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THE ROTATIONS OF /(¢,)
R.J. FLEMING AND J.E. JAMISON

ABSTRACT. A characterization of the linear rotations of
a general class of metric linear spaces is given. Sufficient
conditions are given for all the rotations of these spaces to
be linear.

1. Introduction. Let (p,) be a sequence of real numbers with
0 < p, < 1. The linear space #(p) is defined [2] to be the collection of
all real (or complex) sequences (z,) for which Y7 | |z,[P is finite. Tt
is a complete metric linear space with the metric given by

(1.1) d(z,y) = Z |Zn — yn [P
n=1

A surjective mapping T' (not necessarily linear) of a metric linear space
(X,d) is a rotation [1, 2] if 7'(0) = 0 and d(T'z,Ty) = d(z,y). In [2]
Maddox asks for a description of the rotations of ¢(p). This question
provided the motivation for the present paper.

In this paper we describe a broad class of metric linear spaces, denoted
by £(¢,), which include £(p). We characterize, in terms of the action on
the space, the linear rotations of £(¢,). In general it is not known if a
rotation of an arbitrary metric linear space is a linear transformation.
In fact, in spaces over the complex field this need not be the case.
However, for metric linear spaces over the real field, sufficient conditions
for rotations to be linear are known [2]. In §2 we indicate which of the
£(¢y,) spaces satisfies these conditions. Finally, we note that our results
answer the question of Maddox except for inf p,, = 0.

2. The spaces {(¢,). Let (¢,) be a sequence of continuous real
valued functions defined on [0, 00) such that ¢, (0) = 0, ¢, (1) = 1, ¢,,(+)
is increasing, and ¢,’(-) is decreasing.
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REMARK. These conditions are chosen in order to insure that the
following lemma will hold. Examples of such functions are easy to
construct. Specific examples are: ¢,(z) = 2,0 < p, < 1,¢,(z) =
z/log(q + ), and ¢, (z) = (1 + n)z/(1 + nz).

LEMMA 2.1. Let ¢ be a real valued function defined on [0,00) such
that $(0) = 0, ¢(-) is increasing, and ¢'() is decreasing. Then, for
every pair of complexr numbers z and w,

(2.2) ¢(z — wl) < ¢(|z]) + ¢(|wl),

and equality holds if and only if |z||w| = 0 or both |z — w| = |z| + |w|
and ¢’ are constant on the interval from 0 to |z| + |w).

The space ¢(¢,,) is the linear space of all real (or complex) sequences
(z,,) for which Y77 | ¢, (J@,|) is finite. It is straightforward to verify
that ¢(¢,,) is a complete metric linear space with metric given by

(2-3) d(z,y) = Y dullTn = yal)-

The sequences e, with a 1 in the n'" position and zeros elsewhere
form a Schauder basis. This fact is important because it implies each
continuous linear transformation on ¢(¢,) has a matrix representation.

In the terminology of Rolewicz [3], ¢(¢,,) is an F* space with F' norm
given by ||z|| = d(z,0). Theorem IX 3.1 of Rolewicz [3] implies that,
whenever an £(¢,,) space is locally bounded, the rotations of the space
are linear. The next result gives some conditions under which ¢(¢,,) is
locally bounded

PROPOSITION 2.4. Let r,(t) = inf{a > 0]¢n(at) > 1/2¢,(¢)},
Tn = infoctcoo Tn(t), and r = inf,sq1 7. If r > 0, then £(dy) is locally
bounded.

PROOF. By the definition of r and the continuity of the ¢,, it follows
that

(2.5) bu(rt) < %gbn(t) forn >1andt> 0.
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Hence, d(rz,0) < (1/2)d(z,0) for each = € ¢(¢,). We claim that if
d > 0, then the set K5 = {x|d(z,0) < ¢} is bounded. For, suppose
e > 0 and U, = {x|d(z,0) < €}. Choose n so large that §/2" < e.
Then

(2.6) d(r"z,0) < 2ind(:c,0) < 2% <e

Thus, KsCr~"U,, and we have shown that K is bounded. Therefore,
£(¢y,) is locally bounded.

COROLLARY 2.7. £(p) is locally bounded whenever inf p,, > 0.

REMARK. It is known [3] that, for infp, = 0, {(p) is not locally
bounded.

3. The rotations of ¢(¢y).

LEMMA 3.1. Let T be a rotation of £(¢,) and let (z,) and (y,) be
sequences in £(py,) such that

(3.2) Ty - Yn = 0.
Then
(3.3) (T'z)n(Ty)n = 0.

PROOF. Let (z,,) and (yn) satisfy (3.2). Then, by definition of the
metric, we have

(3.4) d(z,y) = d(z,0) + d(y, 0).

Since T is a rotation, 7'(0) = 0 and T preserves the metric. Hence,
(3.5) d(Tz,Ty) = d(Tz,0) + d(Ty, 0).

Thus

(36) 0= [8a(I(T)u]) + Iu(|(Ty)un]) = ¢u((T2)n = (Ty)u)]:

n=1
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By 2.1, the summands are all nonnegative and

(3.7) On(|(T2)n = (TY)nl) = G (|(T2)n]) + ¢n((Ty)nl)

for each n. This remains valid on replacing y by —y. By 2.1,
(3.8) (T2)n - (Ty)n, =0 for n=1,2....

This completes the proof of the lemma. O

THEOREM 3.9. T is a surjective linear isometry of €(¢y,) if and only
if there is a permutation o of the positive integers, and a sequence of
scalars (t,) such that

(3.10) (Tz)n = tnTom) and ¢n(|tn]) =1 and ¢g(n) = dn

for each n.

PROOF. Suppose T is a surjective linear isometry of ¢(¢,). Let (t;;)
be the matrix representation of T relative to the basis e,,. For k # j,
the vectors e; and e; satisfy the hypothesis of Lemma 3.1. Hence,

(311) (Tek)i - (Tej)i = tik:tij =0 fori= 1, 2, 3....

From (3.11) it follows that each row of (¢;;) has at most one non zero
element. Since T is surjective, each row must have at least one non
zero element and, therefore, has precisely one. We define the mapping
o as follows. Since, for each n, there is a unique n’ for which ¢, # 0,
we define o(n) = n'. If we let t,, = t,,,(,), then the action of 7' on the
space is given by

(312) (Tx)n = tnma(n).

We claim o is one to one. For suppose there exist distinct positive
integers n and m such that o(n) = o(m). This implies that, for every
sequence in the range of T,

tnlYm
tm

(3.13) Yn =
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Since the t,’s depend only on the basis, this relation is impossible if T'
is to be surjective. Therefore, o is one to one. The surjectivity of o
follows from (3.12) and the injectivity of T'.

To see that ¢, (|t,|) = 1 for every n, note that d(T'e,,0) = d(e,,0) =

1 and use the fact that ¢,(1) = 1. Finally, since d(Tz,Ty) = d(z,y)
for every z and y, it follows that ¢g(n)(-) = ¢n()-

We omit the proof of the sufficiency. 0

COROLLARY 3.14. Let T be a rotation of a real £(¢p,) space. If the
hypotheses of Proposition (2.4) are satisfied, then every rotation of the
space is given by (3.10). In particular, every rotation of ¢(p), when
inf p, > 0 and the scalars are real, is given by (3.10).
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