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NORMALITY FOR THE PROBLEM OF BOLZA
WITH AN INEQUALITY STATE CONSTRAINT

VERA ZEIDAN AND PIERLUIGI ZEZZA

1. Introduction and preliminary results. The existence of a
strong relation between the normality assumption in optimal control
and the controllability of the associated variational equation has long
since been noted. Here we extend the previous results to the problem of
Bolza with general endpoint conditions and in the presence of a state
inequality constraint. While the restriction on the initial and final
point becomes, through linearization, a linear boundary condition on
the variational equation, the state constraint, which induces a forcing
term in the adjoint equation, becomes an isoperimetric condition. This
kind of correspondence between linear differential equations and its
adjoint has been introduced in [5] but, for the optimal control problem
considered here, is new and requires further investigation.

In this paper we consider the problem of minimizing the cost func-
tional

b
(1.1) J(z,u) =g(fc(a),$(b))+/ fo(s,z(s), u(s)) ds

over all absolutely continuous functions, z(-), and measurable functions,
u(-), satisfying

z(t) = f(t,z(¢),u(t)), ae tel,
u(t) eU, ae.tel,
P(x(a), z(b)) = 0,

p(z(t)) <0, tel,

(1.2)

where, for given open sets X C R” and V C R™, U C V, and for
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I =a,b],

IXxXxV =R, (tz,u)— folt,z,u),
Ix X xV =R, (tz,u) = f(t,z,u),
X xX =R, (z,y) = g(z,vy),

X x X =R (z,9) = ¥(z,v),

: X =R, z— o).

e € o =

In the remainder of this section, we introduce the terminology that
will be needed later and state the Pontryagin Maximum Principle.

DEFINITION 1.1. A pair (z(-),u(:)) is said to be feasible it z(:) €
AC(I,X), u(-) is measurable and (z(-),u(-)) satisfies the constraints
(1.2).

DEFINITION 1.2. A feasible pair (£(-), 4(+)), with u € L (I,U), is
weak local minimum for (1.1)—(1.2) if, for s )
minimizes (1.1) over all feasible pairs (z(-), u(-)) satisfying

z(t) € &(t) + B, tel,
u(t) € u(t) + €By,, ae. tel,

>

where By is the unit ball in R¥.

In stating the maximum principle, the following smoothness assump-
tion will be recalled:

(Hy;) For H = (fo,f) and for all t € I, H(t,-,-) is C*; for all
(z,u) € X xV, H(,z,u), Hy(-,z,u) and H,(-,z,u) are measurable on
I; there exists an integrable function m : I — R such that

[H(t,z,u)| + |Ho(t, 2, u)| + |Hu(t, z,u)| < m(t), (tz,u) € IXX XV

and g and 1 are C' on X x X and ¢ is C* on X.

For a given € > 0, we denote the e-tube around 4(-) by

Ue(t) ={ue R™:u € UN (u(t) + eBn)}
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In what follows the accent “"” denotes evaluation along the trajectory
(&(), a(-))-

A weak local minimum is characterized by

THEOREM 1.1. (PONTRYAGIN MAXIMUM PRINCIPLE). [1] If the reg-
ularity assumption (Hy) holds and (£(-),4()) is a weak local minimum
(with corresponding €), then there exists an absolutely continuous func-
tion p : I — R", a vector A\ € R*, a number \g and a nondecreasing
function p of bounded variation such that, if we denote also with y the
nonnegative Radon measure associated with pu, we have

(i)
)\0 Zoa A0—'_”:“”—}_“17” >07

p(t) = (1) (p<t> + [616) du(8)> Fhofos(t), ae tel,

and p is supported on the set {t € I : ¢(Z(t)) = 0},
(i)

If U is convex, then (v) implies
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(vi)
ws) ((fo[po+ [ 56 we)] + xfu)w) 20

welU-—1u(t), ae tel.

REMARK . It is worth noting that conditions (ii)—(vi) depend on
Fou(t) = f; ¢4 (s) du(s) rather than on p itself. Hence, they are
unchanged if we replaced p by p + i, where p satisfies Fy;(t) = 05
this kind of invariance does not hold true for condition (i).

In order to pinpoint the class of possible candidates for a weak local
minimum, let us introduce

DEFINITION 1.3. An extremal is an admissible pair (£(-),4(+)) such
that there exists a set of multipliers (p, s, Ao, A) with the above prop-
erties, satisfying (i)—(iv) and (vi).

Since extremals whose set of multipliers have \g = 0 do not depend
explicitly on the cost function, those for which A\g # 0 play an important
role (e.g., in sufficient conditions).

DEFINITION 1.4. An extremal pair (£(-), 4(+)) is said to be normal if
there is no set of multipliers associated with it such that Ay = 0.

Our goal is to give an equivalent characterization of normal extremals
in terms of the local controllability of the “associated” variational
equation.

2. Controllability of linear systems. In this section we will state
necessary and sufficient conditions for local controllability of a control
problem subject to control constraints and to a general boundary
condition. Let us now consider the linear system

(2.1) &(t) = A(t)z(t) + B(t)u(t), ae. tel,
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where A(-), B(-) are matrices, n X n and n X m, respectively, with L!
entries and the control function

u(-) eU ={u(-) e L 1 u(t) e U — a(t) a.e. t € I},

where 4(-) € L*(I,U).

Let us consider the following boundary value problem
b
(2.2) Ma(a) + Na(b) - / dF(s)2(s) = I,

where [ € R", M, N are r x n matrices and F(-) is an r X n matrix
valued function whose entries are of bounded variation and the integral
is in the sense of Borel-Stieltjes.

When the controls are unconstrained, the above control problem has
been studied in [7, 8]. Unfortunately, being an internal report, [7]
is not easily accessible, and [8], which is the published version, is
badly printed and has a large number of misprints and some missing
parts that make statements and proofs hard to follow. In this section,
while deriving the characterization (2.4) and proving Theorem 2.1 and
Corollary 2.1, we follow closely the techniques used in [7].

If X(¢) is a fundamental matrix of the homogeneous part of system
(2.1), principal at a, then, by the variation of constants formula, the
boundary condition (2.2) can be written equivalently as

b

Mz(a) + NX(b)z(a) + / NX(b)X(s)B(s)u(s) ds — P(a)z(a)
- / dF () / X(0)X 1 (s)B(s)u(s) ds = I.

By the Dirichlet formula for integrals (see, e.g., [6, p. 55 or [2]),

b o
/ dF(6) / X(6)X~(s)B(s)u(s) ds
- / ’ / " AF(6)X(6)X 'sB(s)u(s) ds
b

= / P(s)X 1(s)B(s)u(s) ds,
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where
P(t) = /t dF(s)X (s),

and, hence, condition (2.2) becomes
b
[M + NX(b) — P(a)]z(a) + / [NX(b) — P(s)| X 1(s)B(s)u(s)ds = I.

Since the initial point is not fixed, the initial condition plays the
role of a control parameter. In order to examine its influence on the
controllability of the system, let us write ' = M + NX (b) — P(a) and
define

AU—-R"

M) = [ IVX®) = PEIX(6)B(s)u(s) ds.
The boundary condition (2.2) can be written equivalently as
(2.3) Tz(a) + A(u(r) =1.

Let
A :R"xU —R"
be defined by
@
Ay <u()> =Ta+ A(u(+)).

The controllability of the system can be phrased in terms of A; as
follows.

DEFINITION 2.1. We will say that the system is (M, N, F')-locally
controllable on the interval I if

(2.4) O €intImA;.

There are two possibilities:

Case (a). rankD' = r. In this case, by only varying the control
parameter z(a), the system is obviously (M, N, F')-locally controllable
on I.
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Case (b). rankI' < r. In this case, we will state some characteriza-
tions of this property.

The following result is a reformulation of the controllability condition
in an equivalent but simpler form.

LEMMA 2.1. Assume that U is convez, then the system (2.1) is
(M, N, F)-locally controllable on I if and only if the only v € Ker I'T
such that

(v, Alu(-) 20, Vu() €U,
s v = 0.

PROOF. It follows immediately that Im A; is convex and contains O.
The system (2.1) is not (M, N, F)-locally controllable if and only if
there exists v € R", v # 0, such that
(2.5) (v, Ta+ A(u(-))) >0, VYu(-)el, Va e R™.

It must be that v € KerI'". Otherwise, decompose v = 71 + 72 with
v1 € KerI'T and 45 € Im T with 2 # 0. Write 75 = I'¢ and get

(v, A(u(+)) + (¢, Ta) >0, Vu(-) €U, VYaeR",

but this is impossible for « = —t¢, ¢ > 0. Then (2.5) holds only for
v € KerI'T" and becomes

(7, A(u(-)) >0, Yu(-)elU.oO

Assume, without loss of generality, that F(a) = 0, i.e., f; dF(s) =
F(t). For any v € R”, consider the “adjoint” boundary value problem,

(2.6) y(t) = —A"(t) [y(t) + F*(t)y], ae tel,

with the boundary conditions

2.7)
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This adjoint problem is derived from the one proposed in [5], which
can be obtained from ours by setting

2(t) = y(t) + FT(t)y.

Since the entries of F(-) are only of bounded variation, then in [5]
the adjoint variable z(-) is not necessarily absolutely continuous and,
therefore, the solution of the adjoint equation was considered in a
generalized sense.

As it turns out below, if for a certain v the above adjoint problem
has a solution, then v € KerI'T.

LEMMA 2.2. A pair (y(-),7) solves (2.6) and (2.7) if and only if
ve€KerI'T and y(t) = XT1@#)[-PT(t) + XT(b)NT]y — FT(t),

where X (+) is the fundamental matriz of the homogeneous part of system
(2.1), principal at a, used earlier.

PROOF. The solution of (2.6) that satisfies the boundary condition
at bis

y(®) = XTHOXTE) [NT = FT@)] v+ XT4(t)

b
[ /t X7 (s) A7 (5)FT () ds]
= XT 1) XT(b) [NT — FT(b)] v+ XT1(t)

[ erroaxe)’]

(by integrating by parts)
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= X" ) XTO)INT — FT(b)ly + X7 4(t)
[(XT () FT(b)y — X" (t)F" ()]
_XT-1() / " XT(s)dFT (s)

= XTHOXTONT = FT(0)ly + X7 (6)XT () FT (b)Y

b
— FT(t)y - XT1(1) / X7 (s) dF" (s)y

_ X7y [XT(b)NT - / " X7 (s) dFT(s)]'y _ T (),
t
and then
y(t) = XTTHO[=PT(t) + XT ()N ]y — F7(t)y.
Moreover, from the boundary conditions at a, we get
y(a) = [-PT(a) + XT(O)NT]y = ~MTy
or, equivalently,

MT + XT(b)NT — PT(a)]y =0, thatis, [Ty =0. O

The relation between the local (M, N, F)-controllability of system
(2.1) and the adjoint boundary value problem is given by

THEOREM 2.1. Assume that U is convex. Then the system (2.1) is
(M, N, F)-locally controllable on I if and only if the only pair (y(-),~)
satisfying the adjoint boundary value problem (2.6)—(2.7) with

(2.8) (BT®)ly(t) + F*(t)],u) > 0, Yuel,

is (y()vf)/) = (070)

PROOF. From Lemma 2.1, the system (2.1) is not (M, N, F)-locally
controllable if and only if there exists a nonzero v € KerI'" such that

(v A(u(-))) 20, Vu()el,
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that is,

b
<% / INX(b) — P(s)]X () B(s)u(s) ds> >0

b
/ (BT (s)[XT () [~P"(s) + X" (5)N"]y], u(s)) ds > 0.

And, since 0 € U,

(BT ()X (0~ PT(t) + XT())NT]n],u) > 0,
VueU—1a(t), ae tel;

but, by Lemma 2.2, XT=1(¢)[-PT(t) + X7 (b)NT]y = y(t) + F*(t)v,
where y(t) is the solution of the adjoint system satisfying

y(0) = INT —=FT(b)]y and y(a)=-M"y.0

To compare the results in this section with those in [4], we will state
the condition of Theorem 2.1 in a different way.

COROLLARY 2.1. Assume that B(-) € L? and 4(t) € intU. The
system (2.1) is (M, N, F)-locally controllable on I if and only if
(2.9)

b
/ [NX(b)—P(s)|X (s)B(s)BT (s) X '(s)[-P% (s)+X T (b)NT]ds >0
on KerT'T.

PROOF. Since 4(t) € int U a.e. t € I, then Lemma 2.2 and Theorem
2.1 imply that the (M, N, F)-local controllability is equivalent to the
nonsingularity, for almost all ¢ € I, of the matrix

BT ()X (t)[-PT(t) + XT (b)N7]
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on KerI'T. Hence, the set A C I such that, on KerI'7,

INX(b) — POIX L (O)BOBT(0)XT (6)[-PT (1) + X" (b)NT] > 0,
fort e A,

is of positive Lebesgue measure. Integrating, (2.9) follows. The
converse is trivial. O

A more detailed analysis of the constrained local controllability for
the usual boundary condition is in [10] and [11]; for the nonlinear case,
see [3] and [9].

3. Normality and controllability. To relate the results of the
previous section to the normality of an extremal, let us first write

A(t) = fm(t)v B(t) = fu(t)a
Fou(t)= / a(s) dp(s), Mo =1, (#(a),2(b)), No = ty(#(a),(b)),

v-(5). 8-(8). no- (%),

where the k x 2n-matrix [My Ny is assumed to be onto.

For these choices of A, B, M, N, 13'“, we consider the system (2.1) with
boundary condition (2.2) which becomes

Mox(a) + Noz(b) = (I, .. ,1x)"

3.1), ’
(3.1) ,/ dFo,(s)z(s) = lo.

Notice that, in this setting, ¥ < r = k 4+ 1, and then Case (a)
of the preceding section is never verified and the (M N, FH)—local
controllability is not automatic. If the extremal (&(-),4(-)) is abnormal,
then there exist u, p(+) and X such that ||p|| + ||u|| > 0,

B(t) = —AT(t) (p(t) + Fg, (1))

(3.2), pla) = — M7\
p(b) = Ny A — Fg,, (b),
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(3-3)p
(BT (t)[p(t) + Fo(t)],u) >0, VueU(t)=U—a(t), ae. t€l.

Given an extremal (Z(-), a(+)), define

A={p : p is a nonnegative Radon measure such that, for some Ao, p(-)
and A, (Ao, 4, p(+), A) satisfies (i)—(iv) and (vi) of Theorem 1.1}.

The main result of this paper is

THEOREM 3.1. An estremal (2(-),4(+)) is normal if and only if the
corresponding system (2.1) is (Mo, Ny, 0)-controllable and (M,N,F,,)-
locally controllable for all u(# 0) € A.

PROOF. Assume that the extremal (Z(-),4(-)) is normal. The system
(2.1) is (Mo, No, 0)-locally controllable since, otherwise, using Theorem
2.1, there exist v # 0 and y(-) satisfying (2.6)—(2.7) with (M, N, F) =
(Mp, No,0). But the full rank condition on [My, Ng| yields that y(-) #
0. Hence, (p(-) := y(-), A := v, = 0) satisfies (3.2),-(3.3),, which
contradicts the normality of (#(-),4(-)). Consider p # 0, with p € A.
Let us show that (2.1) is (M, locally controllable. If not, by

)
N,F,)-
Theorem 2.1, there exists ~y ( ) # 0 and y(-) solving
AT(t) [yt
) =

( + FO;J, ]
(3-4) ( _Mo Y2
y(b) = Ng 72 — Fg,,(b)m

and
(3.5)
(BT (t)[y(t) + Fo, ()l u) 20, VueU(t)=U —a(t), ae. tel.

If 44 # 0, then it could be taken equal to 1, and, hence, (p(:) :=
y(-), b, v2) solves (3.2), and (3.3), with p # 0, contradicting the
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normality. If 43 = 0, then 5 # 0, and, thus, a contradiction with
the (My, No, 0)-local controllability is obtained.

Conversely, assume that (2.1) is (My, Ny, 0)-locally controllable and
(M, N, FH)—locally controllable for all u(# 0) € A. If the extremal
(&(-),a(-)) is not normal, then there exists (p(-),u, ) solving (3.2),
and (3.3), with ||p|| + |||l > 0. If © = 0, then ||p|| # 0, and, hence, the
full rank condition on [Ny, My] yields that A # 0. Through Theorem
2.1, we obtain a contradiction with the (Mg, Np, 0)-local controllability.

If u # 0, it is clear that (p(-), W,y = (;)) satisfies equations (3.4) and

(3.5), and, thus, by Theorem 2.1, the (M,N,FA’H)—Iocal controllability
is contradicted. O

When 0 € intU — 4(t), a.e. ¢ € I, Corollary 2.1 can be used to
generalize the results in [4] concerning the relation between normality
and controllability.

In [1] the concept of pseudonormality is used to prove directly the
local controllability of the nonlinear system (1.2) along the reference
trajectory without introducing the linearized system.

We hope that these results will stimulate further research on the con-
trollability properties of nonautonomous linear systems with a general
boundary condition like the one examined in §2.
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