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NODAL PROPERTIES OF SOLUTIONS
OF PARABOLIC EQUATIONS

SIGURD ANGENENT"

1. Introduction. In this note we review the known facts about the
zero set of a solution of a scalar parabolic equation

(1) ur = a(z, t)uze+b(z, t)uz+c(z, t)u, zo<z<z,0<t<T.

In particular, we discuss some applications to spectral theory, the
dynamics of nonlinear diffusion equations, and the geometric heat
equation for plane curves.

2. The zero number. Let u be a classical solution of (1) and
assume u is continuous on the rectangle [zg,z1] x [0,T]. Moreover,
assume that

u(z;,t) #0 fori=0,1 and 0<t<T.

Then, for each t € [0,7] we define the set Z(t) = {z € [xo,z1] |
u(t,z) = 0}, and we let z(t) denote the number of elements of Z(¢).
The set Z(t) is a compact subset of the open interval (zg,z1).

Finally, we always assume the following about the coefficients a, b and
c
Ay Ay, Agyy Aty by, by and c are continuous on [zg, z1] X [0, 7.

(2)

Moreover, a(z,t) is strictly positive.

In this situation we have the following:

Theorem A. For any 0 < t < T, z(t) is finite. If, for some
0 < tp < T, the function u(ty) has a double zero, then for all
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t1 < to < ty we have z(t;) > z(t2). Here a double zero is a point
where both u and u, vanish.

This theorem shows that the number of zeros, z(t), does not increase
with time. The theorem is a refinement of a result of Nickel, Matano
and Henry (see [7,6,5]). If the coefficients and the solution are real
analytic, then Theorem A was proven in [3]. The general case was
proven in [2].

The idea of the proof in the analytic case is to study the Taylor series
of a solution u(t, z) near its multiple zeros. If (£, ) is such a zero, then
repeated differentiation of the equation (1) shows that, up to rescaling
and higher order terms, one has

R R m T M2 2 gmt
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with m > 2. Using the Newton polygon method, one then finds that
the zero set of u(z,t) near (Z,2) consists of a finite number of curves.
Furthermore, if m is even, all these curves lie in the region ¢ < i. If
m is odd, there is one additional curve that intersects the line ¢ = ¢
transversally (see Figure 1). In either case, the number of zeros of
u(t,-) drops as t increases beyond #.

It should be noted that the polynomials given in [3] are special
solutions of the heat equation u, = uss and that it can be instructive
to study their graphs (see Figure 2).

The boundary conditions u(z;,t) # 0 are not the only ones under
which Theorem A holds. More general conditions were discussed in [2],
and one we would like to mention here is the periodic case.

If the functions u,a,b and c¢ are periodic in x with period 1 (so that
they are defined on R x [0,77]) and satisfy (2) on R x [0, 7] instead of
[0, z1] X [0,T], then Theorem A remains valid if one defines z(t) to be
the number of zeros of u(¢,-) in the interval [0, 1).

3. Time-dependent Sturm Liouville theory. Let ¢(z,t) be a
continuous function on R x [0, T satisfying c(z + 1,¢) = c(x,t). Then
we define a linear operator L on C(R/Z) by the following recipe. Given
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FIGURE 1. The zeroset near a multiple zero.
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FIGURE 2. Some special solutions of the heat equation.
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f € C(R/Z) one computes Lf by solving the initial value problem

Up = Ugy + (2, t)u, zeR/Z, te€]0,T]
(4) u(z,0) = f(z)
and defining Lf(z) = u(z,T).

Standard results on the smoothing property of parabolic equations
imply that L is a bounded compact operator on E = C(R/Z). Thus,
its spectrum consists of, at most, a countable number of eigenvalues,
clustering at A = 0. We denote these eigenvalues by Ag, A1, A2, As, ...
and order them so that |\;| > |A;41|. Each eigenvalue is assumed to
occur as often as its algebraic multiplicity.

If ¢(z,t) = c¢(x) does not depend on ¢, then we may write L = exp(A)
where —A is the Hill’s operator —A = —(d/dz)? — ¢(x). In this case it
is known that the eigenvalues A; come in pairs, i.e., Aap > Aopyq for
all n > 0. Also, the eigenfunctions belonging to As, 1 and Ay, have
exactly 2n zeros in one period interval 0 < x < 1.

Using Theorem A one can show that this also holds in the general
case where ¢ does depend on time. More precisely, if L is defined as
above, then we have

(5) o > Al = el > sl = gl > -

In particular, for any n > 1, {\an—_1,A2,} is a spectral set for the
operator L, so that its corresponding spectral subspace F,, C E is well
defined. This space is two dimensional and any real function f € F,
has exactly 2n zeros, all of which are simple.

The proof of these statements is contained in [1,3]. The key ingre-
dient is the following observation: for any f € E, Lf has only a finite
number of zeros, and z(Lf) < z(f). If Lf has a multiple zero, then
z2(Lf) < z(f). This follows from Theorem A and the definition of L.
It immediately implies that, if f is a real eigenfunction, its zeros are
all simple (since z(f) = z(Lf)). A lengthier argument along the same
lines leads to the statements we just made.

4. Rotating waves. We consider the initial value problem

ut = fu, Uy, Upy), z€R/Zt>0
(6) u(z,0) = uo(x)
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in which f(u,p, s) is a C* function of its arguments and fs(u,p, s) > 0.

In [3] the dynamics of the semiflow generated by such an equation
was studied in the semilinear case (i.e., f(u,p, s) = s+ g(u,p) for some
other function g).

Using Theorem A we can prove the following: Let u(¢, z) be a periodic
solution of (6), i.e., u(t+T,z) = u(t,z+1) = u(t, z) and suppose u is so
smooth that u; and u,, are Holder continuous. By parabolic regularity
theory the solution w is then actually C*°. We now have:

u is either constant, or a rotating wave, i.e.,
of the form U(z — ct) for some ¢ € R.

To prove this we observe that any linear combination w of u; and wu,
is a solution of

(7) W = Q- Wegy +b-wy +c-w
w(z+1,t) = w(z,t+T) = w(z,t)

where a = fs(u, Uy, Ugz), b = fp(U, Ug, Uge) and ¢ = fu (U, Uy, Ugy).

So if w # 0, then for any time ¢, w(-,¢) has only a finite number of
zeros, z(t).

Furthermore, z(t) is nonincreasing, and by periodicity z(t+1') = z(¢).
Hence, z(t) must be constant, and Theorem A implies that w(-,t) never
has a multiple zero.

Now choose a point where u(z,t) attains its maximal value, say
(zo,t9). Then both u, and wu; vanish at (zg,t;) and there must be
a linear combination w = au, + Bu; such that w, also vanishes at this
point. The foregoing considerations show that w = 0, and we are left
with two cases. If 8 = 0, then w = au, = 0, so that u is constant.
Otherwise, we have u; + cu, = 0 with ¢ = /3 so that u can be written
as u(z — ct).

In [3] many other results were derived; in particular, the existence of
connecting orbits between different rotating waves was studied.

5. The geometric heat equation. Let X be a regular curve in
the plane, i.e., a C! mapping from R/Z into R? whose derivative never
vanishes. The curve may have self-intersections.
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We shall use the letter u to denote the parameter in R/Z on the
curve (ie., X = X(u),u € R/Z).

If the curve is C?, then its curvature k is well defined. The geometric
heat equation is the following

8 — =kN or — =——

(8) ot ot 0s?

where N is the unit normal to the curve, and s denotes arclength along
the curve. The second form of the equation is slightly misleading since
0/0t stands for a derivative w.r.t. ¢ with constant « € R/Z, and not
constant s. A more precise version is

X = |Xu|_1(|Xu|_1Xu)u7 X(U + 1,t) = X(u,t)

9
©) ueR/Z, t>0.

This is a degenerate system of parabolic PDEs. Local solvability in
time was shown in [4] for C*° initial data.

It is known that, if X (u,t) (0 < ¢t < T) is a solution of (9) whose
initial value has no self-intersections, then for all 0 < ¢t < T, the curve
X(-,t) also has no self-intersections (see [4]).

Using Theorem A we can say a little more.

Let X (u,t) be a solution of (9). Choosing rectangular coordinates
z,y in the plane any small enough portion of the family of curves
X (u,t) can be represented as the graph of a function y = w(z,1).
A lengthy computation shows that (9) is, locally at least, equivalent to
the following equation for w.

Wy def
= —F—>5=F zy Wz )-
5 (wp)? L (e Was)

(10) Wt
Since this is a quasilinear parabolic equation, the curves X (-,t) are, for
each t, real analytic.

If we have two solutions of (9), say X; and X3, then for any ¢ > 0,
they either coincide or they have only a finite number of intersections,
say i(t).

Near a point of intersection both curves can be represented by two
solutions w! and w? of (10) (if one chooses the y-axis in the right
direction).



NODAL PROPERTIES 591

1

The difference v = w! — w? satisfies a linear equation of the form

vy = a(@, t)vge + bz, t)v,
(just subtract equation (10) for w! and w?, and apply the mean value
theorem to F).

By Theorem A, the number of zeros of v cannot increase and in fact
decreases if v(t,-) has a multiple zero. Since zeros of v(¢,-) correspond
to intersections of X7 and X5, we arrive at the following conclusion.

At any time ¢ > 0 for which the curves X; and X5 are defined, their
number of intersections, (), is finite.

If for some t; > 0, X; and X5 have a nontransversal intersection,
then i(t) drops as t increases t.

A similar argument shows that the number of self-intersections of a
solution X (¢,u) of (9) cannot increase with time.

To conclude this discussion we note that the curvature k as a function
of normalized arclength s satisfies

(1]-) kt:kss+(ﬂk) :kss+/8ks +ﬁsk
where (s, t) = [ k(s',t)?ds’ — sfo (s',t)2ds" [1].

The normalized arclength is defined to be ordinary arclength divided
by the total length of the curve. Thus k and (8 are periodic functions
of s, with period 1.

If we apply Theorem A to (11), then we find:
for any t > 0 the curve X (-,t) has a finite number of flexpoints.
This number does not increase with time.
(Recall that a flexpoint is a point on the curve where k vanishes.)

Differentiating (11) with respect to s, and using 85 = 2k - ks, we see
that ks also satisfies an equation of the form (1) so that Theorem A
can again be applied.

For any ¢ > 0 the curve X (-,¢) has a finite number of vertices.
This number does not increase with time.

(A vertex of a plane curve is a point where the curvature reaches a local
maximum or minimum [8, Vol. 2].)



592 S. ANGENENT

y = w](x)3 X]

y = Wz(x)’ X2

FIGURE 3. Two plane curves.
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