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STABILITY OF A FAKE TOPOLOGICAL HILBERT SPACE

JAN J. DIJKSTRA AND JAN VAN MILL

ABSTRACT. The space under consideration is the basic
fake Hilbert space Y of Anderson, Curtis and van Mill. It
is shown that the product of an arbitrary space A with Y
is homeomorphic to Y if and only if A is a compact absolute
retract. Furthermore, we prove that the complement of Y X Y
is a capset in Q X @, which implies the known result that Y xY
is homeomorphic to Hilbert space.

1. Introduction. We are interested in the basic fake Hilbert space Y
that was constructed by Anderson, Curtis and van Mill [1]. The space
Y is the complement of a oZ-set in the Hilbert cube @ and, hence, a
complete AR. The following properties can be found in [1] and illustrate
the closeness of Y to the Hilbert space ¢?: (a) Y is homogeneous,
(b) Y x Y is homeomorphic to ¢?, and (c) Y has the weak discrete
approximation property. The space has proved to be a very useful basis
for the construction of other peculiar spaces and counterexamples as is
witnessed by the papers of Anderson et al. [1], Dijkstra and van Mill
[8], Dijkstra [7], and Bowers [3]. More information on Y can be found
in Dijkstra [6, Chapters 4 and 5]. The most important results here
are the Unknotting Theorem (homeomorphisms between compacta in
Y can be extended with control) and the Negligibility Theorem (the
negligible compacta in Y are precisely the compacta with the shape of
a finite set).

In this article we investigate the stability of Y under multiplication.
The result Y XY =~ ¢? can be improved by showing that the complement
of Y XY in Q x @ is a capset. We are mainly interested, however, in
determining for which spaces A the product Y x A is homeomorphic to
Y. We show that this is the case precisely if A is a compact absolute
retract.
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All spaces in this paper are Tychonoff. Absolute retracts are assumed
to be separable metric. For undefined terms from infinite-dimensional
topology, see, e.g., Bessaga and Pelczynski [2].

2. Preliminaries. In this section we introduce the fake Hilbert
space Y and we state several facts that will be used in the next sections.

If £ > 0, then Q(¢) denotes the space [[:~,[—¢,¢]; equipped with the
product topology. The standard representation of the Hilbert cube @
is Q(1) = JN, where J = [—1,1]. Let R be the set of all sequences
P1,P2,P3,... in the interval (0,1) such that lim; ;. p; = 1 and let R
be the subset consisting of all strictly increasing sequences. If (p;)$2,
and (g;)22, are elements of R, then (p;)2, < (¢;)$2, means that p; < ¢;
for every i € N. Select a p = (p;)$2; in R. For every natural number
n we define the shrunken endface in the n-coordinate direction by

Wn - [_pnapn]l X X [_pnapn]n—l X {1}n X [_pnapn]n-i—l
X [_pnapn]n+2 X - C Q

Note that W, is itself a Hilbert cube and that it is a Z-set in ). Observe,
furthermore, that the W,,’s are pairwise disjoint. Let A be an infinite
subset of N. We define

Y (A) = Q\ U wa.

ncA

Since lim,,_,~, pn = 1 there exists a sequence of maps a, : Q@ — W,
such that lim,_,, a, = 1g, where 1g denotes the identity mapping on
Q. This implies that the complement of Y (A4) in @ is both dense and
connected. Moreover, it follows that every compact subset of Y (A) is
a Z-set in Q. The fake Hilbert space Y is represented by Y (N).

Definition. If X' C X and Z’ C Z then we say that the pair (X’, X)
is homeomorphic to the pair (Z’,Z), notation (X', X) ~ (Z',2), if
there is a homeomorphism A : X — Z such that h(X') = Z'.

It is shown in Dijkstra [6, 4.4.3] that every p € R leads to the same
topological type (Y, Q). If X is a space, then H(X) denotes the group
of autohomeomorphisms of X. The following theorem was taken from
Dijkstra [6, 4.3.6].
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The Unknotting Theorem. Let U be an open covering of Q, let
C be a compact metric space and let F : C' x [0,1] — Q be a homotopy
that is limited by U (i.e., the paths F({c} x [0,1]) are contained in
elements of U). If Fy and Fy are imbeddings of C in'Y, then there is
an h € H(Q) such that hoFy = F1, h isU-close to 1o and h(W,,) = W,

for every n.
The following theorem will be used several times in Section 3.

The Sierpiniski Theorem [12]. No continuum can be partitioned
into countably many paitrwise disjoint nonempty closed sets.

A space is called continuum-connected if for every two points of the
space there is a continuum that contains them both. The Sierpinski
Theorem is also valid for continuum-connected spaces. The continuum-
components of a space are maximally continuum-connected subspaces.

3. Stability of Y. In this section we show that Y is stable under
multiplication with compact absolute retracts only. We also consider a
few other fake Hilbert spaces.

Lemma 1. If A is an infinite subset of N, then (Y(A),Q) = (Y, Q).

Proof. It is shown in Dijkstra [6, 4.4.4] that individual shrunken
endfaces can be deleted. This proves that (Y (A),Q) ~ (Y,Q) if the
complement of A is finite.

Consider now the case that A has an infinite complement. Precisely
as for (Y,Q), we have that every choice of p € R leads to the
same topological type (Y (A), Q). Moreover, if B is another set with
infinite complement, then a simple permutation of coordinates shows
that (Y(B),Q) ~ (Y(A),Q). So it suffices to show that (Y,Q) is
homeomorphic to, for instance, (Y (Neyen), @), or, separating even and
odd coordinates, that (Y, Q) is homeomorphic to the pair (X,Q x Q)
where

x =@\ U < Q).
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Consider the pair (Y, Q). According to Dijkstra [6, 4.4.4] there exists
a X € H(Q) such that Xx(Wy;_1) = Wo; 1 and

X(Wai) = W5, _y =[-p2i,p2il1 X -+ X [~D2i, D2i)2i—2
X {—=1}2i—1 X [—D2i, P2il2i X [—P2i, P2i]2i41 X -

for every i € N. This means that in the pair (X(Y),Q) the even
coordinates are interchangeable. Doubling the even coordinates we see
that (X(Y), Q) is homeomorphic to (Z,Q x Q) where

Z=(Q x Q)\ U((Wz_iil X Q(p2i)) U (Wai—1 x Q(p2i—1)))-

Observe now that X~! x 1¢ is a homeomorphism from (Z, Q x Q) onto
(X,Q x Q). This proves the Lemma. o

Lemma 2. (Y,Q) ~ (Y x Q,Q x Q).

Proof. This proof uses Anderson’s Convergence Criterion which states
that if every element of a sequence (h;)$2; in H(Q) can be chosen
arbitrarily close to 1g, then there is a selection possible such that
lim,_yo0 by, © -+ 0 hy € H(Q) (see Dijkstra [6, 1.1.2] for a precise
formulation).

Consider the Unknotting Theorem. Observe that the shrunken end-
faces are the continuum-components of Q\Y (Sierpiriski) and, hence,
the Theorem is a topological statement about the pair (Y,Q). This
means that the Theorem is valid for any pair (C, D) that is homeomor-
phic to (Y, Q). Specifically, consider a pair (Z,Q x Q) that is home-
omorphic to (Y, Q) and let p be a standard convex metric on Q X Q.
Using a straight line homotopy the Unknotting Theorem leads to: if
€ > 0, C' and D are compact subsets of Z and h is a homeomorphism
from C onto D with p(h,1gxq) < €, then thereis a h € H(Qx Q) which
extends h and which has the properties p(h, 1lgxg) < € and h(W) = W
for every continuum-component W of (Q x Q)\Z.

Consider now (X, Q@ x Q) where

X:QXQ\UWiXQ(pi)'
i=1
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Let n; be a natural number. Lemma 1 implies that (Q X Q\ Ujsn, Wi X
Q(pi), Q@ xQ) =~ (Y,Q), and, hence, there exists an hy € H(Q x Q) with
hi(WixQ(p:)) = Wix Q(pi) if i > ny and hy (Wi, X Q(pn,)) = Wa, X Q.
By choosing n; large we can get p,, as close to 1 as we want, which
means that we can make the distance of h; towards 1oy arbitrarily
small. As step 2 of the induction select an no > m; and an hy €
H(Q x Q) such that hy fixes Wy, X Q, ha(Wh, X Q(Pnsy)) = Wh, X Q
and ho(W; x Q(p;)) = Wi x Q(p;) if ¢ > ny. Continue this process.
Since every h,, can be chosen arbitrarily close to 1o« we may assume
that h = lim, 0o hyp 0--- 0 hy € H(Q x Q). Note that h has the
property h(W,, x Q(pn,)) = Wy, x Q for i € N. Consequently,
we have (Q X Q\ U2, Wa, X Q(pn,), @ x @) ~ (Y(4) x ,Q x Q)
where A = {n; | i € N}. According to Lemma 1, the first pair is
homeomorphic to (Y, Q) and the second to (Y x Q,Q x Q).

Lemma 3. If a connected space is a product of two noncompact
spaces, then it has a continuum-connected remainder in any compacti-
fication.

Proof. Consider two connected spaces X; and Xz, neither of them
compact. Let C' be a compactification of X; X X3 and put R =
C\(X1 x Xg). Select for ¢ = 1,2 a filter F; in X; without cluster
points. Let p be a cluster point in C' of the filter F that is generated
by {F); x F» | F; € F;} and note that p € R. We shall show that for
any g € R there is a continuum in R that contains both p and gq.

Let ¢ be an arbitrary point of R and select an ultrafilter G in C' that
converges to ¢ and contains the set X; X X5. Let for ¢ = 1,2 the
ultrafilter G; be given by

Gi ={mi(G)| G €Gand G C X; x Xz},

where 7; : X7 X Xo — X is the projection. Observe that since G; and
G- are ultrafilters and G has no cluster points in X; X X5 we find that
G1 or G5 has no cluster points in X7, respectively, Xo. We may assume
without loss of generality that G, has no cluster points. Consider the
collection

K={cc((X1 x G)U(F x X3)) | F € F; and G € G»}.
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Note that since X; and X, are connected and F' and G are nonempty,
the set (X7 X G) U(F x X32) is connected and, hence, K is a collection of
continua. Observe that the inclusion relation makes an inverse system
of K and, hence, the limit NK is a continuum, see Engelking [9, 6.1.18].
Since K C F NG, we have {p,q} C NK. It remains to verify that NKC
is contained in R. Let x be an arbitrary point of X; X Xs. Since Fj
and G, have no cluster points there exists a neighborhood U X V of =
in X; x X, such that X;\U € F; and X\V € Go. Consequently, the
set
Ao (X1 x (X2\V)) U((X1\U) x X2))

is an element of X that does not contain x. So we may conclude that
NKN (Xl X X2) = J.

Stability Theorem. The product Y x A is homeomorphic to Y if
and only if A is a compact absolute retract.

Proof. Let A be a compact AR. According to Edwards (see Chapman
[4, §44]) we have A X @ ~ Q. This leads to

YrY XQ~rY XQxArY x A.

Now assume that Y x A = Y. The space A is obviously a complete
AR. Since Q\Y is a countable disjoint union of Hilbert cubes, we
have according to Sierpinski that it is not continuum-connected. With
Lemma 3 we find that A is compact. O

A more ambitious task is to find all factors of Y. We make the
following

Conjecture. If Y 2 Ax B, then Y = A and B is a compact AR or
vice versa.

Note that if Y &~ A x B then according to Lemma 3 one of the factors,
say B, is compact and, hence, AX Q~AXBXxXQ~Y xQ~Y. So
the conjecture is equivalent with the statement: if A X Q ~ Y, then
A =Y. Note that this statement is true for the Hilbert space ¢? instead
of Y, Mogilski [11]. Unfortunately, Mogilski’s proof leans heavily on
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the unknotting theorem for noncompact Z-sets in ¢2. A similar theorem
does not exist for Y (see Dijkstra [6, 4.3.10]).

We shall now consider two derived fake Hilbert spaces. The first one
appears in Anderson et al. [1] and is obtained by deleting a countable
dense subset D from Y. The second one can be found in Dijkstra and
van Mill [9] and is obtained by deleting a so-called 0-dimensional capset
Ap from Y (A is a dense copy of the product of the Cantor set and
the set of rational numbers). Both spaces are complete AR’s.

Proposition 1. If X is either Y\D or Y\ Ay, then X X A ~ X only
if A is a singleton.

Proof. Assume that X x A ~ X and note that Q\X is not continuum-
connected. In fact, the Sierpinski Theorem implies that the continuum-
components of Q\X are the shrunken endfaces plus the singletons of
D, respectively Ag. So, according to Lemma 3 the factor A is compact.

Let f be the homeomorphism from X onto X x A. Since Q x A is
a Hilbert cube (Edwards) we may apply Lemma 3.6 of Anderson et
al. [1] to find a compact space M and monotone maps o : M — @
and B : M — Q x A such that a }(X) = 71X x A) and foa |
a }(X) =] a(X). Recall that a monotone map is a continuous,
closed surjection with the property that the preimage of each connected
set is also connected. This means that the preimage under a (or )
of a continuum-component of Q\X (or (Q\X) x A) is a continuum-
component of M\a 1(X). Since the singletons of D, respectively Ag,
are continuum-components in Q\X, it is possible to find a sequence
(C;)$2, of continuum-components of @\X that has only one cluster
point in Q, namely, some point z in X. So we have that every a=1(C;)
is a continuum-component of M\a~!(X) and that every 8(a=1(C;)) is
a continuum-component of (Q\X) x A. Since A is a continuum this
implies that each 3(a~1(C;)) has the form F; x A. This means that the
set of cluster points of (o 1(C;))22; in @ x A also has the form F x A.
On the other hand, F x A is contained in 3(a~!({z})) = {f(z)}. Since
F x A is nonempty we may conclude that A is a singleton.

4. The pair (Y xY,Q x Q). In Anderson et al. [1] it is shown
that Y x Y is homeomorphic to #2. The aim of this section is to prove
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a slightly stronger result, namely that (Y X Y, @ x @) is homeomorphic
to (s, Q), where s is the pseudo-interior of Q. This means that we have
to show that @ x Q\Y x Y is a capset in  x Q. We shall use the
following theorem.

The Capset Characterization Theorem (Curtis [5, Corollary
4.9)]). Let (B;)2, be a sequence of subsets of Q. If (B;)2, satisfies the
properties

(1) each B; is a Z-set in Q,

(2) each B; is homeomorphic to Q,

(3) each B; is a Z-set in B;11, and

(4) there is a homotopy H : Q x [0,1] — Q such that Hy = 1g and,
for every t € (0,1], there is an n € N such that H(Q x [t,1]) C By,
then (B;)2, is a capset.

Proposition 2. (Y xY,Q x Q) = (s,Q).

Proof. In order to show that @ x Q\Y X Y is a capset in Q x Q it
suffices to prove that it contains a capset, see Bessaga and Pelczynski
[2, Theorem IV.4.2]. We introduce some notations. If p € R, then the
shrunken endfaces it determines are denoted by W, (p). Furthermore,
let C,(p) stand for the set

[_pn-‘rlapn-‘rl]l X X [_pn+17pn+1]n—1 X Jn X ']n+1

X[_pn+17pn+1]n+2 X [_pn+17pn+1]n+3 Xowee

Note that C,(p) is just as W, (p) a convex Z-set in @ that is homeo-
morphic to Q. Moreover, C,,(p) contains W, (p) and W,,11(p) as Z-sets
but does not meet any of the other shrunken endfaces. Let B, (p) be
given by

Bn(p) = (W1i(p) x C1(p)) U (Ci(p) x Wa(p)) U (Wa(p) x Ca(p))
U (Ca2(p) x Wa(p)) U+ U (Wyn(p) x Cn(p)) U (Crn(p) X Wni1(p))-

Note that in this union only adjacent terms have a nonempty intersec-
tion. We need the following fact: if X is a space that is the union of
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two Hilbert cubes X; and X5 such that X; N Xy = X is also a Hilbert
cube and, moreover, a Z-set in both X; and X5, then X is a Hilbert
cube. This result can easily be obtained by observing that each pair
(X0, X1) and (X, X2) is homeomorphic to (F, Q) where F is an end-
face of @, or it can be seen as a special case of a much stronger theorem
by Handel [10]. Moreover, if Z is a subset of X such that Z N X; is a
Z-set in X; for ¢ = 0,1, 2, then one easily verifies that Z is a Z-set in X.
Note that (W;(p) x Ci(p)) N (C;(p) x Wiy1(p)) = Wi(p) x Wiy1(p) and
that (C;(p) X Wit1(p)) N (Wis1(p) X Ci(p)) = Wis1(p) X Wit1(p) and,
hence, every set B, (p) is a Hilbert cube. If p < ¢ € R, then W,,(p) is
a Z-set in W,,(q) and C,,(p) is a Z-set in Cy,(q). A tedious but straight-
forward argument involving the second part of the aforementioned fact
now yields that B, (p) is a Z-set in B, (q).

Select a sequence p' < p? < p? < --- in R! that has an upper
bound g € Rt. The sequence that satisfies the Capset Characterization
Theorem is (B, (p™))22 . It is obvious that every B, (p™) is contained
in

G(Wi(Q) XQU@Q@xW;i(q) =QxQ\Y xY

and, hence, every B,(p") is a Z-set in Q X Q. Every B,(p") is a
Hilbert cube and B, (p™) is contained in B, y;(p™) which is a Z-set in
B,1(p™t1). It remains to show that (B, (p"))S, satisfies property
(4). Obviously, it suffices to show that (B, (p'))S>; has this property.
Select maps «; : @ — W;(p') such that lim; ,o, @; = 1g. Consider the
following sequence of maps from @ x @ into Q X @

a1 X 1,01 X Q2,02 X (g, X (3,3 X Q3,... .

Connect adjacent maps in this sequence by straight line homotopies.
Since C,,(p!) is a convex set which contains W,,(p') and W,,;1(p') we
have that the image of the homotopy connecting o, X ap, with oy, X apy1
is contained in W, (p*) x C,(p') C B,(p') and that the image of the
homotopy that connects a, X ay,4+1 with a,41 X 41 is contained in
Cn(p*) X Wyi1(p') € B™(p'). “Glued” together these homotopies form
an H as in property (4) of the Capset Characterization Theorem. This
proves the proposition.
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