STABILITY OF A FAKE TOPOLOGICAL HILBERT SPACE

JAN J. DIJKSTRA AND JAN VAN MILL

ABSTRACT. The space under consideration is the basic fake Hilbert space Y of Anderson, Curtis and van Mill. It is shown that the product of an arbitrary space A with Y is homeomorphic to Y if and only if A is a compact absolute retract. Furthermore, we prove that the complement of $Y \times Y$ is a capset in $Q \times Q$, which implies the known result that $Y \times Y$ is homeomorphic to Hilbert space.

1. Introduction. We are interested in the basic fake Hilbert space Y that was constructed by Anderson, Curtis and van Mill [1]. The space Y is the complement of a σZ -set in the Hilbert cube Q and, hence, a complete AR. The following properties can be found in [1] and illustrate the closeness of Y to the Hilbert space ℓ^2 : (a) Y is homogeneous, (b) $Y \times Y$ is homeomorphic to ℓ^2 , and (c) Y has the weak discrete approximation property. The space has proved to be a very useful basis for the construction of other peculiar spaces and counterexamples as is witnessed by the papers of Anderson et al. [1], Dijkstra and van Mill [8], Dijkstra [7], and Bowers [3]. More information on Y can be found in Dijkstra [6, Chapters 4 and 5]. The most important results here are the Unknotting Theorem (homeomorphisms between compacta in Y can be extended with control) and the Negligibility Theorem (the negligible compacta in Y are precisely the compacta with the shape of a finite set).

In this article we investigate the stability of Y under multiplication. The result $Y \times Y \approx \ell^2$ can be improved by showing that the complement of $Y \times Y$ in $Q \times Q$ is a capset. We are mainly interested, however, in determining for which spaces A the product $Y \times A$ is homeomorphic to Y. We show that this is the case precisely if A is a compact absolute retract.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57N20.

 $Key\ words\ and\ phrases.$ Fake topological Hilbert space, capset, Hilbert cube, absolute retract, continuum-component.

The research of the second author was in part supported by NSF grant DMS-86 06113.

Received by the editors on October 9, 1986.

All spaces in this paper are Tychonoff. Absolute retracts are assumed to be separable metric. For undefined terms from infinite-dimensional topology, see, e.g., Bessaga and Pelczynski [2].

2. Preliminaries. In this section we introduce the fake Hilbert space Y and we state several facts that will be used in the next sections.

If $\varepsilon > 0$, then $Q(\varepsilon)$ denotes the space $\prod_{i=1}^{\infty} [-\varepsilon, \varepsilon]_i$ equipped with the product topology. The standard representation of the Hilbert cube Q is $Q(1) = J^{\mathbf{N}}$, where J = [-1,1]. Let \mathcal{R} be the set of all sequences p_1, p_2, p_3, \ldots in the interval (0,1) such that $\lim_{i \to \infty} p_i = 1$ and let \mathcal{R}^{\dagger} be the subset consisting of all strictly increasing sequences. If $(p_i)_{i=1}^{\infty}$ and $(q_i)_{i=1}^{\infty}$ are elements of \mathcal{R} , then $(p_i)_{i=1}^{\infty} < (q_i)_{i=1}^{\infty}$ means that $p_i < q_i$ for every $i \in \mathbf{N}$. Select a $p = (p_i)_{i=1}^{\infty}$ in \mathcal{R} . For every natural number n we define the shrunken endface in the n-coordinate direction by

$$W_{n} = [-p_{n}, p_{n}]_{1} \times \cdots \times [-p_{n}, p_{n}]_{n-1} \times \{1\}_{n} \times [-p_{n}, p_{n}]_{n+1} \times [-p_{n}, p_{n}]_{n+2} \times \cdots \subset Q.$$

Note that W_n is itself a Hilbert cube and that it is a Z-set in Q. Observe, furthermore, that the W_n 's are pairwise disjoint. Let A be an infinite subset of N. We define

$$Y(A) = Q \setminus \bigcup_{n \in A} W_n.$$

Since $\lim_{n\to\infty} p_n = 1$ there exists a sequence of maps $\alpha_n : Q \to W_n$ such that $\lim_{n\to\infty} \alpha_n = 1_Q$, where 1_Q denotes the identity mapping on Q. This implies that the complement of Y(A) in Q is both dense and connected. Moreover, it follows that every compact subset of Y(A) is a Z-set in Q. The fake Hilbert space Y is represented by $Y(\mathbf{N})$.

Definition. If $X' \subset X$ and $Z' \subset Z$ then we say that the pair (X', X) is homeomorphic to the pair (Z', Z), notation $(X', X) \approx (Z', Z)$, if there is a homeomorphism $h: X \to Z$ such that h(X') = Z'.

It is shown in Dijkstra [6, 4.4.3] that every $p \in \mathcal{R}$ leads to the same topological type (Y, Q). If X is a space, then $\mathcal{H}(X)$ denotes the group of autohomeomorphisms of X. The following theorem was taken from Dijkstra [6, 4.3.6].

STABILITY 1227

The Unknotting Theorem. Let \mathcal{U} be an open covering of Q, let C be a compact metric space and let $F: C \times [0,1] \to Q$ be a homotopy that is limited by \mathcal{U} (i.e., the paths $F(\{c\} \times [0,1])$ are contained in elements of \mathcal{U}). If F_0 and F_1 are imbeddings of C in Y, then there is an $h \in \mathcal{H}(Q)$ such that $h \circ F_0 = F_1$, h is \mathcal{U} -close to 1_Q and $h(W_n) = W_n$ for every n.

The following theorem will be used several times in Section 3.

The Sierpiński Theorem [12]. No continuum can be partitioned into countably many pairwise disjoint nonempty closed sets.

A space is called *continuum-connected* if for every two points of the space there is a continuum that contains them both. The Sierpiński Theorem is also valid for continuum-connected spaces. The *continuum-components* of a space are maximally continuum-connected subspaces.

3. Stability of Y. In this section we show that Y is stable under multiplication with compact absolute retracts only. We also consider a few other fake Hilbert spaces.

Lemma 1. If A is an infinite subset of N, then $(Y(A), Q) \approx (Y, Q)$.

Proof. It is shown in Dijkstra [6, 4.4.4] that individual shrunken endfaces can be deleted. This proves that $(Y(A), Q) \approx (Y, Q)$ if the complement of A is finite.

Consider now the case that A has an infinite complement. Precisely as for (Y,Q), we have that every choice of $p \in \mathcal{R}$ leads to the same topological type (Y(A),Q). Moreover, if B is another set with infinite complement, then a simple permutation of coordinates shows that $(Y(B),Q)\approx (Y(A),Q)$. So it suffices to show that (Y,Q) is homeomorphic to, for instance, $(Y(\mathbf{N}_{even}),Q)$, or, separating even and odd coordinates, that (Y,Q) is homeomorphic to the pair $(X,Q\times Q)$ where

$$X = (Q \times Q) \setminus \bigcup_{i=1}^{\infty} (W_i \times Q(p_i)).$$

Consider the pair (Y,Q). According to Dijkstra [6, 4.4.4] there exists a $\chi \in \mathcal{H}(Q)$ such that $\chi(W_{2i-1}) = W_{2i-1}$ and

$$\chi(W_{2i}) = W_{2i-1}^{-} = [-p_{2i}, p_{2i}]_{1} \times \cdots \times [-p_{2i}, p_{2i}]_{2i-2} \times \{-1\}_{2i-1} \times [-p_{2i}, p_{2i}]_{2i} \times [-p_{2i}, p_{2i}]_{2i+1} \times \cdots$$

for every $i \in \mathbf{N}$. This means that in the pair $(\chi(Y), Q)$ the even coordinates are interchangeable. Doubling the even coordinates we see that $(\chi(Y), Q)$ is homeomorphic to $(Z, Q \times Q)$ where

$$Z = (Q \times Q) \setminus \bigcup_{i=1}^{\infty} ((W_{2i-1}^{-1} \times Q(p_{2i})) \cup (W_{2i-1} \times Q(p_{2i-1}))).$$

Observe now that $\chi^{-1} \times 1_Q$ is a homeomorphism from $(Z, Q \times Q)$ onto $(X, Q \times Q)$. This proves the Lemma. \square

Lemma 2.
$$(Y,Q) \approx (Y \times Q, Q \times Q)$$
.

Proof. This proof uses Anderson's Convergence Criterion which states that if every element of a sequence $(h_i)_{i=1}^{\infty}$ in $\mathcal{H}(Q)$ can be chosen arbitrarily close to 1_Q , then there is a selection possible such that $\lim_{n\to\infty} h_n \circ \cdots \circ h_1 \in \mathcal{H}(Q)$ (see Dijkstra [6, 1.1.2] for a precise formulation).

Consider the Unknotting Theorem. Observe that the shrunken end-faces are the continuum-components of $Q\backslash Y$ (Sierpiński) and, hence, the Theorem is a topological statement about the pair (Y,Q). This means that the Theorem is valid for any pair (C,D) that is homeomorphic to (Y,Q). Specifically, consider a pair $(Z,Q\times Q)$ that is homeomorphic to (Y,Q) and let ρ be a standard convex metric on $Q\times Q$. Using a straight line homotopy the Unknotting Theorem leads to: if $\varepsilon>0$, C and D are compact subsets of Z and h is a homeomorphism from C onto D with $\rho(h,1_{Q\times Q})<\varepsilon$, then there is a $\bar{h}\in\mathcal{H}(Q\times Q)$ which extends h and which has the properties $\rho(\bar{h},1_{Q\times Q})<\varepsilon$ and $\bar{h}(W)=W$ for every continuum-component W of $(Q\times Q)\backslash Z$.

Consider now $(X, Q \times Q)$ where

$$X = Q \times Q \setminus \bigcup_{i=1}^{\infty} W_i \times Q(p_i).$$

STABILITY 1229

Let n_1 be a natural number. Lemma 1 implies that $(Q \times Q \setminus \cup_{i>n_1} W_i \times Q(p_i), Q \times Q) \approx (Y,Q)$, and, hence, there exists an $h_1 \in \mathcal{H}(Q \times Q)$ with $h_1(W_i \times Q(p_i)) = W_i \times Q(p_i)$ if $i > n_1$ and $h_1(W_{n_1} \times Q(p_{n_1})) = W_{n_1} \times Q$. By choosing n_1 large we can get p_{n_1} as close to 1 as we want, which means that we can make the distance of h_1 towards $1_{Q \times Q}$ arbitrarily small. As step 2 of the induction select an $n_2 > n_1$ and an $h_2 \in \mathcal{H}(Q \times Q)$ such that h_2 fixes $W_{n_1} \times Q$, $h_2(W_{n_2} \times Q(p_{n_2})) = W_{n_2} \times Q$ and $h_2(W_i \times Q(p_i)) = W_i \times Q(p_i)$ if $i > n_2$. Continue this process. Since every h_n can be chosen arbitrarily close to $1_{Q \times Q}$ we may assume that $h = \lim_{n \to \infty} h_n \circ \cdots \circ h_1 \in \mathcal{H}(Q \times Q)$. Note that h has the property $h(W_{n_i} \times Q(p_{n_i})) = W_{n_i} \times Q$ for $i \in \mathbb{N}$. Consequently, we have $(Q \times Q \setminus \bigcup_{i=1}^{\infty} W_{n_i} \times Q(p_{n_i}), Q \times Q) \approx (Y(A) \times Q, Q \times Q)$ where $A = \{n_i \mid i \in \mathbb{N}\}$. According to Lemma 1, the first pair is homeomorphic to (Y,Q) and the second to $(Y \times Q, Q \times Q)$.

Lemma 3. If a connected space is a product of two noncompact spaces, then it has a continuum-connected remainder in any compactification.

Proof. Consider two connected spaces X_1 and X_2 , neither of them compact. Let C be a compactification of $X_1 \times X_2$ and put $R = C \setminus (X_1 \times X_2)$. Select for i = 1, 2 a filter \mathcal{F}_i in X_i without cluster points. Let p be a cluster point in C of the filter \mathcal{F} that is generated by $\{F_1 \times F_2 \mid F_i \in \mathcal{F}_i\}$ and note that $p \in R$. We shall show that for any $q \in R$ there is a continuum in R that contains both p and q.

Let q be an arbitrary point of R and select an ultrafilter \mathcal{G} in C that converges to q and contains the set $X_1 \times X_2$. Let for i = 1, 2 the ultrafilter \mathcal{G}_i be given by

$$\mathcal{G}_i = \{ \pi_i(G) \mid G \in \mathcal{G} \text{ and } G \subset X_1 \times X_2 \},$$

where $\pi_i: X_1 \times X_2 \to X_i$ is the projection. Observe that since \mathcal{G}_1 and \mathcal{G}_2 are ultrafilters and \mathcal{G} has no cluster points in $X_1 \times X_2$ we find that \mathcal{G}_1 or \mathcal{G}_2 has no cluster points in X_1 , respectively, X_2 . We may assume without loss of generality that \mathcal{G}_2 has no cluster points. Consider the collection

$$\mathcal{K} = \{ \operatorname{cl}_C((X_1 \times G) \cup (F \times X_2)) \mid F \in \mathcal{F}_1 \text{ and } G \in \mathcal{G}_2 \}.$$

Note that since X_1 and X_2 are connected and F and G are nonempty, the set $(X_1 \times G) \cup (F \times X_2)$ is connected and, hence, \mathcal{K} is a collection of continua. Observe that the inclusion relation makes an inverse system of \mathcal{K} and, hence, the limit $\cap \mathcal{K}$ is a continuum, see Engelking [9, 6.1.18]. Since $\mathcal{K} \subset \mathcal{F} \cap \mathcal{G}$, we have $\{p,q\} \subset \cap \mathcal{K}$. It remains to verify that $\cap \mathcal{K}$ is contained in R. Let x be an arbitrary point of $X_1 \times X_2$. Since \mathcal{F}_1 and \mathcal{G}_2 have no cluster points there exists a neighborhood $U \times V$ of x in $X_1 \times X_2$ such that $X_1 \setminus U \in \mathcal{F}_1$ and $X_2 \setminus V \in \mathcal{G}_2$. Consequently, the set

$$\operatorname{cl}_C((X_1 \times (X_2 \backslash V)) \cup ((X_1 \backslash U) \times X_2))$$

is an element of \mathcal{K} that does not contain x. So we may conclude that $\cap \mathcal{K} \cap (X_1 \times X_2) = \emptyset$.

Stability Theorem. The product $Y \times A$ is homeomorphic to Y if and only if A is a compact absolute retract.

Proof. Let A be a compact AR. According to Edwards (see Chapman [4, §44]) we have $A \times Q \approx Q$. This leads to

$$Y \approx Y \times Q \approx Y \times Q \times A \approx Y \times A$$
.

Now assume that $Y \times A \approx Y$. The space A is obviously a complete AR. Since $Q \setminus Y$ is a countable disjoint union of Hilbert cubes, we have according to Sierpiński that it is not continuum-connected. With Lemma 3 we find that A is compact. \square

A more ambitious task is to find all factors of Y. We make the following

Conjecture. If $Y \cong A \times B$, then $Y \cong A$ and B is a compact AR or vice versa.

Note that if $Y \approx A \times B$ then according to Lemma 3 one of the factors, say B, is compact and, hence, $A \times Q \approx A \times B \times Q \approx Y \times Q \approx Y$. So the conjecture is equivalent with the statement: if $A \times Q \approx Y$, then $A \approx Y$. Note that this statement is true for the Hilbert space ℓ^2 instead of Y, Mogilski [11]. Unfortunately, Mogilski's proof leans heavily on

STABILITY 1231

the unknotting theorem for noncompact Z-sets in ℓ^2 . A similar theorem does not exist for Y (see Dijkstra [6, 4.3.10]).

We shall now consider two derived fake Hilbert spaces. The first one appears in Anderson et al. [1] and is obtained by deleting a countable dense subset D from Y. The second one can be found in Dijkstra and van Mill [9] and is obtained by deleting a so-called 0-dimensional capset A_0 from Y (A_0 is a dense copy of the product of the Cantor set and the set of rational numbers). Both spaces are complete AR's.

Proposition 1. If X is either $Y \setminus D$ or $Y \setminus A_0$, then $X \times A \approx X$ only if A is a singleton.

Proof. Assume that $X \times A \approx X$ and note that $Q \setminus X$ is not continuum-connected. In fact, the Sierpiński Theorem implies that the continuum-components of $Q \setminus X$ are the shrunken endfaces plus the singletons of D, respectively A_0 . So, according to Lemma 3 the factor A is compact.

Let f be the homeomorphism from X onto $X \times A$. Since $Q \times A$ is a Hilbert cube (Edwards) we may apply Lemma 3.6 of Anderson et al. [1] to find a compact space M and monotone maps $\alpha: M \to Q$ and $\beta: M \to Q \times A$ such that $\alpha^{-1}(X) = \beta^{-1}(X \times A)$ and $f \circ \alpha$ $\alpha^{-1}(X) = \beta \mid \alpha^{-1}(X)$. Recall that a monotone map is a continuous, closed surjection with the property that the preimage of each connected set is also connected. This means that the preimage under α (or β) of a continuum-component of $Q \setminus X$ (or $(Q \setminus X) \times A$) is a continuumcomponent of $M \setminus \alpha^{-1}(X)$. Since the singletons of D, respectively A_0 , are continuum-components in $Q \setminus X$, it is possible to find a sequence $(C_i)_{i=1}^{\infty}$ of continuum-components of $Q\setminus X$ that has only one cluster point in Q, namely, some point x in X. So we have that every $\alpha^{-1}(C_i)$ is a continuum-component of $M \setminus \alpha^{-1}(X)$ and that every $\beta(\alpha^{-1}(C_i))$ is a continuum-component of $(Q \setminus X) \times A$. Since A is a continuum this implies that each $\beta(\alpha^{-1}(C_i))$ has the form $F_i \times A$. This means that the set of cluster points of $\beta(\alpha^{-1}(C_i))_{i=1}^{\infty}$ in $Q \times A$ also has the form $F \times A$. On the other hand, $F \times A$ is contained in $\beta(\alpha^{-1}(\{x\})) = \{f(x)\}$. Since $F \times A$ is nonempty we may conclude that A is a singleton.

4. The pair $(\mathbf{Y} \times \mathbf{Y}, \mathbf{Q} \times \mathbf{Q})$. In Anderson et al. [1] it is shown that $Y \times Y$ is homeomorphic to ℓ^2 . The aim of this section is to prove

a slightly stronger result, namely that $(Y \times Y, Q \times Q)$ is homeomorphic to (s, Q), where s is the pseudo-interior of Q. This means that we have to show that $Q \times Q \setminus Y \times Y$ is a capset in $Q \times Q$. We shall use the following theorem.

The Capset Characterization Theorem (Curtis [5, Corollary 4.9]). Let $(B_i)_{i=1}^{\infty}$ be a sequence of subsets of Q. If $(B_i)_{i=1}^{\infty}$ satisfies the properties

- (1) each B_i is a Z-set in Q,
- (2) each B_i is homeomorphic to Q,
- (3) each B_i is a Z-set in B_{i+1} , and
- (4) there is a homotopy $H: Q \times [0,1] \to Q$ such that $H_0 = 1_Q$ and, for every $t \in (0,1]$, there is an $n \in \mathbb{N}$ such that $H(Q \times [t,1]) \subset B_n$, then $(B_i)_{i=1}^{\infty}$ is a capset.

Proposition 2.
$$(Y \times Y, Q \times Q) \approx (s, Q)$$
.

Proof. In order to show that $Q \times Q \setminus Y \times Y$ is a capset in $Q \times Q$ it suffices to prove that it contains a capset, see Bessaga and Pełczyński [2, Theorem IV.4.2]. We introduce some notations. If $p \in \mathcal{R}^{\dagger}$, then the shrunken endfaces it determines are denoted by $W_n(p)$. Furthermore, let $C_n(p)$ stand for the set

$$[-p_{n+1}, p_{n+1}]_1 \times \cdots \times [-p_{n+1}, p_{n+1}]_{n-1} \times J_n \times J_{n+1} \times [-p_{n+1}, p_{n+1}]_{n+2} \times [-p_{n+1}, p_{n+1}]_{n+3} \times \cdots$$

Note that $C_n(p)$ is just as $W_n(p)$ a convex Z-set in Q that is homeomorphic to Q. Moreover, $C_n(p)$ contains $W_n(p)$ and $W_{n+1}(p)$ as Z-sets but does not meet any of the other shrunken endfaces. Let $B_n(p)$ be given by

$$B_n(p) = (W_1(p) \times C_1(p)) \cup (C_1(p) \times W_2(p)) \cup (W_2(p) \times C_2(p))$$

$$\cup (C_2(p) \times W_3(p)) \cup \cdots \cup (W_n(p) \times C_n(p)) \cup (C_n(p) \times W_{n+1}(p)).$$

Note that in this union only adjacent terms have a nonempty intersection. We need the following fact: if X is a space that is the union of

1233

two Hilbert cubes X_1 and X_2 such that $X_1 \cap X_2 = X_0$ is also a Hilbert cube and, moreover, a Z-set in both X_1 and X_2 , then X is a Hilbert cube. This result can easily be obtained by observing that each pair (X_0, X_1) and (X_0, X_2) is homeomorphic to (F, Q) where F is an end-face of Q, or it can be seen as a special case of a much stronger theorem by Handel [10]. Moreover, if Z is a subset of X such that $Z \cap X_i$ is a Z-set in X_i for i = 0, 1, 2, then one easily verifies that Z is a Z-set in X. Note that $(W_i(p) \times C_i(p)) \cap (C_i(p) \times W_{i+1}(p)) = W_i(p) \times W_{i+1}(p)$ and that $(C_i(p) \times W_{i+1}(p)) \cap (W_{i+1}(p) \times C_i(p)) = W_{i+1}(p) \times W_{i+1}(p)$ and, hence, every set $B_n(p)$ is a Hilbert cube. If $p < q \in \mathcal{R}^{\dagger}$, then $W_n(p)$ is a Z-set in $W_n(q)$ and $C_n(p)$ is a Z-set in $C_n(q)$. A tedious but straightforward argument involving the second part of the aforementioned fact now yields that $B_n(p)$ is a Z-set in $B_n(q)$.

Select a sequence $p^1 < p^2 < p^3 < \cdots$ in \mathcal{R}^{\dagger} that has an upper bound $q \in \mathcal{R}^{\dagger}$. The sequence that satisfies the Capset Characterization Theorem is $(B_n(p^n))_{n=1}^{\infty}$. It is obvious that every $B_n(p^n)$ is contained in

$$\bigcup_{i=1}^{\infty} (W_i(q) \times Q) \cup (Q \times W_i(q)) = Q \times Q \backslash Y \times Y$$

and, hence, every $B_n(p^n)$ is a Z-set in $Q \times Q$. Every $B_n(p^n)$ is a Hilbert cube and $B_n(p^n)$ is contained in $B_{n+1}(p^n)$ which is a Z-set in $B_{n+1}(p^{n+1})$. It remains to show that $(B_n(p^n))_{n=1}^{\infty}$ satisfies property (4). Obviously, it suffices to show that $(B_n(p^n))_{n=1}^{\infty}$ has this property. Select maps $\alpha_i: Q \to W_i(p^1)$ such that $\lim_{i \to \infty} \alpha_i = 1_Q$. Consider the following sequence of maps from $Q \times Q$ into $Q \times Q$

$$\alpha_1 \times \alpha_1, \alpha_1 \times \alpha_2, \alpha_2 \times \alpha_2, \alpha_2 \times \alpha_3, \alpha_3 \times \alpha_3, \dots$$

Connect adjacent maps in this sequence by straight line homotopies. Since $C_n(p^1)$ is a convex set which contains $W_n(p^1)$ and $W_{n+1}(p^1)$ we have that the image of the homotopy connecting $\alpha_n \times \alpha_n$ with $\alpha_n \times \alpha_{n+1}$ is contained in $W_n(p^1) \times C_n(p^1) \subset B_n(p^1)$ and that the image of the homotopy that connects $\alpha_n \times \alpha_{n+1}$ with $\alpha_{n+1} \times \alpha_{n+1}$ is contained in $C_n(p^1) \times W_{n+1}(p^1) \subset B^n(p^1)$. "Glued" together these homotopies form an H as in property (4) of the Capset Characterization Theorem. This proves the proposition.

REFERENCES

- 1. R.D. Anderson, D.W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311–321.
- 2. C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
- 3. P.L. Bowers, Fake boundary sets in the Hilbert cube, Proc. Amer. Math. Soc. 93 (1985), 121-127.
- **4.** T.A. Chapman, *Lectures on Hilbert cube manifolds*, CMBS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, RI, 1976.
- ${\bf 5.}$ D.W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. ${\bf 20}$ (1985), 201--221.
- **6.** J.J. Dijkstra, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, Dissertation, Univ. of Amsterdam, 1983; publ. as CWI Tracts 2, Centre for Math. and Comp. Sci., Amsterdam, 1984.
- 7. ——, A rigid space whose square is the Hilbert space, Proc. Amer. Math. Soc. 93 (1985), 118-120.
- 8. J.J. Dijkstra and J. van Mill, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, Fund. Math. 125 (1985), 143–153.
 - 9. R. Engelking, General topology, PWN, Warsaw, 1977.
- 10. M. Handel, On certain sums of Hilbert cubes, General Topology and Appl. 9 (1978), 19–28.
- 11. J. Mogilski, CE-decomposition of ℓ_2 -manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 27 (1979), 309–314.
- 12. W. Sierpiński, Un théorème sur les continus, Tôhoku Math. J. 13 (1918), 300–303.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195

 $Current\ address:$ Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487

SUBFACULTEIT WISKUNDE, VRIJE UNIVERSITEIT AND MATHEMATISCH INSTITUUT, UNIVERSITEIT VAN AMSTERDAM, AMSTERDAM, THE NETHERLANDS.