1 is a contraction and Sy is completely continuous, then
the equation

Siz+ Ser=x

has a solution in Q.

Lemma 2 [7, 9] (Schauder’s fixed point theorem). Let Q be a closed,
convex and nonempty subset of a Banach space X. Let S : Q0 — § be a
continuous mapping such that SQ is a relatively compact subset of X.
Then S has at least one fixed point in Q). That is, there exists an x € )
such that St = x.

Theorem 1. Assume that ¢ # —1 and that there exists an interval
[a,b] € RT such that

) /:n(sl) / °°<> JR

n—2

o0
X / sup |F(s,w)|dsdsp—1---ds1 < o0,
Sn—1 WE[a,b]

and

®) /: ay) °°<> / °°2rn1<sn1)

n—

x/ lg(s)|dsdsp_1---ds; < 0.

Sn—1

Then (1) has a bounded nonoscillatory solution.

Proof. The proof of this theorem will be divided into five cases in
terms of ¢. Let C([tg,o0), R) be the set of all continuous functions
with the norm |[|z|| = sup;s,, [#(t)] < co. Then C([to,o0),R) is a
Banach space. We define a closed, bounded and convex subset {2 of
C([to, 00), R) as follows:

Q={z=2xz(t) € C([tp,©),R) :a < x(t) <b, t > 1o}
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Case 1. For the case —1 < ¢ <0, by (7) and (8), we choose a T' > 1
sufficiently large such that

/T°° 7“1(51)/51oo 7“2(52)"'/30027”n—1(5n—1)

n—

X / ( sup |F(s,w)|+ \g(s)|) dsdsp_1---ds; <
s ]

Sn—1 SwE€la,b

(c+1)(b—a)
—

Define two maps 57 and Sy : Q — C([tg, 00), R) as follows:

(c+1)(a+b)
(S1z)(t) = { —5—— —alt-71) t=T,
(S12)(T) to<t<T.
(S22)(t)

/OO (F(s,x(o(s)))—g(s)) dsdsp_1---ds;  t>T,

Sn—1

(S22)(T) to<t<T.

i) We shall show that, for any z,y € Q, Siz + Say € Q.
In fact, for every z,y € Q and t > T, we get

(S1z)(t) + (Sa2y)(t)
< W —cx(t—T)+/too7“1(51)/:o7"2(52)"'

st

n—2

<[ (1 o)+ o)) dsdsy - d

n—
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< w_cb_y/wm(sl)/wm(sz)...

T S1

../:O Tr-1(Sn_1)

n—2
o0
X / sup |F(s,w)|+ |g(s)\) dsdsp_1---dsy
Sn_1 SwE€la,b]

< (c+1)(a+0b) bt (c+1)(b—a)

=b.
- 2 2

Furthermore, we have

(S1z)(t) + (Sa2y)(t)
> W —cx(t—T) —/t 7“1(51)/31 ra(s) -+

/°° Pt (1)

n—2

<[ (P a6+ b)) ds s -y

Sn—1

2w—ca—/wﬁ(sl)/wﬁ(sz)'“

T S1

[e%S)
: / rn—l(sn—l)
Sn—2

X / sup |F(s,w)|+ |g(s)\> dsds, 1 ---ds

sn—1 ~wE€[a,b]

< (c+1)(a+b) ca— (c+1)(b—a)

- 2 2

Hence,
a < (S12)(t) + (Say)(¥) < b, for t>tp.

Thus we have proved that Sjz 4+ Soy € Q for any z,y € Q.
ii) We shall show that S; is a contraction mapping on .

In fact, for z,y € Q and t > T, we have

[(S12)(8) = (S1y) ()] < —clae(t —7) —y(t = 7)| < = cfle —y]|.
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This implies that
[S1z = Swyl] < —cllz —yl|.

Since 0 < —c¢ < 1, we conclude that S; is a contraction mapping on 2.
iii) We now show that S is completely continuous.

First, we will show that Ss is continuous. Let xp = x4 (t) € Q be such
that x(t) — z(t) as k — oo. Because Q is closed, x = z(t) € Q. For
t > T, we have

|(S225) (t) = (Sa)(1)]
)

o0 o0 o0
< / r1(s1 / ra(s2) - / Tn—1(8n—1)
t S1 Sn—2

x /:O (\F(s,xk(a(s))) - F(s,x(a(s)))o dsds,_1 - ds

n—

< /TOO 7"1(51)/:0 T2(s2) - /si2 Tn-1(sn-1)

X /:o (\F(s,xk(a(s))) - F(s,x(a(s)))|) dsdsn_1 - ds

n—

Since |F(t,zr(o(t))) — F(t,z(o(t)))] — 0 as k — oo, by apply-
ing the Lebesgue dominated convergence theorem, we conclude that
limy o0 ||(S22k) (t) — (S22)(t)|| = 0. This means that Ss is continuous.

Next, we show that S>() is relatively compact. It suffices to show
that the family of functions {Sex : = € Q} is uniformly bounded
and equicontinuous on [tg,00). The uniform boundedness is obvious.
For the equicontinuity, according to Levitan’s result, we only need to
show that, for any given £ > 0, [T, 00) can be decomposed into finite
subintervals in such a way that on each subinterval all functions of the
family have change of amplitude less than e. By (7) and (8), for any
e > 0, take T > T large enough so that

J ATy Ry e

/ ( sup |F(s,w)|—|—|g(s)|) dsdsp_1---ds; < =
Sn—1 ‘wEla,b] 2
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Then for x € Q, to >t > T,

|(S22)(t2) — (S2z)(t1)]
< C>O7“1(81)/007“2(82)"'/C>O Tn—1(5p-1)

to S1 Sn—2

< [ (P alo)| + lg(6)) dsds -

Sn—1

—|—/t1001"1(51)/:07"2(52)~~/:O27"n—1(5n—1)

n—

<[ (P alo)] + lg(6)) dsds -

ojnil 0o oo
< / 7“1(81)/ ra(s2) - - / Tn—1(8n—1)
to S1 Sn—2
X / ( sup |F(s,w)|+ |g(s)|> dsds,—1---ds1
Sn—1 SwE[a,b]

+/tloor1(81)/:o7“2(82)"'/:02”11(3"1)

n—

[T [l +lglo)) dsdsosoodsy

Sn—1 S wE[a,b]

€
2

Forz e Qand T <t <ty <T%,

|(S22)(t2) — (S2z)(t1)]
< ) ’ Tl(Sl)/ 7“2(82) . / Tnfl(snfl)

</ " (1P a(o)] + la(s)]) dsds,s - dsy

n—1

to fe%e] [e%s)
S/ 7‘1(81)/ 7“2(82)~-~/ Tn—1(Sn—1)
t1 S1 Sn—2

></ ( sup |F(s,w)|—|—|g(s)|) dsdsp_1---ds;.
s b]

n—1 wE[a,
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Then there exists a 6 > 0 such that
[(S2x)(t2) — (S2x)(t1)| <&, i 0<ty—t1 <4
For any x € Q, tg <t; <ty < T, it is easy to see that
|(S2x)(t2) — (S22)(t1)| =0 < e.

Therefore {Sex : x € Q} is uniformly bounded and equicontinu-
ous on [tg,00), and hence S22 is relatively compact. By Lemma 1
(Krasnoselskii’s fixed point theorem), there is an zy € € such that
S1zg 4+ Sexo = xo. It is easy to see that xo(t) is a bounded nonoscilla-
tory solution of equation (1). This completes the proof in this case.

Case 2. For the case ¢ < —1, by (7) and (8), we choose a T > 1
sufficiently large such that

o [ ot

/ ( sup \F(s,w)|—|—|g(s)\) dsdsp_1---ds; <
]

Sn—1 U}E[a,b

(c—l—l)(b—a).

c
Define two maps S; and Sy : @ — C([tg, ), R) as follows:

(c+D(a+b) zt+71)
(S1z)(t) = 2¢ ¢ t21,

(S12)(T) to<t<T.

% /t:T1(51)/:7“2(82) " '/Si27"n—1(5n—1)

= /S“ (F(s,2(0(5))~g(s)) dsds,1---dsy 1=,

n—

(S22)(t)

(S22)(T) to<t<T.

i) We shall show that for any =,y € Q, Sz + Soy € Q.
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In fact, for every z,y € Q and t > T, we get

(S12)(t) + (S29) (1)

< (c+1)(a+Db) _
- 2c

_%/tirl(sl)/:orz(@)m/oo Tn-1(Sn—1)

z(t+7)

1 S

<[ (P vlo@))

[+ 19(s)[) dsdsy 1 -+ dsy
c+1)(a+d) b 1 [ o0
Sl lorh b1 ) [
T / T'IL—l(S?’L—l)
<o [P+ b)) ds sy sy
Sn—1 ~wE€E[a,b]
< (c+1)(atb) b n (c+1)(b—a) o
2c c 2c
Furthermore, we have
(S12)(t) + (S29)(t)
>(c+1)(a+b)_a¢(t+7') 1
o 2c

oo [eS)

+—/ 7‘1(81)/ ra(sa) - -
c ¢ t+7 s1
/ rn—l(sn—l)

n—2

></Oo (IF(s,y((r(s)))|+Ig(s)\)dsdsn,l...ds1

a 1 o0 o0
/ rn—l(sn—l)

n—2

[

sup |F(s, w)| +[g(s)]
n-1  w€[a,b]

)dsdsn_1-~-ds1
> (c+1;(a—|—b) ~a (e+1)(b—a)

= a.
2c
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Hence,
a < (S12)(t) + (Say)(t) < b, for t>to.
Thus we have proved that Siz + Say € €2 for any x,y € Q.
ii) We shall show that S is a contraction mapping on .

In fact, for z,y € Q and t > T', we have
1 1
|(S12)(t) = (S1y)(O)] < =~ fa(t = 7) =yt = 7)] < =~ [l — y]|.
This implies that
1
1517~ Syll < — = |Jz .

Since 0 < —1/¢ < 1, we conclude that S; is a contraction mapping
on .

Proceeding similarly as in the proof of case 1, we obtain that the
mapping Ss is completely continuous. By Lemma 1, there is an xg € 2
such that Sizg + Sazg = xo. Clearly, zp = x0(t) is a bounded
nonoscillatory solution of equation (1). This completes the proof in
this case.

Case 3. For the case 0 < ¢ < 1, by (7) and (8), we choose a T' > t
sufficiently large such that

/TOO 7"1(81)/:) ra(s2) - "/:02 Tn-1(Sn—1)
. (1-9(-a)

></ ( sup |F(s,w)|+\g(s)|) dsdsn_1-~-dsl<#.

Sn_1  w€la,b]

Define two maps 57 and Sz : 2 — C([tp, ), R) as follows:

(c+1)(a+Db)
(S1z)(t) = 2
(S12)(T) to<t<T.

—cx(t—71) t>T,
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(S2)(t)
(_1)n+1/t Tl(sl)/s r2(s2) - /S ) Tn-1(5n—1)

- /:O (F(s,x(a(s))) — g(s)) dsds,_1---ds; t>1T,
(S2)(T) to<t<T.

The rest of the proof is similar to that of Case 1 and, thus, is omitted.

Case 4. For the case ¢ > 1, by (7) and (8), we choose a T > t
sufficiently large such that

1 oo o0 o0
—/ m(sl)/ 7‘2(82)---/ Tn—1(Sn—1)
c T+t S1 Spn—2

e —-1)(b—
X / ( sup |F(s, w)|+\g(s)|) dsds,_1---ds; < w.
sn—1  we€la,b] 2c

Define two maps 57 and Sy : Q — C([tg,00), R) as follows:

(c+1)(a+bd) x(t+7)
(S1z)(t) = e e =D

(S12)(T) to<t<T.

ﬁ/t:m(sﬁ/:orz(%)"'/Sjozrn1(8"1)

= /00 (F(s,x(a(s)))—g(s)) dsds,_1---ds;

Sn—1

(S22)(T) to<t<T.

The rest of the proof is similar to that of Case 2 and, thus, is omitted.
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Case 5. For the case ¢ = 1, by (7) and (8), we choose a T" > 1
sufficiently large such that

/:Tﬁ(sl)/:rz(sz)"'/:27%1(Sn1)
(b—a)

X / ( sup |F(s,w)|+ \g(s)|) dsds,—1---ds; < ——=.
Sn—1 ~wE€E[a,b] 2

Define a map S : Q@ — C([tg, 00), R) as follows:

(Sz)(t)
a+b s [T oo
2 +(_1) + ;/tJr(le)TTl(sl)/Sl TQ(SQ)
= / (e / N (F(s,2(0(s)=g(s)) dsdspy -+ dsy
t>T,
(5z)(T) to <t <T.

i) We shall show that, for any z,y € Q, SQ € Q.
In fact, for every z € Q and t > T', we get

a oo t+251 [ee]
(Sz)(t) < % + Z/t 7"1(81)/ ra(s2) -

j=1 +(2j-1)7 S1

../:O o-1(Sn_1)

n—2

< [ (1P alo) + o)) dsdsy -

Sn—1

L latb) i/ttwjr 7"1(81)/:07“2(82)”.

2 +(25—1)7

Jj=1

[eS)
/ rn—l(sn—l)
Sn—2

></ (sup 1F(s,w)| + lg(s)]) dsds_y---ds,
Sp_1 ~wE€[a,b]

(a+b) (b—a)
<
- 2 * 2

=b.
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Furthermore, we have

a s t+257 0o
(Sl‘)(t) > ( +b) - Z/t Tl(sl)/ 7“2(52) s

2 =1 +(25—-1)T s1

/°° Fo1(5m1)

n—2

< " (IFG (o) +la(s)]) dsds,s - dsy

n—1

> (a—;b) _i/ttﬂjf) Tl(so/:o ra(sa) -

+(2j—1)7

')
: / T'IL—l(S?’L—l)
s

n—2

7w [P+ b)) ds s sy
Sp—1 ~wE€[a,b]

< (atb) (b—a) .

- 2 2

Hence, SQ2 C Q.
Proceeding similarly as in the proof of Case 1 we obtain that the

mapping S is completely continuous. By Lemma 2, there is an xg € 2
such that Sxy = xg, that is,

o(t)
o0 257 o0 o0
aTer + (—1)"“]2/:(;;_1):”1(81)/81 ro(s2) - '/snfnl(snl)
N /OO (F(s, zo(o(s))) — g(s)) dsds,_1---dsy t>T,
aco(Tn)i to <t <T.

It follows that
:L‘o(t) + l‘o(t — T)

—atbr (| Tnnte) [ [ s

S1 Sn—2

X /SOO (F(s,xo(a(s))) — g(s)) dsdsp—1---dsy.

n—
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Clearly, o = zo(t) is a bounded nonoscillatory solution of equation
(1). This completes the proof of Theorem 1.

Theorem 2. Assume that ¢ = —1 and that there exists an interval
[a,b] C RT such that

) /: o) | °°<> / °° 1 (5n1)

o0
X / sup |F(s,w)|dsdsp—1---ds1 < o0,
Sn—1 wE[a,b]

and

(10) /Oom / w() [

n—2

X / lg(s)| dsdsp—1--ds; < o0.

n—1

Then (1) has a bounded nonoscillatory solution.

Proof. By a known result [7, Theorem 3.2.6], (9) and (10) are
equivalent to

X / sup |F(s,w)|dsdsy—1---dsy < o0,

n—1 wE[a,b]

) 3 [ o) [Tt [ rastoan

=0 to+j7 S1 Spn—2

X / lg(s)|dsdsp—1---ds; < o0,

n—1

respectively. We choose a sufficiently large T > ¢y such that

[oe] o'e) [e'e) [e°]
Z/ 7“1(51)/ 7"2(82)---/ Tn—1(Sn-1)
=1 TH+j1 S1 Sn—2

></ ( sup |F(s,w)\—|—\g(s)|) dsdsp_1---ds; <
Sn—1 S wEla,b]

b—a
5
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Define a mapping S : Q@ — C([to, 00), R) as follows:

a—2kb+(_1>n§: /t°° (o) /°°T2(52)... /°° Pt (1)

j=1 +iT S1 Sn—2

/00 (F(s, x(o(s))) — g(s)) dsdsy_1 -+ dsy t>T,

Sn—1

(Sz)(T) to<t<T.

We shall show that SQ C €.
In fact, for every z € Q and t > T, we get

(Sw)(t) < “;rb+§:/too rl(sl)/OOTQ(SQ)...

j=17t+JT 51

[eS)
: / Tn—l(sn—l)
Spn—2

n—

)(/
S

(18 (s,a(o())] + lg(s)]) ds sy -+ dsy

< “;Hi/w rl(sl)/OOTQ(sQ)...

j=1/T+j7 S1

e}
. / rnfl(snfl)
Sn—2

o TR P e———
Sn—1

e wE|a,b]

a+b b—a
<
- 2 + 2

=b.
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Furthermore, we have

(Sw)(t) = a;b—i/tm rl(sl)/mrg(&,)...

j=17t+tiT S1

)
/ Tn—l(sn—l)
Sn—2

me (1F(s. (o)) + 19()]) ds sy ---ds,

n—

a+b o0 oo &)
>— —Z/ 7‘1(81)/ ra(s2) -
- T+j1 s1

Jj=1

00
/ rnfl(snfl)
Sn—2

(o)
X / ( sup |F(s,w)|+ |g(s)|) dsdsp_1---ds;
s

n—1 U}E[(L,b]

a+b b-—a

2 2

v

Hence, SQ2 C Q.

We now show that S is continuous. Let z; = x4 (t) €  be such that
z,(t) — z(t) as k — co. Because Q is closed, z = z(t) € Q. For t > T,
we have

oo

(52O~ <3 [~ nlsn) [ raton)

j=17T+iT s1

[e%S)
: / rn—l(sn—l)
Sn—2

n—

/oo |F(s,z1(0(8)))—F(s,z(0(s)))|dsdsp—1---ds1

n—1

Since |F(t,zx(0(t))) — F(x(o(t)))] — 0 as k — oo, by apply-
ing the Lebesgue dominated convergence theorem, we conclude that
limy— oo [|(Szk)(t) — (Sz)(t)|| = 0. This means that S is continuous.
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In the following, we show that S is relatively compact. By (11) and
(12), for any € > 0, take T* > T large enough so that

1 n—2

></ ( sup |F(s,w)|—|—|g(s)|) dsds,—1---ds; < =
Sn—1 ~wE|a,b] 2

Then for x € Q, to >t > T,

[(S2)(t2) — (Sz)(t1)]

o0

o0 e’ oo
Z / 7‘2(52)"'/ 7"n—1(5n—1)
j=1 t2+]7' s1 Sp—2

n—

« | °° (1F (s x(o(5)))| + lg(s)]) dsds,—r - -ds,

j=1 n—2

« /:o (1 (s, 2o (s))] +1g()1) ds sy ---dis,

n—

o0

3 /i() /| ) [ (o)

]7 n—2

/ ( sup |F(s,w)|+ |g(s )|) dsds,_1---ds;

n—1 wE€la,b]

St 00 o]
+ / / / rn—l(sn—l)
1 t1+j7' 2

Jj= Sn—

></ ( sup |F(s,w)|+ |g(s )|) dsdsp_1---ds1

wE(a,b]

For T < t; <ty < T*, we choose a sufficiently large J € N such that
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T+jr>T*asj>J. Forx e
|(Sz)(t2) — (Sz)(t1)]

Si t2+jTT1(31)/007“2(82)"'/00 Tn—1(8n—1)

j=1 ti+g7 S1 Sn—2

xlw(wwww@m+g@owmnr~wl

xlw(wwww@m+g@owmnr~wl

0 tot+gT e} 00
+ Z / 7"1(81)/ 7"2(52) : / Tn—l(Sn—l)
t1+j7 S1 Sp—2

j=J+1
<[ (1Pt + la(s)) dsds, -

n—

< zj:/ttﬁﬁ 7"1(31)/00 7“2(32)"'/00 Tn—1(Sn—1)

i1 Jti+iT s1 Spn—2

x/ ( sup \F(s,w)|—|—|g(s)\> dsds,_1---ds;

wE|a,b]

—|—i/;iﬁrl(sl)/:ofz(ﬁ)"'/:027"”—1(5”—1)

]—1 n—

o0
></ ( sup \F(s,w)|—|—|g(s)\) dsdsp_1---dsy.
S

Sn—1 SwEla,b]

Then there exists a § > 0 such that

J tot+jT 0

Z/ rl(sl)/ ro(s2)

j=17t1+JT 51

/ rn,l(sn,l)/ ( sup |F(s,w)|—|—|g(s)|) dsds,—1---ds; < %,
Sp—2 Sn—1 S WEJa,b]

if 0<ty—1t1 <.
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Hence,
€ €
(82)(t2) — (S2)(1)] < 5 + 5
For any x € Q, tg <t; <ty < T, it is easy to see that

|(Sz)(t2) = (Sz)(t)] = 0 <&,

=g, if 0<ty—1t1 <6

Therefore {Sz : € Q} is uniformly bounded and equicontinuous on
[to, 0), and hence S is relatively compact. By Lemma 2 (Schauder’s
fixed point theorem), there is an xg € 2 such that Sxg = . That is,

xo(t)
a —21— b + (=" i/:o 7‘1(8n71)/oor2(32) o ./Oo Pt (5n1)
j=1"tHi7 51 s
— /:O (F(S, zo(o(s)) — g(s)) dsds,_1---ds; E>T
roll) to <t <T.

It follows that

o) =t = 1) = (0" [ o) [t [T it

S1 Sn—2

X /goO (F(s,xo(a(s)) - g(s)) dsdsp_1---ds,

Sn—1

t>1T.

Clearly, 9 = zo(t) is a bounded nonoscillatory solution of equation
(1). This completes the proof of Theorem 2.

When ri(t) =1, k =1,2,... ,n, equation (1) reduces to
(13) (@(t) + cx(t — 7)™ + F(t,x(o(t) = g(t), t>to.

By using Theorems 1 and 2, we obtain the following results.

Corollary 1. Assume that ¢ # —1 and that there exists an interval
[a,b] C RT such that

(14) / s"71 sup |F(s,w)|ds < oo,
to we[a,b]
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and

(15) /OO 5" g(s)| ds < oc.

to

Then (13) has a bounded nonoscillatory solution.

Proof. We note that (14) and (15) are equivalent to

(16) / / / / sup (s,w)|dsdsp—1--ds; < o0,
Sn—1 WE[a,b]
(17) / / / / s)|dsdsp—1---ds1 < o0,
t() S1

respectively. This implies that (7) and (8) hold, so the proof is
complete.

Corollary 2. Assume that ¢ = —1 and that there exists an interval
[a,b] C RT such that

(18) / s" sup |F(s,w)|ds < oo,
to we[a,b]
and
o0
(19) / s"g(s)]ds < 0.
to

Then (13) has a bounded nonoscillatory solution.

The proof is similar to that of Corollary 1.

Example 1. Consider the higher order neutral differential equation
(20) (z(t) + cx(t — 7)™ + tiaxﬁ(t —0)=0, t>t

where n is a positive integer, ce R, 7,0 >0, > 0.
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When ¢ # —1, a > n, for any real number b > a > 0,

[e'e) wﬂ e’} 1
/ s"~ 1 sup {—} ds < bﬁ/ v g ds < o0,
to welab] L S to ¢ "

by Corollary 1, equation (20) has a bounded nonoscillatory solution.

When ¢ = -1, a > n + 1, for any real number b > a > 0,

/ s" sup {w_a} ds < bﬁ/ ——ds < o0,
to wela,b] LS to S

by Corollary 2, equation (20) has a bounded nonoscillatory solution.

Remark 1. Minor adjustments are only necessary to discuss the
neutral functional differential equation

(21) Ly(x(t)+cx(t—7))+F(t, x(o1(t)), ... ,x(om(t))) = g(t), > to,

where m > 1 is an integer.

Theorem 3. Assume that ¢ # —1 and that there exist some interval
[a;,b] CRY, i=1,2,... ,m, such that

/t:o r1(s1) /:0 r2(s2)

L) oo
. / Tn—l(sn—l)/ sup
Sp—2 Sn—1 (W1,w2,... ;W )E[a1,b1]x[az,b2] - X[am ,bm]

|F(s, w1, Wy ... , W) dsSds,—1---ds; < 00,

and (8) holds. Then (21) has a bounded nonoscillatory solution.

Theorem 4. Assume that ¢ = —1 and that there exist some interval
[a;,b] CRY, i=1,2 ... m such that

/: s171(51) /:O 72(s2)

00 oo
: / rnfl(snfl)/ sup
Sn—2 sn—1 (W1,w2,... ,;wm)€E[a1,b1]x[az,b2] - X[am bm]

|F(s, w1, wa,... ,Wy)|dsds,—1---ds3 < o0,

and (10) holds. Then (21) has a bounded nonoscillatory solution.
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Remark 2. Theorems 1 and 2 improve and extend Theorem C by
removing the conditions (Cs) and (Cg). Corollaries 1 and 2 improve
and extend Theorems A, B and E by removing the conditions (C;),
(Ca), (C3), (C4), (Cg) and (Cyp). Theorems 3 and 4 improve and
extend Theorem D by removing the conditions (C7) and (Cs).
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