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CURVES ARISING FROM ENDOMORPHISM RINGS
OF KRONECKER MODULES

DAVID MCKINNON AND MIKE ROTH

ABSTRACT. In this note we prove that the endomorphism
ring of a Kronecker module attached to a power series α ∈
k[[X]] is minimally generated by three generators, unless its
degree d is less than 3. We prove this via the theory of
algebraic curves, by proving that none of the affine curves
arising from these endomorphism rings are planar for d ≥ 3,
but can always be embedded in A3.

1. Introduction. In their paper [4], Okoh and Zorzitto describe
a family of k-algebras Aα attached to Kronecker modules Pα, where
α is a power series with coefficients in an algebraically closed field k.
The algebra Aα has a degree d = deg (Aα), and Okoh and Zorzitto
prove that if d ≤ 2, then the algebra Aα is minimally generated as
a k-algebra by d elements. They then ask how many elements will
minimally generate an algebra Aα of arbitrary degree. The purpose of
this note is to show that the answer is min{3, d}.

Okoh and Zorzitto prove their result for d = 1 and d = 2 using the
theory of algebraic curves. In this paper, we will take this philosophy
further and derive general results using more sophisticated geometric
tools. Precisely, in Section 2, we recall the relevant definitions and
notation from [4]. To keep the paper to a manageable length, we
describe only the definitions and properties we use in this paper; for a
full description of the Kronecker modules and associated constructions,
we refer the reader to [4]. In Section 3, we give a careful description
of the geometry of the curves under consideration, and in Section 4
we prove the main result. Section 4 in particular contains some quite
technical algebraic geometry; we refer the reader to [2] and [1] for
definitions and explanations of any unfamiliar geometric or algebraic
terms.
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There are other questions posed by Okoh and Zorzitto in their paper,
more closely tied to the geometry of the curves they construct. For
example, they ask when the curves associated to the Aα can be be
embedded as a complete intersection in some An. We cannot answer
this question in general, although if the curve is smooth, then a
corollary of our results (Corollary 4.5 is that the algebraAα corresponds
to a complete intersection if and only if the degree d of Aα is at most
3). The authors believe that the smoothness hypothesis should not be
necessary, but cannot remove it.

To the authors’ knowledge, the best result on smooth affine complete
intersections was proven by Serre-Murthy-Towber [3, Corollary 4.3].
They prove that a smooth curve can be embedded as a complete
intersection in A3 if and only if its canonical bundle is trivial. There
is also a result of Sathaye [5] which gives an example of an affine curve
which is a complete intersection but not planar, so the two questions
are not equivalent.

The authors would like to thank Frank Zorzitto for bringing the
problem to their attention, and both Frank Okoh and Frank Zorzitto
for many helpful conversations. We would also like to thank the referee
for many helpful remarks.

2. Definitions and notation. We review some of the notation and
terminology of Kronecker modules from [4]. Let k be an algebraically
closed field of arbitrary characteristic, and fix a linear functional
α: k[X] → k. As described in [4], we may associate to this linear
functional a deriver ∂α: k[X] → k[X] defined by:

∂α(1) = 0, and ∂α(Xj) =
j−1∑
i=0

α(Xj−i−1)Xi.

Note in particular that if j is the smallest integer such that α(Xj) �= 0,
then ∂α(Xj+1) = α(Xj) is a nonzero constant, and ∂α(Xi) = 0 for all
i ≤ j.

Okoh and Zorzitto also associate to α a Kronecker algebra Pα and its
endomorphism ring:

Aα = End (Pα)
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which is the object with which this note is concerned. Since we will
not use the precise definition of Pα, we refer the reader to [4] for its
description.

We shall address the case in which Pα is indecomposable, in which
case Aα is an integral domain. As noted in [4], it happens that Pα is
indecomposable if and only if the following formal power series does
not represent a rational function of X:

∞∑
n=0

α(Xn)Xn.

To summarize:

• The ring Aα is an integral domain.

• The functional α is irrational over k[X]; in particular, α is not
identically zero.

Explicitly, Aα is a subalgebra of the 2 by 2 matrix algebra M22(k(X))
over k(X). Okoh and Zorzitto define the generic matrix D associated
to Aα:

D =
[

p+ ∂α(q) −q
−∂α(p+ ∂α(q)) ∂α(q)

]

where p and q are a fixed pair of polynomials associated to α. (For
details, see [4].) For each i ≥ 0, i ∈ Z, define:

ϕi = DXi + ∂β(Xi)I

where β is another linear functional on k[X], defined by β(f(X)) =
α(qf(X)). Note that since α is not identically zero, it follows that β is
also not identically zero. We then have:

Aα = k[ϕ0, . . . , ϕd−1]

where d = deg trD is the degree of Aα referred to in the introduction.

By the Cayley-Hamilton theorem, D satisfies a quadratic equation
over k[X]:

(1) D2 − (tr (D))D + det(D) = 0.
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Okoh and Zorzitto prove that the polynomial on the left side is irre-
ducible (Lemma 4.9 of [4]), and that the fraction field k(X,D) of Aα is
a quadratic extension of the rational function field k(X) (Corollary 3.6
of [4]). Moreover, they also prove that deg det(D) ≤ deg Tr(D) (Propo-
sition 3.11 of [4]). Finally, there is a distinguished maximal ideal J of
Aα, defined by:

J = (ϕ0, ϕ1, . . . ) = (ϕ0, . . . , ϕd−1).

In what follows, we will treat Aα as a k-algebra rather than a set of
matrices, and so we will often refer to the identity element of Aα as 1
instead of I.

3. Geometry. Consider C1 = SpecAα, the affine curve embedded
in Ad

k via the coordinates ϕ0, . . . , ϕd−1. We also have the affine curve
C2 = Spec k[X,D] ⊂ A2

k, which admits a birational map:

ψ:C2 → C1

corresponding to the inclusion of rings Aα ↪→ k[X,D]. Our program
will be to study the curve C2, and then to deduce properties of C1 via
a study of the birational map ψ.

The following definition is not standard, but is ideal for our purposes.

Definition 3.1. Let C be a reduced and irreducible, but possibly
singular, projective curve. Then we say that C is hyperelliptic if there
is a finite 2 : 1 map f : C → P1, called the hyperelliptic map.

The standard definition would require that a hyperelliptic curve be
smooth. However, this is an inconvenient and unnatural requirement
for the curves we consider in this paper.

Notice that every hyperelliptic curve C admits an involution i:C → C
defined by interchanging the sheets of the hyperelliptic map. That is,
i(P ) = Q, where Q is the unique point of C such that f−1(i(P )) =
{P,Q}. This allows us to define an affine hyperelliptic curve as a curve
C whose projective closure is hyperelliptic in the sense of Definition 3.1,
and such that i(C) = C. The map i is called the hyperelliptic involution
of the curve C.
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Now let C be the projective closure of C2 in P2
k. Then C is a

hyperelliptic curve, where the 2 : 1 map is given by projection onto
the X-axis (X and D are the coordinates). It is easy to see that
there are exactly two points of C at infinity, and that these two points
correspond to two points on the normalization of C. That is, C2 is an
affine hyperelliptic curve, isomorphic to a projective hyperelliptic curve
minus two points which are conjugate via the hyperelliptic involution.
In particular, neither of these two points is a ramification point of the
2-to-1 map to P1

k.

We claim that C1 is isomorphic to a (possibly singular) projective
hyperelliptic curve minus one point which is not a ramification point
of the hyperelliptic map. This claim will follow from the the following
three intermediate claims:

1. The curve C1 is not projective.

2. The map ψ is not surjective.

3. The map ψ is injective.

Once we have established these claims, we will know that C1 is strictly
bigger than C2 but strictly smaller than a projective curve, and since
C2 is a projective curve minus two points, it will follow immediately
that C1 is a projective curve minus a single point. By the previous
discussion, this single point will be one of the two points missing from
C2, which are not ramification points of the hyperelliptic map.

The first of the claims follows immediately from the fact that C1 is
affine. We will now proceed to prove the other two:

Lemma 3.2. The map ψ is not an isomorphism.

Proof. To prove this, we will construct a point (the only point, as it
turns out) which is not in the image of ψ. This point QJ corresponds to
the maximal ideal J , generated by ϕ0, . . . , ϕd−1 (but recall also that
J contains ϕi for all nonnegative i). To show that QJ is not in the
image of ψ, it suffices to show that J becomes the unit ideal upon the
adjunction of X to Aα. This is easy: if i is the smallest positive integer
such that ∂β(Xi) �= 0, then ∂β(Xi) must be constant, and hence

ϕi = DXi + γ
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for some nonzero γ ∈ k. Thus, (k[X,D])J contains

(Xi)D − (DXi + γ) = γ

and hence must be the unit ideal.

Lemma 3.3. The map ψ is injective.

Proof. We will construct a birational inverse to ψ which is defined
everywhere away fromQJ . In particular, for every pointQ of C1−{Qj},
we will construct a birational inverse of ψ which is defined at Q.

First, note that for each positive integer i, we have the identity:

ϕi = DXi + ∂β(Xi)
= DXi +X∂β(Xi−1) + β(Xi−1)
= Xϕi−1 + β(Xi−1)
= Xϕi−1 + β(Xi−1).

We therefore obtain:

X =
ϕi − β(Xi−1)

ϕi−1
.

Because Q �= QJ , we know that there exists some ϕi such that ϕi

does not vanish at Q, that is, ϕi does not lie in the maximal ideal of
A corresponding to Q. Thus, since β(Xi−1) ∈ k, we have the following
birational inverse of ψ which is defined at Q:(

ϕ0,
ϕi − β(Xi−1)

ϕi−1

)
,

and hence φ is injective, as desired.

4. The canonical bundle of hyperelliptic curves. In this
section, we will prove some geometric facts about hyperelliptic curves
and their canonical bundles, from which it will follow that if d ≥
3, then C1 cannot be embedded in A2. This section contains the
most technically difficult algebraic geometry of the paper, and in
particular we refer the reader to [1, 2] for definitions and descriptions
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of the terms used in this section. We will, however, attempt to
maintain a connection to the original algebraic nature of the problem,
by explaining the algebraic significance of the geometric results, as they
are proven.

The projective closure of our curve C1 is therefore hyperelliptic, in
the sense of Definition 3.1. Our first step will be to show that C1 is
locally planar. Geometrically, this means that for every point P of C1,
there is an open neighborhood of P which is isomorphic to a planar
curve. Algebraically, this means that, for every maximal ideal M of
Aα, there is a finite set f1, . . . , fr of elements fi ∈ Aα −M such that
the localization Aα[1/f1, . . . , 1/fr] can be generated by two elements.

Away from QJ , C1 is locally isomorphic to the planar curve C2, so
it is clearly locally planar away from QJ . To show that C1 is locally
planar at QJ , it suffices to show that C1 is smooth at QJ . Equivalently,
we will show that the localization of Aα at J is a regular local ring.

Lemma 4.1. The local ring (Aα)J is a regular local ring. That is,
dimJ/J

2
= dim(Aα) = 1, where J is the maximal ideal of the local

ring (Aα)J .

Proof. Recall that J = (ϕ0, . . . , ϕd−1). Thus, for every i and j in the
appropriate range, we have:

ϕiϕj − ϕi+1ϕj−1 ∈ J
2
.

We may thus calculate:

ϕiϕj−ϕi+1ϕj−1 = (DXi + ∂βX
i)(DXj + ∂βX

j)
− (DXi+1 + ∂βX

i+1)(DXj−1 + ∂βX
j−1)

= D2Xi+j +DXj∂βX
i +DXi∂βX

j + ∂βX
i∂βX

j

−D2Xi+j −DXj−1∂βX
i+1

−DXi+1∂βX
j−1 − ∂βX

i+1∂βX
j−1

= DXj

( i−1∑
m=0

β(Xm)Xi−1−m

)

+DXi

( j−1∑
m=0

β(Xm)Xj−1−m

)
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−DXi+1

( j−2∑
m=0

β(Xm)Xj−2−m

)

+DXj−1

( i∑
m=0

β(Xm)Xi−m

)

+ ∂βX
i∂βX

j − ∂βX
i+1∂βX

j−1

= D

( i−1∑
m=0

β(Xm)Xi+j−1−m+
j−1∑
m=0

β(Xm)Xi+j−1−m

−
i∑

m=0

β(Xm)Xi+j−1−m −
j−2∑
m=0

β(Xm)Xi+j−1−m

)

+ ∂βX
i∂βX

j − ∂βX
i+1∂βX

j−1

= D(β(Xj−1)Xi − β(Xi)Xj−1)
+ ∂βX

i∂βX
j − ∂βX

i+1∂βX
j−1

= β(Xj−1)ϕi − β(Xi)ϕj−1.

We use the convention that a sum from m = 0 to −1 is an empty sum.
We therefore get:

β(Xj−1)ϕi − β(Xi)ϕj−1 ≡ 0 mod J2.

For some i, we have β(Xi) �= 0. This immediately implies that for all
j:

β(Xi)ϕj ≡ β(Xj)ϕi mod J2.

Since the set {ϕi} generates J as a vector space over k, it follows that
J/J2 is one dimensional. Thus, J/J

2
is one dimensional, as desired.

Thus, our discussion will now focus on locally planar hyperelliptic
curves. The strategy is to use the two-to-one map to P1 to link the
algebra and geometry of C1 to the algebra and geometry of P1. This is
done via the dualizing sheaf ωC on the projective curve C. We will first
show that global sections of ωC are invariant under the hyperelliptic
involution on C.
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Lemma 4.2. Let C be a locally planar hyperelliptic curve (for
example, the projective closure of C1), with hyperelliptic map f :C →
P1. Then the dualizing sheaf of C is ωC = f∗OP1(g − 1), where g is
the arithmetic genus of C.

Proof. Let g be the arithmetic genus of C, and set w = f∗OP1(g−1).
Then deg (w) = 2(g−1), and h0(C,w) ≥ g since h0(P1,OP1(g−1)) = g.

By Riemann-Roch,

h0(w) − h0(w∗ ⊗ ωC) = 2(g − 1) + (1 − g) = g − 1,

so the condition that h0(w) ≥ g implies that h0(w∗ ⊗ ωC) ≥ 1, hence
w = ωC since w∗ ⊗ ωC is a line bundle of degree zero, and C is an
irreducible curve. This proves the lemma.

As an aside, it is easy to describe what C looks like. Let C̃ be the
normalization of C. Then the composite map

C̃ −→ C −→ P1

is still 2 : 1, so we see that C̃ is itself hyperelliptic, and that C is
somehow constructed from C̃ in such a way as to preserve the map to
P1.

In fact, if we write C as a plane curve with equation y2 = p(x)y−q(x),
then the singularities of C are as follows:

• if p2(x) − 4q(x) has a zero of even order 2k at some point x of P1,
then the singularity of C over x is obtained by taking the two conjugate
points Q, Q′ of C̃ over x and gluing them together with contact order
k.

• if p2(x)−4q(x) has a zero of odd order 2k+1 at some point x of P1,
then the singularity of C over x is obtained by taking the ramification
point Q of C̃ over x and “crimping” it; that is, making it into the
singularity

y2 = x(2k+1).

Note that, since h0(ωC) = g, all the global sections of ωC on C
are pulled back from the global sections of OP1(g − 1) on P1 and are
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therefore invariant under the hyperelliptic involution. This gives us the
following:

Corollary 4.3. If C is a hyperelliptic curve and σ ∈ H0(C, ωC) is
a global section of the canonical bundle, then the order of vanishing of
σ at a point p of C is the same as the order of vanishing of σ at p′, the
hyperelliptic conjugate of p. In particular, σ vanishes at p if and only
if it vanishes at p′.

We will now show that if C1 can be embedded in A2, then we can find
a global section of ωC which does not vanish anywhere on C1, but does
have a zero on C. Since C1 is not invariant under the hyperelliptic
involution, this will provide our contradiction. (Note: a Gorenstein
curve is one whose local rings are all Gorenstein. For the definition
of a Gorenstein ring, see [1, p. 528]. The relevance of the Gorenstein
property for our purposes is that a Gorenstein curve has a well defined
dualizing line bundle, which is crucial to our argument.)

Lemma 4.4. If C is a reduced and irreducible (but not necessarily
smooth) projective curve of arithmetic genus g, and p ∈ C is a smooth
point of C such that C − {p} can be embedded in A2, then C is a
Gorenstein curve with dualizing line bundle ωC = OC((2g − 2) · p).

Proof. The curve C is clearly Gorenstein since C−{p} is planar, and
p is a smooth point. Let i : C − {p} ↪→ A2 be the embedding. By the
valuative criterion of properness, this extends to a map ν : C −→ P2,
with image curve C ′, differing from C only around p′ = ν(d). If C ′

is a curve of degree e, then since p is the only point of C mapping
to the line at infinity, we have ν∗OP2(1) = OC(e · p). In particular,
ν∗ωP2 = ν∗OP2(−3) = OC(−3 · p).

By embedded resolution of singularities for curves on surfaces (valid
in all characteristics) we can, by a sequence of blow-ups, resolve the
singularity of C ′ at p′ in P2. The result is a smooth surface S with
proper map π : S −→ P2 and an embedding j : C ↪→ S making the
following diagram commute:
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C � �

j
�
�
���ν

S

�
π

P2

The exceptional divisors of the blowup meet C (in S) only at p. Since
the canonical bundle of S is the pullback of the canonical bundle of P2

twisted by the exceptional divisors, we see that j∗ωS is a multiple of p.

Before the blowups, the normal bundle of C ′ in P2 (when pulled
back to C) was OC(e2 · p). Again, since we blowup only at p′ (or the
corresponding point in the intermediate blowups) the normal bundle
will change only at p, giving us that the normal bundle of C in S is
again a multiple of p.

Finally, the adjunction formula ωC = j∗ωS⊗NC/S then gives that the
dualizing line bundle of C is a multiple of p. Since deg (ωC) = 2g − 2,
this gives ωC = OC((2g − 2) · p).

Putting together Lemma 4.4 and Corollary 4.3, we arrive at the
following result.

Corollary 4.5. Let C be a hyperelliptic curve (in the sense of
Definition 3.1), and p ∈ C a smooth point which is not a fixed point of
the hyperelliptic involution. If the arithmetic genus g of C is greater
than 1, then there does not exist an embedding C − {p} ↪→ A2. If in
addition C − {p} is smooth, then it cannot be embedded in An as a
complete intersection for any n.

Proof. For the first claim, note that by Lemma 4.4, ωC = OC((2g −
2) · p). If g > 1, then there is a global section of ωC vanishing only
at p. If p is not a fixed point of the hyperelliptic involution, then this
contradicts Corollary 4.3.

For the second claim, note that the canonical bundle of an affine
complete intersection is trivial. Thus, if C − {p} is an affine complete
intersection, then there is a global section of ωC that vanishes only at
p, which again contradicts Corollary 4.3.
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The curve C has arithmetic genus g = d(d − 1)/2, where d =
deg (Aα) = deg trD, as before. (This is because C is a projective
plane curve of degree d + 1.) In particular, if d ≥ 3, then g > 1.
Thus, if d ≥ 3, then the curve C1 is not a planar curve, and hence the
corresponding coordinate ring is not generated as a k-algebra by two
elements. It is a well-known geometric fact that every locally planar
curve can be embedded in A3, so that Aα can always be generated
by three elements. For the sake of completeness, the proof is included
here:

Theorem 4.6. Every locally planar affine curve can be embedded
in A3.

Proof. Let C be a locally planar affine curve, embedded in some affine
space C ⊂ An, where n is the minimal integer such that C embeds in
An. If n ≤ 3, then we’re done, so assume n > 3. View C as a subset
of Pn via the embedding of An into Pn as a standard affine subset.
Let π:An → An−1 be any projection. Then π extends to a projection
Pn → Pn−1 away from a point P on the locus at infinity. Our strategy
is to find a point P at infinity such that the map π|C is an isomorphism.

First, define the secant variety S ⊂ Pn to C. It is the projective
closure of the union of all lines L ⊂ Pn such that #(L∩C) ≥ 2. If π|C
is to be one-to-one, we must choose P to lie outside of S.

In order to ensure that π|C is an isomorphism in a neighborhood of a
point Q ∈ C, we need the line joining P to Q to intersect C transversely
at Q. If Q is a smooth point of C, then this means that the line joining
P to Q is not tangent to C at Q; in other words, we require that P
does not lie on the tangent variety T of C, which is the closure of the
union of all tangent lines to C.

If Q is a singular point of C, then since C is locally planar, there is
a surface XQ which is smooth at Q and contains C. For π|C to be an
isomorphism near Q, it suffices to ensure that the line joining P to Q
intersect XQ transversely at Q. In other words, P must not lie in the
tangent plane HQ to XQ at Q. Since C has only finitely many singular
points, it follows that there are only finitely many such planes.

In summary, then, to ensure that π|C is an isomorphism, we need to
choose P to lie outside the union Y = S ∪ T ∪HQ1 ∪ · · · ∪HQr

, where
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Q1, . . . , Qr are the singular points of C. Our goal is to show that Y
does not contain all points at infinity.

First of all, each HQi
has dimension 2, and therefore if Y contains

the (n− 1)-dimensional hyperplane H∞ at infinity, then H∞ ⊂ S ∪ T .
(Recall that n ≥ 4, so n − 1 ≥ 3.) Similarly, since T is also (at most)
two-dimensional [2, roof of Proposition IV.3.5], we must have H∞ ⊂ S.

If H∞ ⊂ S, then if L ⊂ H∞ is a line through P , then L must intersect
the projective closure C of C. Since C is not contained inH∞, it follows
that C intersects H∞ in a finite set of points, and hence there are plenty
of lines L ⊂ H∞ which contain P but are disjoint from C. Thus, H∞
is not contained in S, and therefore is not contained in Y either, so we
can always choose P so that π|C is an isomorphism.

But this means that C can be embedded in An−1, which contradicts
the minimality of n. Therefore, n must be no greater than 3, as desired.

We therefore summarize with the following theorem:

Theorem 4.7. Let Aα be the endomorphism algebra associated to
a Kronecker module Pα, and let d be the degree of Aα, as defined in
Section 2. Then a minimal set of k-algebra generators has cardinality
min{d, 3}.

Proof. We have already proved this for d ≥ 3, and Okoh and Zorzitto
deal with the case d < 3 in [4].
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