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ABSTRACT. The object of this paper is the study of the
convergence of integral approximants, which are a special case
of Hermite-Padé approximants of Latin type, to functions
which are analytic in a disk except for one interior singular
point. We give detailed estimates of the rate of convergence
of the sequence of approximants of type [L/M ; 1] for fixed M ,
as L → ∞, in a model case study. We also give estimates
of the rate of convergence of approximants of type [L/M ; 1; 2]
for fixed M , as L → ∞, for a model exhibiting a confluent
singularity. We prove that integral approximants of these
types converge uniformly on compact subsets of the disk which
is centered on the origin and has the singular point of the
given function on its boundary. We further prove convergence
on additional Riemann sheets beyond the principal one in a
lune near the singular point.

1. Introduction. Functions which are defined on a multiply-
connected Riemann surface can be approximated accurately only by
functions having a similar Riemann surface. To this end, Hermite-
Padé approximants (of Latin type) have been used successfully to
approximate functions having branch cuts; these approximants were
introduced by Padé [23, 24] and contemporaneously by Hermite [14].
Let f(z) be a function which is analytic except for a finite number of
branch points of square root type. Shafer studied the special case of
quadratic approximants [25], which are suitable for f(z). He showed
how polynomials P (z), Q(z) and R(z) can be found from a knowledge
of f(z) so that

(1.1) P (z)y(z)2 +Q(z)y(z) +R(z) = 0

has a solution y(z) which approximates f(z) near its branch points.
Provided that P (z), Q(z) and R(z) have been suitably chosen, the
branch points of y(z) will be located close to those of f(z), and the
Riemann surfaces of f(z) and y(z) will be similar.

Hermite-Padé approximation is the preferred method of approxima-
tion of a function f(z) when f(z) has known analytic properties (ide-
ally, the topology of the Riemann surface of f(z) should be known) and
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when the Maclaurin expansion of f(z) is given. Using this expansion,
one can, for example, find nontrivial polynomials P (z), Q(z) and R(z)
for which

(1.2) P (z)f(z)2 +Q(z)f(z) +R(z) = O(z∂p+∂Q+∂R+2),

where ∂P denotes the maximum allowed degree of P (z), etc. Clearly,
∂P + ∂Q+ ∂R + 2 coefficients of the Maclaurin expansion of f(z) are
needed in order to derive P (z), Q(z) and R(z) (up to an irrelevant
constant common factor). A quadratic, or Shafer, approximant of f(z)
then follows as the corresponding solution of (1.1). Further explanation
is given by Baker and Graves-Morris [5].

In this paper, we are primarily concerned with approximation tech-
niques which allow extrapolation further onto the Riemann surface.
The problem of finding Padé approximants for a function which is ana-
lytic in the cut z-plane has received a great deal of attention [1, 5, 22,
26, and references therein]. In ideal circumstances, a suitably chosen
sequence of Padé approximants for f(z) converges to f(z) except that
certain poles and zeros of the approximants accumulate on lines which,
in this sense, are the natural locations of the cuts of f(z). Commonly,
these lines are arcs of circles [4, 20], and, as such, they are not com-
ponents of a Mittag-Leffler star [13]. Because each Padé approximant
is single-valued, there is no natural method of continuation through
the natural cuts. Certain Hermite-Padé approximants, including the
quadratic approximants, have the potential to approximate accurately
on a multi-sheeted surface and to reveal features which are thought to
exist there.

In many physical applications, functions are known (either by value
or by their power series expansions) on what is called the physical
sheet, because physical quantities are the values (possibly boundary
values) of the function on this sheet. For one class of problems of
current interest, namely the reconstruction of thermodynamic variables
from their power series expansions, e.g., [27], we have an incomplete
knowledge of the analytic structure of f(z), and we have the values
of a finite number (say the first 20 odd) of its Maclaurin coefficients.
For example, Baker, Rushbrooke and Gilbert [8] discuss the specific
heat CH(K) of the linear ferromagnetic Heisenberg model, where
K = J/kT in conventional notation. Near diagonal sequences of Padé
approximants of CH(K), place natural cuts of this function across the
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negative K axis and prevent extrapolation of the specific heat on the
negative axis, which corresponds to the antiferromagnetic model at
lower temperatures. Approximants which are singularity-free on the
real K axis are to be preferred. A similar difficulty, in which near
diagonal sequences of Padé approximants place a natural cut across the
positive real time axis occurs in the “bubble” problem [21]. Scattering
amplitudes are usually constructed as boundary values of a function
with cut-plane analyticity, and one of these cuts is the elastic scattering
cut. Resonances of the scattering particles are represented by poles
on unphysical sheets, and the more significant poles are close to the
physical boundary [11, 19].

Undoubtedly, much contemporary research on Hermite-Padé approx-
imants is motivated by interest in evaluating the critical exponents of
certain thermo-dynamic variables [12, 15] and on their impact on the
theory of universality.

We are concerned here with integral approximants which belong
to the class of Hermite-Padé approximants of Latin type. Integral
approximants are defined in the following way. Given a function defined
by its Maclaurin series as

(1.3) f(z) =
∞∑

j=0

fjz
j ,

we can always find nontrivial polynomials P (z), Q(z), . . . , S(z), T (z),
of degrees p, q, . . . , s, t at most, such that

(1.4) P (z)
dmf

dzm
+Q(z)

dm−1f

dzm−1
+ · · · + S(z)f + T (z) = O(zn+1),

where n+ 1 = m+ p+ q + · · · + s+ t [6]. Except in degenerate cases,
we can impose the normalization P (0) = 1. Corresponding to these
polynomials, we define the integral approximant

(1.5) y(z) := [t/s ; . . . ; q ; p]

as the solution, or integral, of the differential equation

(1.6) P (z)
dmy

dzm
+Q(z)

dm−1y

dzm−1
+ · · · + S(z)y + T (z) = 0
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initialized by (1.3). A review of current progress is given in [3].

We concentrate on a special aspect of integral approximants in this
paper. Specifically, we will assume that f(z) is analytic in the disk
|z| < ρ, for some ρ > 1, except at the single point z = 1. Suppose
that f(z) has a singular point of finite order at z = 1, and that
the continuations of f(z) provide precisely m+ 1 linearly independent
coverings of the disk |z| < ρ, one of which is the analytic (background)
term. Then, Baker, Oitmaa and Velgakis [7] have show that there
exists a polynomial P (z) and also functions Q(z), . . . , S(z), T (z) which
are analytic in |z| < ρ such that f(z) is a solution of the differential
equation

(1.7) P (z)f (m)(z) +Q(z)f (m−1)(z) + · · · + S(z)f(z) + T (z) = 0.

The separation property [7] allows the class of functions so defined to
be split into two sub-classes. Roughly speaking, f(z) has the separation
property if it can be decomposed into the sum of two functions, one
of which has no singularities inside |z| < ρ, and the other having no
singularities in ρ < |z| < ∞. If f(z) has the separation property in
|z| < ρ, then the functions Q(z), . . . , S(z) are, in fact, polynomials,
as is P (z), and T (z) is analytic in |z| < ρ. Otherwise, at least one
of Q(z), . . . , S(z) is not a polynomial but merely a function which is
analytic in |z| < ρ.

Baker, Oitmaa and Velgakis [7] have not treated the theory of the
case where the separation property fails, although they do give some
numerical examples. It is this case with which we shall be concerned
here. We will investigate the convergence of sequences where t → ∞
and p, q, . . . , s are held fixed and finite. In the cases we have treated, we
find that this limit reproduces the behavior of P,Q, . . . , S, as expanded
about z = 1 with explicit results on the error. The approximation y(z)
converges to f(z) for |z| < 1, and a detailed description of f(z) for
z near 1 is desirable. As is well known from the theory of ordinary
differential equations, the singularity at z = 1 corresponds to a zero
(possibly multiple) of P (z) at z = 1. We find this zero, together
with estimates of its rate of approach to unity, in the sequence of
approximants which we study.

In Section 2, we consider Hermite-Padé approximation of functions
expressible as

f(z) = A(z)(1 − z)−γ +B(z),
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where A(z) and B(z) are analytic in |z| < ρ and ρ > 1 is given. Such
functions satisfy a first order ordinary differential equation (ODE). We
give detailed estimates of the rate of convergence of the polynomial
coefficients of y, y′, etc., in (1.6) (i.e., in the defining equations of the
integral approximants) in the limit as ∂{T (z)} → ∞. We find that
they approach the limit as various powers of that degree.

In Section 3, we consider the integral approximants to functions
expressible as

f(z) = A(z)(1 − z)−γ +B(z)(1 − z)−θ + C(z),

where A(z), B(z) and C(z) are analytic in |z| < ρ for some ρ > 1.
Such functions satisfy a second order ODE. This case is referred to
as a confluent singularity because it has two independent singularities
at the same point. Again, we give detailed estimates of the rate of
convergence of the polynomial coefficients in the equations defining the
integral approximants. These rates also turn out as powers of ∂{T (z)},
but the exponents are not normally integers, in contrast with the integer
powers which occur in Section 2.

In the final section, we give two theorems concerning integral approx-
imants to the class of functions discussed in the previous two sections.
In the first theorem, we prove uniform convergence of the approximants
on compact subsets of |z| < 1. For the functions of Section 2, we prove
in our second theorem that their integral approximants converge in the
portion of all Riemann sheets accessible in |z| < ρ which can be lifted
onto the lune |z| < 1, |1 − z| < ρ− 1.

2. Hermite-Padé approximation using first order ODEs. Our
aims are the reconstruction of a function f(z) and its properties as
accurately as possible from a knowledge of a finite number of its power
series coefficients. We make certain other hypotheses about f(z), of
which the main one is that f(z) satisfies an ODE of the form

(2.1) (1 − z)f ′(z) +G(z)f(z) = H(z),

where H(z) and G(z) :=
∑∞

i=0Gi(1−z)i are analytic in the disk |z| < ρ
for some ρ > 1. We assume that γ := −G0 is not an integer, and then
the solution of (2.1) may be expressed [16, 17] as

(2.2) f(z) = A(z)(1 − z)−γ +B(z),
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where A(z) and B(z) are analytic in |z| < ρ. Our third assumption
about f(z) is that

(2.3) A(1) �= 0,

so that f(z) necessarily has the singularity structure explicitly exhibited
by (2.2). To introduce our first method of Hermite-Padé approxima-
tion, which is suitable for a function f(z) of the form given by (2.2), we
suppose that the first L+M+2 coefficients of its Maclaurin series (and,
thereby, the first L+M +1 coefficients of f ′(z)) are given. Using these
coefficients, we form a set of L+M + 1 homogeneous linear equations
which are then solved and values of λ(L), α(L), {g(L)

i }M−1
i=0 , {h(L)

i }L−1
i=0

are found so that

(2.4)
[
λ(L)(1 − z) + α(L)

]
f ′(z)+g(L)(z)f(z) = h(L)(z)+O(zL+M+1),

where

g(L)(z) :=
M−1∑
i=0

g
(L)
i (1 − z)i,(2.5)

h(L)(z) :=
L−1∑
i=0

h
(L)
i zi(2.6)

and the O(·) notation used in (2.4) only implies an accuracy-through-
order condition. The solution y(z) of

(2.7) [λ(L)(1 − z) + α(L)]y′(z) + g(L)(z)y(z) = h(L)(z)

satisfying y(0) = f(0) is called the Hermite-Padé, integral approximant
to f(z), defined by the method stated.

Our main result in this section is

Theorem 2.1. With the hypotheses and the construction of (2.1)
(2.7), we may take λ(L) = 1 for L large enough. With this normaliza-
tion,

α(L) = O(L−M−1),(2.8)

g(L)(z) →
M−1∑
i=0

Gi(1 − z)i as L→ ∞,(2.9)



CONVERGENCE THEOREMS 47

and

(2.10) h(L)(z) → H(z) −
[
G(z) −

M−1∑
i=0

Gi(1 − z)i

]
f(z), |z| < 1,

as L→ ∞.

Remarks. Before beginning the proof of this theorem, first we mention
its predecessor, next we establish some notation and then a lemma. If
G(z) is a polynomial of degree M − 1 or less, much stronger results
giving convergence in the cut-plane and on other sheets, for |z| < ρ,
were established by Baker [2] and then were amplified by Baker, Oitmaa
and Velgakis [7]. For such a G(z), it happens that h(L)(z) → H(z) with
a geometric rate of convergence in |z| < ρ. This situation is a natural
analogue of de Montessus’ [18] theorem.

Notation. Let [f(z)]j denote the coefficient of zj in the Maclaurin
expansion of f(z). We also define

(μ)j := μ(μ+ 1) · · · (μ+ j − 1), j ≥ 1,
(μ)j := 1, j = 0,
(μ)j := 0, j < 0,

and the O(·) notation is used in its strong sense [13] unless otherwise
stated.

Lemma 2.1. Let {a(L)
i }2M

i=0 denote a set of 2m+ 1 real or complex
numbers, each depending on L. We assume that sup L maxi |a(L)

i | <∞,
and that these numbers satisfy the constraint equations

(2.11)
2M∑
j=0

a
(L)
j (γ + 1 − j)i = η

(L)
i , i = L,L+ 1, . . . , L+M,

where, for some constant κ, not depending on L or i,

(2.12) |η(L)
i | < κ|(γ − 2M)i|, i = L,L+ 1, . . . , L+M.
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Then

(2.13) a
(L)
j = O(L−M+j−1), j = 0, 1, . . . ,M.

Proof. Define matrices X,Y elementwise by

Xij = (γ + 1 − j)L+i, i, j = 0, 1, . . . ,M,

Yij = (γ −M − j)L+i, i = 0, 1, . . . ,M, j = 0, 1, . . . ,M − 1.

Define vectors a, ã and η by

a :=
(
a
(L)
0 , a

(L)
1 , . . . , a

(L)
M

)T

, ã :=
(
a
(L)
M+1, a

(L)
M+2, . . . , a

(L)
2M

)T

,

η :=
(
η
(L)
L , η

(L)
L+1, . . . , η

(L)
L+M

)T

.

The constraint equations (2.11) can now be expressed in the compact
form

(2.14) Xa = −Y ã + η.

For i = 0, 1, . . . ,M , divide row i of (2.14) by (γ+1)L−M+i. Then sub-
tract rows repeatedly until the coefficient matrix of a has a triangular
structure, so that (2.14) has been reduced to

(2.15) X̃a = −Ỹ ã + η̃

where

X̃ij = (γ + L−M + i+ 1)M−i−j(γ − j + 1)j(M + 1 − i− j)i,

(2.16)

Ỹij =
(j + 1)i(γ −M − j)j+M+1

(γ + L−M − j − 1)i+j+1
.

(2.17)

An example of this reduction is given as Example 2.1, where the
triangular structure of X̃ is explicitly displayed. From (2.12), we find
that ∣∣∣η̃(L)

i

∣∣∣ < κ|(γ − 2M)L+M |/|(γ + 1)L|
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for all i and for L large enough. Hence,

(2.18)
∣∣∣η̃(L)

i

∣∣∣ = O(L−M−1).

Using the equations (2.15) in reverse order, and by back-substitution,
we obtain

a
(L)
j = O(L−M+j−1), j = 0, 1, . . . ,M.

Example 2.1. We exhibit the previous equations for the case of
M = 2. Equations (2.14) are⎡

⎣ (γ + 1)L (γ)L (γ − 1)L

(γ + 1)L+1 (γ)L+1 (γ − 1)L+1

(γ + 1)L+2 (γ)L+2 (γ − 1)L+2

⎤
⎦
⎡
⎢⎣ a

(L)
0

a
(L)
1

a
(L)
2

⎤
⎥⎦

= −
⎡
⎣ (γ − 2)L (γ − 3)L

(γ − 2)L+1 (γ − 3)L+1

(γ − 2)L+2 (γ − 3)L+2

⎤
⎦[ a(L)

3

a
(L)
4

]
+

⎡
⎢⎣ η

(L)
0

η
(L)
1

η
(L)
2

⎤
⎥⎦ .

After division of rows 0, 1, 2 by (γ + 1)L−2, (γ + 1)L−1, (γ + 1)L,
respectively, we obtain⎡

⎣ (γ + L− 1)(γ + L) γ(γ + L− 1) γ(γ − 1)
(γ + L)(γ + L+ 1) γ(γ + L) γ(γ − 1)

(γ + L+ 1)(γ + L+ 2) γ(γ + L+ 1) γ(γ − 1)

⎤
⎦
⎡
⎢⎣ a

(L)
0

a
(L)
1

a
(L)
2

⎤
⎥⎦

= −

⎡
⎢⎣

γ(γ−1)(γ−2)
γ+L−2

γ(γ−1)(γ−2)(γ−3)
(γ+L−2)(γ+L−3)

γ(γ−1)(γ−2)
γ+L−1

γ(γ−1)(γ−2)(γ−3)
(γ+L−1)(γ+L−2)

γ(γ−1)(γ−2)
γ+L

γ(γ−1)(γ−2)(γ−3)
(γ+L)(γ+L−1)

⎤
⎥⎦
[
a
(L)
3

a
(L)
4

]
+

⎡
⎢⎣ η̃

(L)
0

η̃
(L)
1

η̃
(L)
2

⎤
⎥⎦ ,

where η̃(L)
i = O(L−3). In this example, it is easy to see how the rows

are subtracted sequentially:⎡
⎣ (γ + L− 1)(γ + L) (γ + L− 1)γ γ(γ − 1)

(γ + L)2 γ 0
2 0 0

⎤
⎦
⎡
⎢⎣ a

(L)
0

a
(L)
1

a
(L)
2

⎤
⎥⎦

= −

⎡
⎢⎣

γ(γ−1)(γ−2)
γ+L−2

γ(γ−1)(γ−2)(γ−3)
(γ+L−2)(γ+L−3)

γ(γ−1)(γ−2)
(γ+L−1)(γ+L−2)

γ(γ−1)(γ−2)(γ−3)2
(γ+L−1)(γ+L−2)(γ+L−3)

γ(γ−1)(γ−2)2
(γ+L)(γ+L−1)(γ+L−2)

γ(γ−1)(γ−2)(γ−3)2·3
(γ+L)···(γ+L−3)

⎤
⎥⎦
[
a
(L)
3

a
(L)
4

]
+ η̂(L),
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with η̂(L) = O(L−3). From the last row of these equations, we find that
a
(L)
0 = O(L−3). By backsubstitution, it follows that a(L)

1 = O(L−2) and
a
(L)
2 = O(L−1).

Having established Lemma 2.1, we turn our attention back to finding
A(z) in (2.2). By direct substitution of (2.2) into (2.1), we find that

[γA+ (1 − z)A′ +GA](1 − z)−γ

must be analytic in |z| < ρ. Because γ is not an integer, a single-
valuedness argument shows that

(2.19) γA(z) + (1 − z)A′(z) +GA(z) = 0, |z| < ρ.

The solution of (2.19) is

(2.20) A(z) = A(1) exp
∫ z

1

G(t) + γ

t− 1
dt, |z| < ρ;

because γ := −G(1), we see that A(z) is analytic in |z| < ρ.

Proof of Theorem 2.1. We use the variable ζ := 1 − z and retain the
prime ′ to denote differentiation with respect to z. We use (2.2) to
define coefficients ci and di via

∞∑
i=0

ciz
i := f(z) = Aζ−γ +B,(2.20)

∞∑
i=0

diz
i := f ′(z) = A′ζ−γ +Aγζ−γ−1 +B′.(2.21)

Following (2.4), we derive values of the M + 2 unknowns λ(L), α(L),
{g(L)

i }M−1
i=0 from the set of M + 1 homogeneous linear equations

⎡
⎣{λ(L)(1 − z) + α(L)

}[ ∞∑
j=0

djz
j

]
+ g(L)(z)

[ ∞∑
j=0

cjz
j

]⎤⎦
i

= 0,

(2.22)

i = L,L+ 1, . . . , L+M.
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Because (2.22) has a nontrivial solution for {λ(L), α(L), {g(L)
i }} for each

L, we can arrange that λ(L) ≥ 0 and that
(2.23)

max
[
|λ(L)|, |α(L)|, |g(L)

0 |, · · · , |g(L)
M−1|

]
= max {1, |G0|, . . . , |Gm−1|} .

By substituting (2.20) and (2.21) into (2.22), we obtain[ {
λ(L)(1 − z) + α(L)

}{
A′ζ−γ + γAζ−γ−1

}
+ g(L)(z)Aζ−γ

]
i

= −
[{
λ(L)(1 − z) + α(L)

}
B′ + g(L)(z)B

]
i
,

i = L,L+ 1, . . . , L+M,

and, hence,

[{
λ(L)ζ + α(L)

}{
A′ζ−γ + γAζ−γ−1

}
+ g(L)(z)Aζ−γ

]
i
= O

[
ρ̂−L

]
,

(2.24)

i = L,L+ 1, . . . , L+M

for any ρ̂ such that 1 < ρ̂ < ρ. By substituting for A′ from (2.19) into
(2.24), we obtain

−α(L)
[
AGζ−γ−1

]
i
+
[[
g(L) − λ(L)G

]
Aζ−γ

]
i
= O

[
ρ̂−L

]
,(2.25)

i = L,L+ 1, . . . , L+M.

Now we expand A(z) =
∑∞

i=0Aiζ
i, so that the coefficients of ζ−γ−1

and ζ−γ in (2.25) can be analyzed. We define

a
(L)
0 = α(L)A0γ,(2.26)

a
(L)
i = −α(L)

i∑
j=0

AjGi−j +
Min∑
j=0

Ai−j−1

[
g
(L)
j − λ(L)Gj

]
,(2.27)

i = 1, 2, . . . , 2M,

where Min := min(M − 1, i− 1). Then (2.25) takes the form

[
a
(L)
0 (1−z)−γ−1 + a

(L)
1 (1 − z)−γ + · · · + a

(L)
2M (1 − z)−γ+2M−1

]
i

=
[
EL(z)(1 − z)−γ+2M

]
i
+O

[
ρ̂−L

]
,

(2.28)

i = L,L+ 1, . . . , L+M,
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where EL(z) is analytic in |z| < ρ. In fact, the functions {EL(z)}∞L+M

are uniformly bounded in |z| < ρ̂ for the following reasons. From
(2.26), (2.27), we find that a(L)

0 , a
(L)
1 , . . . , a

(L)
2M are linear combinations

of λ(L), a(L), {g(L)
i }M−1

i=0 , and so they are also uniformly bounded (inde-
pendently of L). We give Example 2.2 later to clarify this relationship.
Because each EL(z) is a finite linear combination of functions analytic
in |z| < ρ̂, and, because the coefficients involved are bounded, {EL(z)}
are analytic and uniformly bounded in |z| < ρ̂. Therefore, we can use
Darboux’s theorem [9, 10] to show that a constant κ1 exists, which is
independent of L and j, for which
(2.29)∣∣[EL(z)(1 − z)−γ−2M

]
i

∣∣ < κ1|(γ−2M)i|/i!, i = L,L+1, . . . , L+M.

From (2.28) and (2.29), it follows that

2M∑
j=0

a
(L)
j (γ + 1 − j)i = η

(L)
i , i = L,L+ 1, . . . , L+M

where

|η(L)
i | < κ|(γ − 2M)i|, i = L,L+ 1, . . . , L+M,

for L large enough and some constant κ. Therefore, {a(L)
j } satisfy the

conditions of Lemma 2.1, and so

(2.30) a
(L)
i = O(L−M−i−1), i = 0, . . . ,M.

From (2.26), we obtain

(2.31) α(L) = O(L−M−1).

From (2.27) and (2.30), we obtain

(2.32) g
(L)
i − λ(L)Gi = O(L−M+i), i = 0, 1, . . . ,M − 1.

Equations (2.31) and (2.32) constitute the central estimates of this
section. Since {λ(L)} is bounded by (2.23), the Bolzano-Weierstrass
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theorem implies that a finite limit Λ and its corresponding subsequence
L exist for which

(2.33) lim
L→∞
L∈L

λ(L) = Λ.

Suppose that |Λ| �= 1. From (2.32), we have

(2.34) lim
L→∞
L∈L

gi(L) = ΛGi.

From (2.31), (2.33) and (2.34), we obtain

(2.35)
lim

L→∞
L∈L

max
{
|λ(L)|, |α(L)|, |g(L)

0 |, · · · , |g(L)
M−1|

}
= |Λ|max {1, |G0|, . . . , |GM−1|} .

This contradicts (2.33) and, therefore, |Λ| = 1. Because each λ(L) ≥ 0,
it must be that Λ = 1. Using the usual argument about deletion of
subsequences, it follows from (2.33) that

lim
L→∞

λ(L) = 1.

From (2.31) and (2.32), we obtain

α(L) = O(L−M−1)(2.36)

g
(L)
i = Gi +O(L−M+i), i = 0, 1, . . . ,M − 1.(2.37)

and

g(L)(z) →
M−1∑
i=0

gi(1 − z)i as L→ ∞.

From (2.4), we find

h(L)(z) =
L∑

j=0

zj

⎧⎨
⎩hj −

[[
G(z) − g(L)(z)

] L∑
i=0

ciz
i

]
j

⎫⎬
⎭ ,
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and, hence,

h(L)(z) → H(z) −
{
G(z) −

M−1∑
i=0

Gi(1 − z)i

}
f(z) in |z| < 1.

We conclude this section with

Example 2.2. For the case of M = 2, equations (2.26), (2.27) take
the matrix form⎡

⎢⎢⎢⎢⎢⎣

a
(L)
0

a
(L)
1

a
(L)
2

a
(L)
3

a
(L)
4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
A0

A1 A0

A2 A1 A0

A3 A2 A1

A4 A3 A2

⎤
⎥⎥⎥⎦
⎡
⎣ γα(L)

g
(L)
0 − λ(L)G0 − α(L)G1

g
(L)
1 − λ(L)G1 − α(L)G2

⎤
⎦ ,

and we see that a(L)
0 , a

(L)
1 , . . . , a

(L)
4 are linear combinations of λ(L),

α(L), g(L)
0 and g(L)

1 .

3. Hermite-Padé approximation using ODEs. In this section,
we suppose that the function f(z) (which we wish to reconstruct from
its power series) satisfies an ODE of the form

(3.1) (1 − z)2f ′′(z) + (1 − z)G0f
′(z) +K(z)f(z) = H(z),

where G0 is a constant and K(z), H(z) are analytic in the disk |z| < ρ
for some ρ > 1. We assume that the quadratic equation

(3.2) ν2 + (G0 + 1)ν +K(1) = 0

has two roots γ, θ, neither of which is an integer, and that Re γ >
Re θ > Re γ − 1. We discover that the Hermite-Padé approximants
specified here reproduce the main features of f(z). In particular, the
approximants have a singular point near z = 1 (at sufficiently high
order) and we find estimates of the exponents γ, θ from these approx-
imants which converge to γ, θ, respectively. The rate of convergence
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is slower than the rate of convergence of the estimates of γ found in
Section 2. The solution of (3.1) may be expressed as

(3.3) f(z) = A(z)(1 − z)−γ +B(z)(1 − z)−θ + C(z),

where A(z), B(z) and C(z) are analytic in |z| < ρ. Thus, the expansions
A(z) =

∑∞
i=0Aiζ

i, B(z) =
∑∞

i=0Biζ
i in ζ := 1 − z converge in

|ζ| < ρ− 1. We also assume that A0 �= 0 �= B0. For reasons similar to
those given in Section 2, we find that A(z) and B(z) satisfy

(1 − z)2A′′ + 2γ(1 − z)A′ + γ(γ + 1)A+(1 − z)G0A
′

(3.4)

+G0γA+KA = 0,

(1 − z)2B′′ + 2θ(1 − z)B′ + θ(θ + 1)B+(1 − z)G0B
′

(3.5)

+G0θB +KB = 0,

respectively. To obtain Hermite-Padé approximants for the solution
of (3.1), we first need to find the values of λ(L), α(L), β(L), σ(L), τ (L),
{k(L)

i }M−1
i=0 and {h(L)

i }L−1
i=0 for which

(3.6)
{λ(L)(1 − z)2 + α(L)(1 − z)+β(L)}f ′′(z) + {σ(L) + τ (L)(1 − z)}f ′(z)

+ k(L)(z)f(z) = h(L)(z) +O(zL+M+4),

where k(L)(z) =
∑M−1

i=0 k
(L)
i ζi and h(L)(z) =

∑L−1
i=0 h

(L)
i zi. Obviously,

L + M + 4 terms of each of the power series
∑∞

i=0 ciz
i = f(z),∑∞

i=0 diz
i = f ′(z) and

∑∞
i=0 eiz

i = f ′′(z) are required to set up the
equations. The values of λ(L), α(L), β(L), σ(L), τ (L) and {k(L)

i }M−1
i=0 are

found by solving the set of homogeneous equations

⎡
⎢⎢⎢⎢⎢⎣
{λ(L)(1 − z)2 + α(L)(1 − z) + β(L)}

∞∑
j=0

ejz
j

+ {σ(L) + τ (L)(1 − z)}
∞∑

j=0

djz
j + k(L)(z)

∞∑
j=0

cjz
j

⎤
⎥⎥⎥⎥⎥⎦

i

= 0,

(3.7)

i = L,L+ 1, . . . , L+M + 3.
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Using much the same analysis as that of (2.23), (2.33) (2.35), we
find that we may introduce the normalization λ(L) = 1 for L large
enough. At this rather premature stage, we introduce the normalization
λ(L) = 1 for L ≥ L0, so as to avoid repetition and further complication
of the analysis. The values of the other parameters now follow from
(3.7) (and (3.6) for {h(L)

j }L−1
j=0 ). Using these values, we obtain the

Hermite-Padé integral approximants for f(z) as the solutions y(z) of

{(1 − z)2 + α(L)(1 − z) + β(L)}y′′(z) + {σ(L) + τ (L)(1 − z)}y′(z)
(3.8)

+ k(L)(z)y(z) = h(L)(z)

for L = L0, L0 + 1, L0 + 2, . . . . The initial conditions associated with
the ODE (3.8) are y(0) = c0, y′(0) = c1 for each L. Our general method
of Hermite-Padé, integral approximation is exemplified by the case of
M = 1.

Example 3.1. The case M = 1. We substitute the known form of
the equation (3.3) into (3.6) and obtain
(3.9)[

{ζ2 + α(L)ζ + β(L)}{γ(γ + 1)Aζ−γ−2 + 2γA′ζ−γ−1 +A′′ζ−γ

+ θ(θ + 1)Bζ−θ−2 + 2θB′ζ−θ−1 +B′′ζ−θ + C ′′}
+ {σ(L) + τ (L)ζ}{γAζ−γ−1 +A′ζ−γ + θBζ−θ−1 +B′ζ−θ + C ′}
+ k

(L)
0 {Aζ−γ +Bζ−θ + C}

]
i

= 0, i = L,L+ 1, . . . , L+ 4.

Using (3.4), (3.5) to eliminate A′′, B′′ from (3.9), we obtain
(3.10)[

(ζ2 + α(L)ζ + β(L)}{C ′′ − (ζG0A
′ +G0γA+KA)ζ−γ−2

− (ζG0B
′ +G0θB +KB)ζ−θ−2}

+ {σ(L) + τ (L)ζ}{γAζ−γ−1 +A′ζ−γ + θBζ−θ−1 +B′ζ−θ + C ′}
+ k

(L)
0 {Aζ−γ +Bζ−θ + C}

]
i

= 0, i = L,L+ 1, . . . , L+ 4.
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Following the method of Section 2, we pick out the coefficients of
ζ−γ−2, ζ−θ−2, ζ−γ−1, . . . in (3.10) and define

a
(L)
0 = −β(L){G0γA0 +K0A0},(3.11a)

b
(L)
0 = −β(L){G0θB0 +K0B0},(3.11b)

(3.11)
a
(L)
1 = σ(L)γA0 − α(L){G0γA0 +K0A0} + β(L)t1,

b
(L)
1 = σ(L)θA0 − α(L){G0θB0 +K0B0} + β(L)t2,

a
(L)
2 = τ (L)γA0 + k

(L)
0 A0 −G0γA0 −K0A0 + β(L)t3 + α(L)t4 + σ(L)t5,

b
(L)
2 = τ (L)θB0 + k

(L)
0 B0 −G0θB0 −K0B0 + β(L)t6 + α(L)t7 + σ(L)t8,

where t1, t2, . . . are constants not depending on L. Notice that a(L)
0 ∝

b
(L)
0 ∝ β(L) for all L. In this sense, (3.11b) is linearly dependent on its

predecessor (3.11a), whereas the other equations of (3.11) are linearly
independent. For this reason, (3.11b) is treated differently from the
other equations.

In our analysis, we need to use the order notation in a slightly
modified sense, and we define

(3.12) x(L) = O(θ)L

to mean that |x(L)/(θ)L| is bounded as L → ∞. From (3.10), (3.11),
we obtain
(3.13)⎡
⎢⎢⎣

(γ + 2)L (γ + 1)L (θ + 1)L (γ)L (θ)L

(γ + 2)L+1 (γ + 1)L+1 (θ + 1)L+1 (γ)L+1 (θ)L+1

...
...

...
...

...
(γ + 2)L+4 (γ + 1)L+4 (θ + 1)L+4 (γ)L+4 (θ)L+4

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a
(L)
0

a
(L)
1

b
(L)
1

a
(L)
2

b
(L)
2

⎤
⎥⎥⎥⎥⎥⎦ =

−

⎡
⎢⎢⎣

(θ + 2)L (γ − 1)L (θ − 1)L · · · (θ − 4)L

(θ + 2)L+1 (γ − 1)L+1 (θ − 1)L+1 · · · (θ − 4)L+1

...
...

...
...

(θ + 2)L+4 (γ − 1)L+4 (θ − 1)L+4 · · · (θ − 4)L+4

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b
(L)
0

a
(L)
3

b
(L)
3
...

b
(L)
6

⎤
⎥⎥⎥⎥⎥⎦

+O(γ)L−1
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These equations (3.13) are simplified by introducing the definitions

(3.14) ã
(L)
j = a

(L)
j (γ + 2 − j)L, b̃

(L)
j = b

(L)
j (θ + 2 − j)L,

j = 0, 1, . . . , 6, which induce a scaling of the columns. We also find it
convenient to introduce the notation

(3.15) (a)j̄ := a(a− 1)(a− 2) · · · (a− j + 1).

We perform elementary row operations on the matrix coefficient on the
left-hand side of (3.12) and obtain
(3.16)⎡
⎢⎢⎢⎣

1 1 1 1 1
γ−θ+2 γ−θ+1 1 γ−θ 0

(γ−θ+2) · 2 (γ−θ+1) · 1 1 · (θ − γ + 1) 0 0
(γ−θ+2)2̄ · 2 (γ−θ+1)2̄ · 1 0 0 0
(γ−θ+2)2̄ · 2! 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ã
(L)
0

ã
(L)
1

b̃
(L)
1

ã
(L)
2

b̃
(L)
2

⎤
⎥⎥⎥⎥⎥⎦

= −
⎡
⎣

1 1 1 ··· 1

2 γ−θ−1 −1 ··· −4
2(θ−γ+2) (γ−θ−1)(−1) (−1)(θ−γ−1) ··· (−4)(θ−γ−4)
2(θ−γ+2)2̄ (γ−θ−1)2̄(−1) (−1)2̄(θ−γ−1) ··· (−4)2̄(θ−γ−4)
2!(θ−γ+2)2̄ (γ−θ−1)2̄(−1)2̄ (−1)2̄(θ−γ−1)2̄ ··· (−4)2̄(θ−γ−4)2̄

⎤
⎦
⎡
⎢⎢⎢⎣

b̃
(L)
0

ã
(L)
3

b̃
(L)
3

...
b
(L)
6

⎤
⎥⎥⎥⎦

+O(γ)L−1.

From (3.11), (3.12), (3.14) and (3.16), we see that

(3.17) |ã(L)
0 | ≤ χmax{|b̃(L)

0 |, |ã(L)
3 |, |b̃(L)

3 |, · · · , |b̃(L)
6 |}, L ≥ L0

for some constant χ. If |b̃(L)
0 | were the largest in the list in (3.17), then

(3.18) |a(L)
0 | ≤ |b(L)

0 |L−γ+θ−ε, L ≥ L1

for some L1 ≥ L0 and some ε > 0, which contradicts (3.11a,b).
Recalling the previous analysis, (2.33) (2.35), of the normalization, we
obtain the estimates

a
(L)
0 = O(L−3), a

(L)
1 = O(L−2),

b
(L)
1 = O(Lγ−θ−2), a

(L)
2 = O(L−1),

b
(L)
2 = O(Lγ−θ−1),
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and, from (3.11),

(3.19)

β(L) = O(L−3), σ(L), α(L) = O(Lγ−θ−2),

τ (L) = G0 +O(Lγ−θ−1),

k
(L)
0 = K0 +O(Lγ−θ−1).

These estimates suffice to establish convergence of the exponents of
the Hermite-Padé, integral approximants. For the case of M ≥ 2, we
use the method of Example 3.1 and find that

(3.20)

β(L) = O(Lθ−γ−M−1), σ(L), α(L) = O(L−M ),

τ (L) = G0 +O(L1−M ),

k
(L)
0 = K0 +O(L1−M ),

k
(L)
j = Kj +O(L1−M+θ−γ+j), j = 1, 2, . . . ,M − 1.

The estimates of (3.20) can be used to give estimates of the location
of the leading singular point and of its associated singular indices. We
first remark that each integral approximant which results from solving
(3.6) has, in general, two distinct algebraic singular points near z = 1,
rather than one confluent singularity. These singularities are located
at

(3.21)

Z
(L)
± = 1 +

1
2
α(L) ±

[[
1
2
α(L)

]2
− β(L)

] 1
2

= 1 +O
[
L− 1

2 (M+1+γ−θ)
]
, M ≥ 2,

= 1 +O(L−3/2), M = 1.

To show leading order, the exponents of y(L)(z) at z(L)
± are

(3.22) ψ± = −1
2
G0 − 1 =

1
2
(θ + γ − 1),

whereas the exponents of the originating function are γ and θ. In order
to estimate the latter exponents, we first note that

(3.23)
z(L)
s :=

1
2

[
z
(L)
+ + z

(L)
−
]

= 1 +O(L−M ), M ≥ 2,

= 1 +O(Lγ−θ−2), M = 1,
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and (3.23) is, in general, a more accurate estimate than (3.21) of the
singular point. To estimate the values of γ, θ, one may insert the values
of τ (L) and k

(L)
0 for G0 and K0 in (3.2). The estimates of the error in

both γ, θ are then O(Lγ−θ−1) for M = 1, from (3.19), and O(L1−M )
for M ≥ 2, from (3.20).

4. Properties of the approximants. The general theme of this
paper is the approximation of functions which satisfy an ODE of the
general form (4.1), using integral approximants which themselves are
integral of specially constructed ODEs. We pay particular attention
to convergence of “horizontal sequences” of integral approximants. In
Sections 2 and 3, the examples show how the rate of convergence of
the coefficients of (4.2) may be estimated. In this section, we shall
take results having the character of those of the previous sections
as hypotheses and use these hypotheses to study the behavior of the
integrals of the corresponding ODEs.

Our assumptions in Sections 2 and 3 are compatible with the more
general hypothesis that the function to be approximated satisfies an
m-th order ODE of the general form,

(4.1)
m∑

j=0

Qj(z)f (j)(z) + Φ(z) = 0

where Qm(z) is a polynomial of degree Mm, and Q0, Q1, . . . , Qm−1(z)
and Φ are functions which are analytic in Dρ := {z : |z| ≤ ρ} for
some ρ > 1. We assume that Qm(1) = 0, that z = 1 is a regular
singular point of (4.1) and that f(z) has a branch point at z = 1; we
also assume that Qm(z) �= 0 for all other values of z ∈ Dρ. In fact,
we assume that f(z) has disk monodromy dimension m with respect
to Dρ [2]. The implication of this assumption is that when f(z) is
analytically continued on any path in Dρ, there are no singular points
except z = 1 and that precisely m linearly independent coverings of Dρ

are generated, no matter how often the point z = 1 is encircled.

Our sequence of integral approximants for f(z) are solutions of ODEs
having the general form

(4.2)
m∑

j=0

P
(L)
j (z)y(j)

L (z) + πL(z) = 0,
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where the polynomials P (L)
j (z) and πL(z) are determined from a knowl-

edge of the power series coefficients of f(z), as described previously.
Likewise, the initial coefficients of this power series supply the initial
conditions which uniquely determine the required solution of (4.2). To
emphasize the dependence of the solution on the choice of the degrees
of the polynomials of (4.2), we adopt the notation

(4.3) y(L)(z) = [L/p0; . . . ; pm−1;Mm].

We refer to the sequence with p0, p1, . . . , pm−1,Mm fixed and L → ∞
as a horizontal sequence.

Our hypotheses needed in this section are for L large enough (say
≥ L0):

P (L)
m (z) → Qm(z),(4.4a)

P
(L)
j (z) →

pj∑
k=0

Q
(k)
j (1)(z − 1)k/k!,(4.4b)

and that the rate of convergence of (4.4a,b) is O(L−ω) uniformly for
z ∈ Dρ and some ω > 0. Equation (4.4b) is primarily a hypothesis
about convergence of P (L)

j (z) to the pj-th Taylor section of Qj(z) about
z = 1 and not to Qj(z) itself. The preceding hypotheses suffice for the
following general convergence theorem pertaining to the disk |z| < 1.

Theorem 4.1. Under the hypotheses of this section, there exists a
finite L0, such that the horizontal sequence of integral approximants,

H := {[L/p0; p1; . . . ; pm−1;Mm] : p0, p1, . . . , pm−1,Mm fixed,
L = L0, L0 + 1, L0 + 2, . . . },

converges to f(z) uniformly in any compact subset of |z| < 1, where
Mm is defined by (4.1).

Proof. From (4.2) and (4.4a,b), we are led to define

(4.5) Φ̂(z) := Φ(z) +
m−1∑
j=0

{
Qj(z) −

pj∑
k=0

Q
(k)
j (1)(z − 1)k/k!

}
f (j)(z).
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Since the Pm converge to Qm and Qm(z) �= 0 except at z = 1, and
since the Pj also converge, as explained in (4.4) for L large enough
(L ≥ L0), substitution of these results in (4.2) and comparison with
(4.1) and (4.5) leads to the result

(4.6) lim
L→∞

πL(z) = Φ̂(z), |z| < 1.

Therefore, we can select an L0 such that, for all L > L0, the approxi-
mants (pj fixed) of (4.3) have the property that |Pj/Pm| and |πL/Pm|
are uniformly bounded on any compact subset of |z| < 1. If, for a
given z0, |z0| < 1, we choose the path P := {ζ = rz0/|z0|, 0 ≤ r ≤ 1},
then these conditions are sufficient to apply Baker’s theorem [2] on the
uniqueness of convergence and, so, conclude the theorem.

Our eventual aim is to extend the result of Theorem 4.1 onto Riemann
sheets accessible within |z| ≤ ρ. For the case of integral approximants
specified in Section 2, we have progressed toward the objective with
the following result.

Theorem 4.2. Let f(z) satisfy the ODE

(4.7) (1 − z)f ′(z) +G(z)f(z) = H(z),

where G(1) is not an integer, and G(z) and H(z) are analytic in |z| ≤ ρ,
ρ > 1. Then

(4.8) lim
M→∞

lim
L→∞

[L/M ; 1] = f(z), |z| < 1, |1 − z| < ρ− 1

on compact subsets of any (finitely numbered) Riemann sheets of f(z)
accessible from the disk |z| ≤ ρ.

Proof. First, we treat the case Re (G(1)) < 0. The solution to (4.7)
can be written explicitly as [15, 17],

f(z) = fS(z) + fA(z),(4.9a)

fS(z) = (1 − z)−γe−g(z)

[
f(a)

(1 − a)−γ
+
∫ 1

a

H(η)(1 − η)γ−1eg(η) dη

]
,

(4.9b)

fA(z) = (1 − z)−γe−g(z)

∫ z

1

H(η)(1 − η)γ−1eg(η) dη,(4.9c)
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where a is the initial point from which the integration of (4.7) is begun.
Using this separation (4.9), we find that fA(z) is analytic at z = 1
because, if we expand the integrand in powers of (1 − η) and then
integrate, we see that the prefactor (1 − z)−γ exactly cancels all the
(1 − z)γ dependence of the integrand. The function g(z) is defined by

(4.10) g(z) =
∫ z

a

G(ζ) + γ

1 − ζ
dζ, G(1) = −γ.

Let us select a point r, max(0, 2 − ρ) < r < 1, an Mε > Re (γ), and
an ε > 0, so that

(4.11)

∣∣∣∣∣∣
Mε−1∑
j=0

Gj(1 − z)j −G(z)

∣∣∣∣∣∣ < ε,

for all |1 − z| ≤ 1 − r, and where Gj = G(j)(1)/j! as in Section 2.
We may impose (4.11) by the assumed analyticity of G(z) and Taylor’s
theorem with remainder. Next, let us select Lε so that, for all L ≥ Lε,

(4.12) |f(r) − [L/Mε − 1; 1](r)| < ε.

We may take this step by Theorem (4.1). The [L/Mε − 1; 1] has its
singularity at zL, the zero of λ(L)(1 − z) + α(L). From (2.35), (2.36),
we see that

(4.13) zL = 1 +O(L−Mε−1).

If we now define
(
g(L)(t) is from (2.4)

)

(4.14) ĝL(z) =
∫ z

r

g(L)(t) + λLγL

λL(zL − t)
dt, g(L)(zL)/λL = −γL,

where ĝL(z) and, later, ĝ(z) will indicate that the initial point for the
integration of the differential equation is r [a = r in (4.9)], then we can
write the approximant as

(4.15a) yL(z) = yL,S(z) + yL,A(z),
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(4.15b) yL,S(z) =

(zL−z)−γLe−ĝL(z)

[
yL(r)

(zL − r)−γL
+
∫ zL

r

HL(η)(zL − η)γL−1eĝL(η) dη

]
,

(4.15c) yL,A(z) = (zL−z)−γLe−ĝL(z)

∫ z

zL

HL(η)(zL−η)γL−1eĝL(η) dη,

where, as in (4.9) for fA(z), here yL,A(z) can be seen to be analytic
about z = zL. HL(z) is defined in (4.17) below. If we consider now a
path from z = r to z = r on |1 − z| = 1 − r encircling z = 1 n times,
we obtain, from (4.9), with a = r, and (4.15), the results

(4.16)
f(r[n]) = e−2πiγnfS(r[0]) + fA(r[0]),

yL(z) = e−2πiγLnγL,S(r[0]) + yL,A(r[0]),

where r[j] is the point on the j-th Riemann sheet which lifts onto r
on the 0-th or principal Riemann sheet. The integration of the terms
involving H and HL from r[0] to r[n] disappears by Cauchy’s theorem
because of the analyticity in the disk |1 − z| ≤ 1 − r. Likewise,
ĝ(r[0]) = ĝ(r[n]) = 0 and ĝL(r[0]) = ĝL(r[n]) = 0. Thus, we obtain
result (4.16). By Theorem (4.1) and our hypothesis γL → γ as L→ ∞,
we can conclude that, except for the

∫ zL

r
part, the yL,S term in (4.16)

converges to the fS term. That integral part of (4.15b) is identical to
(4.15c), and its convergence will follow immediately when we prove the
convergence of (4.15c). It now remains to consider the fA and yL,A

terms.

Following (4.5), we may write

(4.17)

HL(z) =

[
H(z) −

{
(G(z) −

Mε−1∑
i=0

Gi(1 − z)i

}
f(z)

+
{

(
Mε−1∑
i=0

(g(L)
i −Gi)(1 − z)i

}
f(z)

]
L

,

where [ ]L denotes the Maclaurin section through zL, and g(L)
i are the

Taylor series coefficients about z = 1 of g(L)(z), the approximant to
G(z). The first term on the right-hand side of (4.17) is independent of
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L and a convergent series in the disk |z| ≤ ρ. The singular multiplying
factor in (4.15c), (zL − η)γL−1, is integrable as, again, Re (γL) > 0 for
large enough L by the hypothesis on γ and the convergence of γL, and
so the contribution from the first term on the right-hand side of (4.17)
to (4.15c) tends in the limit L→ ∞ to (4.9c).

By (4.11) and Schwarz’s lemma, the absolute value of the second term
on the right-hand side of (4.17) is bounded in |1 − z| ≤ 1 − r by

(4.18) ε

[ |1 − z|
1 − r

]Mε

|f(z)|.

This result bounds the order and coefficient of the dominant singularity
of the second term on the right-hand side of (4.17). By Darboux’s
theorem [10], we need only consider it to get the asymptotic estimate
of the series-truncation error. Therefore, if we expand the term (1 −
z)Mε−γ to order zL, the error is of the order

∑∞
i=L

(
Mε−γ

l

)
(−z)l. If we

use the estimate [10]
(

Mε−γ

l

)
= O(lγ−Mε−1), then, for |z| ≤ 1, we can

bound the series-truncation error by
∑∞

i=LO(lγ−Mε−1) = O(Lγ−Mε)
which goes to zero if Mε > Re (γ) as we have here. Thus, the integral
of the second term is found to be of order ε by the use of (4.11) directly
in (4.17) without series truncation, for substitution into (4.15c).

The singular part of the last term in (4.17) when substituted into
(4.15c) can, by the estimates of (2.37), be re-expressed as

∣∣∣∣
[Mε−1∑

i=0

O(L−Mε+i)(1 − z)i−γ

]
L

∣∣∣∣
≤
∣∣∣∣

[γ]∑
i=0

O(L−Mε+i)
L∑

j=0

(
i− γ
j

)
(−z)j

∣∣∣∣
+
∣∣∣∣
[ Mε−1∑

i=[γ]+1

O(L−M+i)(1 − z)i−γ

]
L

∣∣∣∣,(4.19)

where [γ] is the greatest integer less than or equal to Re (γ). The
last term on the right-hand side of (4.19) consists of terms which
vanish at z = 1. By the use of the arguments given above for the
second term of (4.17), the truncation error in L vanishes as L → ∞.
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The principal part vanishes because of the O(L−M+i) coefficient so
the whole term converges to zero as L → ∞. In the first term on
the right-hand side of (4.19), the binomial coefficients increase as j
increases when Re (γ) ≥ i + 1. In these terms, we can majorize
all the binomial coefficients by

(
i−γ

L

)
and, again using the estimate

for binomial coefficients, the sums of those terms are bounded by
O(LMε−γ). There remains the term,
(4.20)[

O(L−Mε+[γ])(1 − z)[γ]−γ
]

L
= O(L−Mε+[γ])

(
1 +

L∑
j=1

O(jγ−[γ]−1)
)

= O(L−Mε+γ),

which goes to zero as Mε > Re (γ). Since zL also converges to unity
by the results of Section 2, we conclude that yL(r[n]) converges to
f(r[n]) + O(ε) as L → ∞. This argument can be extended by taking
Mε large enough to include any point in the lune |z| < 1, |1−z| < ρ−1
and any ε > 0.

Now we discuss the case Re (G(1)) > 0. Instead of beginning with
(4.9), we need to recast the solution of (4.7). First, it is convenient to
define

(4.21) F (η) = H(η)eg(η).

The required form for the solution of (4.7) is

(4.22a) f(z) = fS(z) + fA(z),

fS(z) = (1 − z)−γe−g(z)

(4.22b)

×
[

f(a)
(1 − a)−γ

+
∫ 1

a

⎧⎨
⎩F (η) −

−1−[γ]∑
j=0

F (j)(1)(η − 1)j

j!

⎫⎬
⎭(1 − η)γ−1 dη

+
−1−[γ]∑

j=0

F (j)(1)(a− 1)j

(j!)(γ + j)

]
,
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fA(z) =
(4.22c)

(1 − z)−γe−g(z)

∫ z

1

⎧⎨
⎩F (η) −

−1−[γ]∑
j=0

F (j)(1)(η − 1)j

j!

⎫⎬
⎭(1 − η)γ−1 dη

− e−g(z)

−1−[γ]∑
j=0

F (j)(1)(z − 1)j

(j!)(γ + j)
.

Now the integrals are convergent and so the separation into the singular
and analytic parts is well defined when Re (γ) < 0. A similar recasting
is also required for (4.15). The proof for this case now follows the
same method as that given above for the case Re (γ) > 0. Therefore,
Theorem 4.2 follows.

Note. The preview of this work [3] contains at (2.37) an incorrect,
miswritten version of (4.8).
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