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Dedicated to Wolfgang Thron on his 70th birthday

ABSTRACT. We present a general, homogeneous treat-
ment of the rational interpolation problem in the extended
complex domain. Interpolation conditions at the point co and
prescribed poles are allowed.

1. Introduction. Rational functions are functions meromorphic in
the extended plane C. In C the number w of poles of a rational function
r # 0 is equal to the number of its zeros; w is called the order of r.
We denote the set of rational functions of order at most w by R, and
define the set R,, := R,, U {00} by adding the constant function co to
the set. (See Section 2 for more details.) Then, if ¢, t; are two M6bius
transforms (i.e., meromorphic one-to-one maps of C onto itself), the
composition £; o 7 o ty is a rational function of the same order. Hence,
in the theory of rational functions there is nothing special about the
point oo, neither in the domain nor in the range. However, in the usual
treatment of the rational interpolation problem (or multipoint Padé or
Newton-Padé approximation problem—as it is also called) one assumes
that the prescribed function values are finite, and one treats the cases
where data are given at the point oo, or poles are prescribed, completely
independently. As a consequence, the resulting theory lacks symmetry.
For example, the result that r is the interpolant of f if and only if
1/r is the interpolant of 1/f does not always hold, since 1/f may take
the value co. Also, while the rational interpolant is often constructed
as a terminating Thiele fraction, some Thiele fractions correspond to
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unbounded data: For example,
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z—3
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1—

corresponds to the data (1,1), (2, 2), (3,00). This difficulty has nothing
to do with the well-known fact that a rational interpolation problem
need not have a solution, which can occur even if, as we always assume,
the number of free parameters, 2w + 1, equals the number of data.

As usual, we define in general the interpolant via the linearized
interpolation problem, which leads always to a unique result. We should
also point out that we never assume that the interpolation points are
distinct, i.e., we allow that at any interpolation point the first few
derivatives are prescribed in addition to the function value. (Often
the names osculatory and Hermite rational interpolation problem have
been used for this case.) Since we allow that one of the interpolation
points is co and that in some of the interpolation points poles of an
arbitrary order are prescribed, our treatment indeed covers problems
that usually go under a variety of names: Padé approximation (all
data are given at 0), two-point Padé approximation (half of the data
are given at each of the points 0 and o0), Newton-Padé or multipoint
Padé approximation (data are given at several finite points), Padé-type
approximation (all poles of the approximants are prescribed, the other
data are given at 0). But here only some poles may be prescribed, other
data may be given at any point of the extended plane. In the same
generality, the problem has recently been studied by Stahl [10], but
our treatment and our results are quite different from his; see Section 7
for a brief discussion of the connection between his and our approach.

We do not at all attempt to give a full discussion of all aspects of
the rational interpolation problem. Essentially, we restrict ourselves
to three basic theorems: the existence and uniqueness of the rational
function solving the linearized problem (we call this function the mul-
tipoint Padé approzimant (MPA), even in our general situation); the
description of the general form of the pairs of polynomials solving the
linearized problem (we call these pairs multipoint Padé forms (MPFs));
and the characterization of the MPA. Some simple conclusions are then
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drawn from these results, e.g., one can give several criteria for the MPA
to be a solution of the original nonlinear rational interpolation problem.

After having treated the general case in Sections 2-5, we will exclude
the point co as interpolation point in Section 6 except for assuming a
certain number of zeros or poles there. In other words, we will then
prescribe the type (m,n) of the rational interpolant (i.e., its maximum
numerator degree m and denominator degree n) rather than its order.
It is no surprise that this problem can be treated as a special case of the
general one, although some details need to be discussed and verified. In
contrast to the standard treatment, we still allow that given function
values are oo, i.e., that poles are prescribed.

Our treatment picks up ideas from the well-known bigradient formu-
lation in Padé approximation [2, 4], which in effect has been generalized
by Warner [14] to the rational interpolation problem. But since Warner
required the second data function (called g below) to be nonvanishing,
he missed the generality we are heading for, even in the case where all
interpolation points are finite.

2. The set of rational functions of order w and a representa-
tion of the data of the corresponding interpolation problems.
Let P, denote the space of polynomials in z of degree at most w. The
exact degree of a polynomial p is denoted by Op. Let R, be the set of
rational functions of order at most w, i.e., the set of functions r which
can be written as r = p/q with p,q € P,,, ¢ # 0. (Of course, this repre-
sentation is never unique unless some normalization is agreed upon. A
first requirement would be to use relatively prime polynomials p and q.
However, here we have no need for a special normalization.) We enlarge
here this standard set of rational functions by the constant function oo,
which has the representation 1/0, and we set R, := R,Uco. Note that
r € R, if and only if 1 /T € Re. More generally, if t;,t, are any two
Mébius transforms, then r € R,, if and only if t; o r oty € R,,. The
defect 6 of r € R, is the difference of w and the actual order of r.
For example, all the constant functions have defect w in R,,. This also
holds for the constants 0 and oco.

Let Z' := {#},...,2} C C be a set of distinct interpolation points,
and let K := {k1,...,Ks} be the associated set of multiplicities, x; > 1
(Vj). Furthermore, let z{, := oo, let ko := k > 0 be an associated



266 M.H. GUTKNECHT

multiplicity, and assume that
J
(1) > kj=2w+1.
j=0

The rational interpolation problem consists in finding r € R,, with the
property that at each point z; the first x; terms of the power series
of either r or 1/r (depending on whether f is bounded or unbounded
at z;) coincide with prescribed data. Although in principle only the
prescribed function values and derivatives need to be known, we may
assume here for ease of notation and without restricting the generality
that the data are given in terms of an everywhere meromorphic, hence,
rational function h = f/g. Clearly, there is abundance of freedom in
choosing h, and even more so in choosing f and g. In particular, we
might demand that

(2a) |h(z)| > 1= f(2)=1, z2€Z,
a
h(z)| <1=g(2) =1, z€Z,
and, if kK > 0,
(2b) h(c0)] > 1= f(z) =22 +0(z*71), 2= oo,
h(00)] <1=g(2) =2 +0(z*1), 22— 0.

To be more specific, we may choose

f(2) = faw—n(2) +1(2)0(2),
9(2) = g20-x(2) + 1(2)9(2),

(4) t(z) := H(z — 2;)"

j=1

is the polynomial of degree 2w — K + 1 whose zeros are the finite
interpolation points with the appropriate multiplicity, fo,_, and go.,_«
are interpolation polynomials of degree at most 2w — s chosen in
accordance with (2a) for the data at these points, and ¢ and ¢ are
polynomials of degree at most £ — 1 chosen in accordance with (2b)



RATIONAL INTERPOLATION PROBLEM 267

for prescribing the behavior at co. Note that ¢ or ¢ has exact degree
k—1if Kk >0, and ¢ = ¢» = 0 if Kk = 0. Hence, f,g € Pa, and
max{df, g} = 2w.

If we let ¢(1/2) := 2 "t1p(2) and (1/z) := 2z *+1(2), and if we
assume for the moment that ¢ # 0 and ¢ # 0, the quotient f/g behaves
at z = oo asymptotically as

fz) _ <z§(1/Z) +0(z"") _ <7§(1/Z)[1+0(Z“9¢‘1)]
) 9(2)  P(1/2) +O(z%)  (1/2)[1+ O(z~9¥-1)]
6(1/2)

B 5~ min{0¢+1,09+1}y) _ 1 Op—0¢
T/A)(l/z)[l-l-o( )] O<<Z> |

from which it is clear that ¢ and i determine the first x terms of the
power series in 1/z of f/g at oo if 0¢ < 9y = k — 1, and the first &
terms of the one of g/f if 0y <9 =k — 1.

If only the order of a pole or a zero at oo is prescribed, then ¢ = 0
or ¢ = 0, respectively. If kK = 0, then ¢ = ¢ = 0. These cases are not
excluded here (except in Formula (5)) and will be especially addressed
in Section 6.

We will always refer to the data as f/g, although we really mean
that the pair (f,g) is available, and not just the values of the quotient.
The representation of the data by f and g as defined in (3) is suitable
for the theoretical treatment of a single rational interpolation problem.
We would turn to another representation, if we discussed sequences
of interpolation problems, as, e.g., for investigations of the multipoint
Padé table. In any case, the results obtained do at most superficially
depend on the representation of the data, and the proofs become
simpler. (With respect to homogeneous notation, Stahl’s treatment
[10] is more consequent, at the cost of introducing auxiliary functions,
see Section 7.)

Whenever we will consider the special case where g(z) = 1 and
k = 0, we will refer to it as the standard situation. Actually, most
of the classical work up to 1973 is only concerned with nonosculatory
interpolation, or, as we will say here, interpolation at distinct points
(see Meinguet [7] for a survey). The few exceptions include [5, 9]; the
real change started with [14, 16].
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3. The rational interpolation problem and its linearized
version. Given Z', K,r, and h = f/g, where f and g are defined
by (3), the (true) rational interpolation problem is to find r € R,, such
that

(6a)

f(z2) | O(t(z)) asz— ez, ifg(z)#0,

9(2) r(z) = O(z7") asz— o0, if 0g = 2w, Kk > 0,
(6b)

g(z) 1 {O(t(z)) asz— 2 ez, if f(z') #0,

fz) r(z) O(z7") asz— o0, if 0f = 2w, k>0,

where the notation
O(t(z)) asz—2z2' €Z ifg(z)#0
is an equivalent for
O((z=2)™) asz—z; if1<j<Jandg(z]) #0.

Note that, for those 2’ € Z' with f(z') # 0, g(z’) # 0, the conditions
(6a) and (6b) are equivalent. Actually, one could always replace (6b)
by a condition about the vanishing of certain coeflicients of the Laurent
series of f/g — r at 2z’ and at oc.

It is well known from the standard situation that this problem may
have no solution in general, but that, whenever a solution exists, it can
be found by solving a linearized problem. (Often the latter has been
called the modified rational interpolation problem.) In our general
situation this linearized rational interpolation problem becomes the
following: Given Z’', K, k, f, and g as above, find a pair of polynomials
(p,q) € P, x P, such that

(7) (fa—gp)(z) = {ggig?_)H) as 2o 2 € 2,

as z — o0;

then let 7 := p/q. (There may be common factors that cancel.) As in
the standard situation, there holds

Theorem 1. For every data f/g, there exists a nontrivial subspace
of P, X P, consisting of the solutions (p,q) of (7), and all these



RATIONAL INTERPOLATION PROBLEM 269

pairs (p,q) determine the same rational function r := p/q € R,
which is the unique solution of the linearized rational interpolation
problem. The function r is also the solution of the nonlinear true
rational interpolation problem (6) if the latter has a solution.

Proof. The conditions (7) yield a total of 2w+ 1 linear restrictions for
(p,q) € P, X Ps. Since this space has dimension 2w + 2, there always
exist nontrivial solutions. To prove the uniqueness of r = p/q, assume
that (p, q) and (p, §) are two nontrivial solutions of (7). Then

[(@p — aP)gl(z) = [q(fa+ O()) — a(fq+ O())I(2)
B {O(t(z)) asz — 2 € 7,

O(z%* %) as z — oo,

and the same asymptotic behavior is obtained for (Gp — ¢p)f. Conse-
quently,

. . O(t(2)) as z — 2 € 7,

(@p — ap)(2) = {O(zmn) 25 7 — 0o,
which means that gp — qp € Paw_ and that it has 0t = 2w — kK + 1
zeros. Therefore, gp — gp = 0, i.e., p/q = P/§ after canceling common
factors.

If the nonlinear interpolation problem (6) has a solution r» = p/q,
then multiplication of (6a) by g(z)q(z) and of (6b) by f(z)p(z) yields
(7), which means that the pair (p, ) is a solution of (7). O

We call the unique solution r = p/q obtained from (7) the multipoint
Padé approzimant (MPA) of order w for the given data f/g, even if
r does not solve (6). If it does, we call it a true rational interpolant.
Moreover, in analogy to the notion of a Padé form [2] we call a nontrivial
solution (p, q) € P, X P, of (7) a multipoint Padé form (MPF) of order
w. (At first sight, possible confusion may arise from the fact that, even
in an MPF (p, ¢) with degrees of p and ¢ as small as possible, these two
polynomials need not be mutually prime; but it will become clear that,
when r is not a true interpolant, both contain necessarily a common
polynomial factor s.)
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4. The general form of multipoint Padé forms and the char-
acterization of multipoint Padé approximants. The next theo-
rem describes the general solution of (7), i.e., the set of MPF's belonging
to some given data. The corresponding result for the standard situation
can be found in Maehly and Witzgall [6] for interpolation at distinct
points and in Claessens [1] for osculatory interpolation.

Theorem 2. The set of MPFs of order w for the data f/g consists
of the pairs

(8) (p, @) = (Psw, Gsw) € Pu, X Pu,
where (p,§) € P, x P, is a pair of fizred relatively prime polynomials,
s is a fived monic polynomial divisor of t (defined in (4)) of degree

0s < min{é,n}, § being the defect of r := p/§ in R.,, and n being such
that the degree of fq — gp equals

(9) O(fq—gp)(z) =3w — K —n.
Finally, w # 0 is an arbitrary polynomial of degree
(10) 0w < min{d,n} — Js.

The polynomial s can be characterized as the one of minimum degree
satisfying

(11) (fG—gp)(2) = O(t(2)/s(z)) as z = 2’ € Z'.
If k =0, (10) simplifies to

(12) Ow < § — 0s.

Proof. Let (p,q) € P, x P, be any MPF. First, we can write
(p,q) = (pd,§d) with p,§ relatively prime and d € Ps. Second, d
can be split as d = sw, where s is a monic divisor of minimum degree
with the property that (ps,s) is still an MPF. Clearly, s is a divisor
of ¢, since one can divide through (7) by any common linear factor of p
and ¢ but not ¢ without changing the O(¢(z))-term; the O(23“~*)-term
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is even improved, and thus is not violated. Hence, (p, q) is of the form
(8), and (ps, §s) is a solution of (7); dividing through by s then gives
(11), and, for i defined as the largest integer satisfying (9), one obtains
n > 0s. Moreover, since s has been chosen as the divisor of minimum
degree for which (ps, §s) is still an MPF, (11) would not hold for any
proper divisor of s. Therefore, at those points z; which are zeros of s,
formula (11) gives the exact order, and at the other points the order
is at least the same as the one of ¢(z). Now we know from Theorem
1 that p and ¢ are uniquely determined by the data up to a common
scalar factor, and, of course, the same holds then for the left-hand side
of (11). Consequently, s is also uniquely determined by the data.

From (9) and the second line in (7) one gets Ow + 9s < n, and from
(8) one has clearly Ow + ds < §. Therefore, w satisfies (10). Moreover,
since f, g € Pay, (9) gives

(13) K+n>4.

Consequently, if £ = 0, (10) becomes (12).

On the other hand, given this particular MPF (ps, s), any pair of
the form in (8), with w # 0 satisfying the degree restriction (10), is
also a nontrivial solution of (7), i.e., an MPF. O

We call s the deficiency polynomial and

0 ifn >0,
14 = -
(14) 7 {577 if n <4,

the deficiency at co. Note that, in view of (13) and 7 > 0s,
(15) 0 < o < min{k,§ — 0s}.

As one can expect from (9) and (11), and as will indeed be shown in the
following theorem, the two quantities s and o exhibit the shortcoming
of the MPA if the latter is tried as solution of the original interpolation
problem (6). The next theorem not only states this property of the
MPA but characterizes the MPA among the elements of R,. For
the standard situation this characterization theorem can be found in
Maehly and Witzgall [6, p. 296] and Wuytack [15, Lemma 2] for the
case of distinct interpolation points, and in Warner [14, Theorem 7] and
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Wuytack [16, Lemma 2] for Hermite data. For Padé approximation,
it goes back to Padé [8], but its usefulness has been overlooked for
decades and only recently been pointed out by Trefethen [12, 13].

Theorem 3 (Characterization Theorem). The function r € R,
with defect 0 is the MPA of order w of h = f/g if and only if there
exists a polynomial divisor s of t (defined by (4)) of degree at most &
and an integer o satisfying (15) such that

(16a)
flz) f(z) = {O(t(z)/s(z)) asz— 2 €7, if g(2') #0,
9(z) O(z7"19) as z — 00, if 0g = 2w, k> 0,
(16b)
glz) 1 {O(t(z)/s(z)) asz— 2 € Z', if f(2')#0,
fz)  r(z) O(z7"19) as z — 00, if 0f = 2w, k> 0,

i.e., if and only if at least 2w—0+1 of the 2w+1 interpolation conditions
in (6) are fulfilled.

If r is the MPA of h = f/g, (16) holds in particular with s and o
equal to the deficiency polynomial and the deficiency at co, respectively.
The minimum number of interpolation conditions fulfilled, 2w — § + 1,
is then attained whenever o + 0s = 6. Any other pair (3,) satisfying
(16) has the properties that s is a divisor of § and o < &.

Proof. Assume r is the MPA of h. Then, by Theorem 2 and (15), s
and o with the quoted restrictions exist. For any 2z’ € Z’ with g(z') # 0,
there follows from (11) that 2’ is not a common zero of § and ¢/s, since
otherwise it would also be a zero of p. Hence, division of (11) by gg
yields the first line of (16a). If x > 0 and df < 09 = 2w, it follows from
(7) that 9p < 0§ = w — §. Then (9) yields the second line of (16a):

f(2) fa—gp 3w—r—n—(3w—6
——TZZ—Az:Oz“’”"(“’)
ER () = O( )
=0(z"""") = 0(27""%) as z — 0.
(In the last step we replace § — n by its positive part o since an error

of order 27" at oo means that already all prescribed data are matched
there.) The derivation of (16b) is completely analogous.
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If s and o still denote the quantities of Theorem 2 and (15), the total
number of interpolation conditions fulfilled is exactly 0t — s + k — o,
which by (15) satisfies

(17) Ot—0s+Kk—02>2w—06+1.

The lower bound on the right-hand side is attained whenever 0+0s = 4.
From the minimum degree property of s and the maximality of n (i.e.,
the minimality of o), there finally follows the statement of the last
sentence of the theorem, cf. the proof of Theorem 2.

Conversely, assume that » = p/§ € R, (with p and § relatively
prime) satisfies at least 2w — § + 1 of the 2w + 1 conditions in (6).
Define s as the monic polynomial whose zeros are, with the appropriate
multiplicity, the finite interpolation points where (6) is not fulfilled,
and let o likewise be the number of conditions neglected at co. Then
r satisfies (16), s € Ps is a divisor of ¢, and o is an integer satisfying
(15). Multiplication of the first line of (16a) and (16b) by ggs and fps,
respectively, show that the first line of (7) holds for (p,q) = (s, §s).
Likewise, in view of (15), multiplication of the second line of (16a) and
(16b) yields the second line of (7). O

An alternate way to prove Theorem 3 consists in applying both in
the domain and the range of A Moebius transforms to the effect that
all interpolation points and all corresponding function values become
finite. By this simple means, our general situation can be reduced to the
standard one. After establishing the result for the standard situation,
there only remains to formulate the conclusions for the original general
setting.

5. Further conclusions. We restrict ourselves to a few of the
many results that now follow easily from Theorems 2 and 3. First of
all, these two theorems make the connection between the original and
the linearized interpolation problem obvious. There are various ways to
characterize those MPAs that are true interpolants, and, indeed, many
authors have given such characterizations in the standard situation,
see, e.g., [6, 7, 11, 15], and, for Hermite data, [14, 16]. Here we have
the additional difficulty that the behavior at co must be kept under
control.
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Corollary 4. Let r = p/§ be the MPA of f/g in reduced form, and
let 5,0 and n be as in Theorem 2, o as in (14). Furthermore, among
the MPF's of f/g, let (p,q) be one where p and q have minimum degree.
The following statements are equivalent:

(i) r is a true interpolant.

(ii) s(2)=1and o =0.

(iii) (P, q) is an MPF and n > 6.

(iv) p(z') # 0 or q(2') # 0 for each 2’ € Z' and O(fq — gp) <
3w— K — 6.

Proof. (i) = (ii). This follows from Theorem 3, in particular (16)
and the final sentence. (ii) = (iii). Apply Theorem 2 (choose w(z) =1
in (8)) and (14). (iii) = (iv). Use Theorem 2, where one must
have s(z) = 1 in (8), in order that (p,§) is an MPF; this MPF then
clearly is the one with p and ¢ of minimum degrees; thus, p and ¢ are
relatively prime and cannot have a common zero z’. Finally, (9) yields
(fg — gp)(2) = O(z3=%=1) = O(2%~"%) as z = o0 if n > 4. (iv) =
(i). By (8), one must have s(z) = 1 since a zero 2’ of s would be a zero
of both p and g¢; hence, (p,q) = (p,§). By (9), the order at oo is exactly
O(z3*~%~1) (since 7 is chosen as large as possible); therefore, (iv) can
only hold if n > §, i.e., & = 0. The formulas (16) then show that r is a
true interpolant. O

As we have mentioned, the conditions (7) impose a total of 2w + 1
linear restrictions for (p,q) € P, x P,. In practice, this means that
one obtains a system of 2w + 1 linear equations in the 2w + 2 unknown
coefficients of p and ¢. (These need not be the power series coefficients;
one can use as well the Newton interpolation formula representation
for the polynomials, i.e., choose the Newton series coefficients as the
unknowns.) Often, unlike in our treatment, the derivation of the
fundamental results on rational interpolation is based on a discussion of
the rank of this linear system. But our Theorem 2, of course, contains
this information also:
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Corollary 5. The system of 2w + 1 linear equations in the 2w + 2
unknown coefficients of p and q which results from (7) has rank

(18) 2w + 1+ 9s — min{d, n},
i.e., the solution subspace has dimension

(19) 1+ min{4,n} — Os.

Proof. The solution is unique up to a constant factor if and only if
w is necessarily a constant. Otherwise, the dimension of the solution
space is increased by the maximum degree of w, which is given by (10).
O

The aim of this paper was to establish the basic results on rational
interpolation in such a way that the point oo does not play a special
role, neither as interpolation point nor as interpolation value. The
following result, which exhibits the symmetry attained, is one of the
rewards.

Corollary 6. Let r be the MPA of order w of h with respect to

the interpolation points z, . .., z; with multiplicities Ko, . .., kg, and let
t1,to be two Mobius transforms. Then ty or oty is the MPA of order w
of tiohoty with respect to the interpolation points t3*(zh), ..., t5*(2)

with the same multiplicities. In particular, 1/r is the MPA of order w
of 1/h.

Proof. t1 or oty has the same order as r and, therefore, also the
same defect. Moreover, since Mobius transforms are conformal, it
interpolates t; o h o t; in as many points as r interpolates h, even if
osculatory interpolation is taken into account. By Theorem 3, an MPA
can be characterized alone by the number of interpolation points and
the defect. O

6. Rational interpolation in C: The set of rational functions
of type (m,n) and the corresponding Newton-Padé approxi-
mation problem. If all interpolation points are finite, the treatment
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of Sections 2-5 can be simplified considerably. On the other hand, it
is then usual to prescribe at least the order of the asymptotic behavior
of the interpolant at co. (Again, it may happen that no interpolant
with this asymptotic behavior exists.) It is no surprise that this inter-
polation problem is equivalent to a special case of our general one, but
this equivalence is not quite so trivial that it can be taken for granted.
We have also to point out that the following treatment is more general
than the standard one in that it allows us to prescribe poles and the
first few Laurent coefficients in these poles.

A rational function r = p/q € R, is said to be of type (m,n) if
Op < m and 0q < n; its exact type is (Op,dq) if p and ¢ are relatively
prime. Of course, w > max{dp, 9q}, and the equality sign holds if and
only if w is the exact order. We denote the set of rational functions
r € R, of type (m,n) by R, and the set of functions r € R, of
type (m,n) by Run, i€y Rinn = Rmn U{oc}. Clearly, 7 € Ry, if
and only if 1/r € ﬁmm. The defect § of r in Rmm is now defined by
0 := min{m — dp,n — dq} (again, with p, g relatively prime).

The number of free parameters in ﬁmm ism+n-+1, so we can expect
that, in general, as many interpolation conditions can be satisfied. As

in Section 2, let Z' := {2,..., 2} C C be a set of distinct interpolation
points, and let K := {ky, ...,k } be the associated set of multiplicities,
k; > 1 (Vj), such that
J
(20) Y kj=m+n+l.
j=1

We may now assume that the data are given in the form of a quotient
fmtn/gm+n of two relatively prime polynomials of degree at most m+n,
which can but need not be required to satisfy (2a). The function ¢ is
again defined by (4).

Given m,n,Z', K, and hpmin = fmin/Gmin, the (true) rational
interpolation problem becomes now to find r € R,y such that
(21a)

fm+n(z)

Imtn(2)
(21b)

gmin(2) L oo ;
fman(z)  7(2) O(t(2)) =2 eZ' if fpan(2') £0.

—71(2) =0(t(2)) asz— 2 €Z', if gin(z') #0,
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The corresponding linearized rational interpolation problem is: Given
m,n,Z' K, fmin, and gmin as above, find a pair of polynomials
(p,q) € Pm X P, such that

(22) (fm4nq = gminp)(2) = O(t(2)) asz—2' € Z,

and then let r := p/q.

Again, if » = p/q is a solution of (21), then (p, q) is also a solution of
(22). We call r then a true (m, n)-interpolant. Any nontrivial solution
pair (p, q) € P X Py, of (22) will be called an (m, n)-Newton-Padé form
(NPF) and the resulting rational function r = p/q the (m,n)-Newton-
Padé approximant (NPA). We anticipate the well-known fact that the
NPA exists and is unique.

The adaptation of our general results to this new situation is based
on

Lemma 7. Given m,n,Z', K, fumin, and gmin, let
(23) w:=max{m,n}, K:=|m—n|

(so that 2w — k = m +n) and

#(z) := 2"t Y(z) =0, if m > n,
(24) #(z) =0, Y(z) =0, if m=n,
#(2):=0, Y(z) := 21 if m<n,

and define f and g by (3). Then (p,q) is an MPF of order w of f/g if
and Only Zf (pa Q) is an (m,n)—NPF Of fm+n/gm+n-

Proof. If m = n, the two problems are clearly equivalent since the
second line of (7) is always satisfied. Next, assume m > n. Then
Of = 2w, 09 < 2w — K, and, therefore, the second line of (7) implies
that ¢ < w — k < n. Hence, (p, q) satisfying (7) must lie in P, x P,.
On the other hand, if (p,q) € P X P, C P, X Py, then the second
line of (7) is satisfied. The first line of (7) is equivalent with (22) since
f and fi4n, as well as g and gm4n, have, at points z;-, the same values
and the same first x; — 1 derivatives. The case m < n is analogous. O
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The above lemma and Theorem 1 imply in particular that, for any
pair (m,n) of nonnegative integers and for any given m + n + 1
interpolation data, an (m,n)-NPA always exists, is unique, and is equal
to the MPA of the associated interpolation problem in C. However, we
must emphasize that, even if an NPA is a true (m,n)-interpolant, it
need not be a true interpolant of the corresponding problem (6) in C.
In fact, 7 € Ron, does not imply that the second line of (6a) or (6b)
holds, since r need not be of exact type (m,n). One must also note
that the defect of r in R, , is, in general, different from the defect in
Re-

It would now be an easy matter to formulate Theorems 2 and 3 and
Corollaries 4-6 for the (m,n)-NPA problem, see [3], where the block
structure of the Newton-Padé table is discussed on the basis of these
results. In Corollary 6 the second Mdbius transform ¢, of course, has
to be chosen so that oo ¢ t5'(Z').

7. Remark on Stahl’s approach. Stahl [10] investigates in his
Section 8 the existence and uniqueness of the solution of the linearized
rational interpolation problem in the same generality as in our Section
3. However, his notation and approach is quite different. He avoids the
distinction between the first line and the second line of (7) by writing

‘.]71 H Z,Z’- g
@) EJac(s) - pele) = LI

where ¢ ¢ Z' can be chosen arbitrarily and where

z—2, if |[2'] <1,
(26) H(z,2") =1 (z —2")/|¢|, ifl< || < o0,
1, if 2/ = oo,

and

(27) pe@=p (1) wma(to)

Actually, the right-hand side of (25) could be replaced by ¢(z)/(z —
¢)?**1 but Stahl’s choice has the advantage of being continuous in
each z; even for z; — oco. Stahl allows that the target degrees m and n
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for p and ¢ are different, but, of course, this is equivalent to demanding
that 7(z) = p¢(2)/q¢(2) has at ¢ a zero of order n —m if n > m, and a
pole of order m — n if m > n. Although Stahl does not count ¢ as one
of his interpolation points, his MPA then depends on ( unless m = n.
Moreover, if ¢ is allowed to coincide with one of the interpolation points,
the MPA may be nonunique.
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