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EXTENSIONS OF SOME CLASSES OF OPERATORS
AND APPLICATIONS

ELIAS SAAB AND PAULETTE SAAB

ABSTRACT. Let X be a Banach space such that its dual
X* is isometric to an L!l-space, let K denote the unit ball
of X* endowed with the weak™ topology and let Y be any
Banach space. In this paper we shall study when an uncon-
ditionally converging (respectively, completely continuous or
weakly completely continuous) operator on the injective ten-
sor product space X®.Y of X and Y extends to an uncon-
ditionally converging (respectively, completely continuous or
weakly completely continuous) operator on the space C'(K,Y)
of all continuous Y-valued functions defined on K. We will
also introduce and study the class of Banach spaces such that
every bounded linear operator u : E — E* is weakly compact.

Introduction. Let X,Y and Z be Banach spaces. Assume that
X* is isometric to an L'-space, and denote by K the unit ball of
X* equipped with the weak*-topology. Let C(K,Y) stand for the
space of continuous Y-valued functions on K. In this paper we shall
study the behavior of unconditionally converging, completely continu-
ous and weakly completely continuous operators on the injective tensor
product spaces X®. Y. Precisely, we will show that any bounded lin-
ear operator T : X®.Y — Z extends to a bounded linear operator
T : C(K,Y) — Z** with ||T|| = ||T||. The nature of questions we
would like then to address is as follows: Suppose that T is uncondi-
tionally converging, completely continuous or weakly completely con-
tinuous, does it follow that T will also be unconditionally converging,
completely continuous or weakly completely continuous, respectively?
These questions are motivated by a result of [14] where it is shown that
when X* is isometric to an L!-space, every unconditionally converg-
ing operator U on X is weakly compact, in particular U extends to a
weakly compact operator U on C(K) [15]. Thus it follows from [9, p.
160], that an operator U on X is weakly compact if and only if U is
unconditionally converging if and only if U is completely continuous if
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and only if U is weakly completely continuous. In this paper we shall
show that if Y is a Banach space that contains no subspace isomorphic
to cg, then T C(K,Y) — Z is unconditionally converging as soon
as T : X®.Y — Z is unconditionally converging, similarly when Y is
weakly sequentially complete (respectively, Y has the Schur property),
then 7 is weakly completely continuous (respectively, T is completely
continuous) whenever T is weakly completely continuous (respectively,
T is completely continuous). In case 7' : X®.Y — Z is weakly com-
pact (respectively, compact), it can be shown that T C(K,)Y) = Z
is weakly compact (respectively, compact) for any Banach space Y.
Some of the above results extend and strengthen those of [23, 24].
The techniques used to prove the above mentioned results allow us to
study some stabilities of the class of Banach spaces E such that every
bounded linear operator u : E — E* is weakly compact.

Notations and definitions. For a series ) x, in the Banach
space E we say that ) x, is a weakly unconditionally Cauchy series
in E if it satisfies one of the following equivalent statements:

a) >, |z*(zn)| < o0, for every z* € E*;
b) sup{||>_,c, Znl| : o finite subset of N} < oo

c) supp,sup,,_y || 335, eimil| < oo

Let F£ and F be Banach spaces. A bounded linear operator T :
E — F is said to be unconditionally converging if T sends weakly
unconditionally Cauchy series in E into unconditionally convergent
series in F', and T is said to be weakly completely continuous (also called
a Dieudonné operator) if 7' sends weakly Cauchy sequences in FE into
weakly convergent sequences in F'. Finally, T is said to be completely
continuous (also called a Dunford-Pettis operator) if T sends weakly
Cauchy sequences into norm convergent sequences in F'. It is immediate
that a completely continuous operator is weakly completely continuous
which in turn is unconditionally converging.

If Q is a compact Hausdorff space and Y is a Banach space, then
C(Q,Y) will denote the Banach space of all continuous Y-valued
functions on € under the uniform norm. It is well known [9] that the
dual of C(£2,Y) is isometrically isomorphic to the space M (£2,Y*) of all
regular Y*-valued measures on (2 that are of bounded variation. When
Y is the scalar field C'(€2,Y") will be denoted by C(2) and M (Q,Y™*) by
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M(Q). If p € M(2,Y*) we will denote by |u| the variation of x4 which
is an element of M () and for each y € Y we will denote by (y, x) the
element of M () such that for each Borel subset B of {2 we have

(y, ) (B) = u(B)(y)-

If feC)andy €Y, we let f ® y denote the element of C(Q,Y)
such that
f@y(w) = f(w)y, forallwe.

It is well known that the set {f @y : f € C(Q) and y € Y} is total in
C(9,Y), and the duality between C(2,Y) and M (,Y™) is as follows:
IfpueM(Q,Y*), feC()andy ey,

(w, fOY) = /Qfd<y,u>-

Finally, if B is a Borel subset of 2 and y € Y, we let 15 ® y denote the
element of M (Q,Y*)* such that for p € M(Q,Y™*)

(1 ®@y,pu) = u(B)(y)-

In particular, 15 will denote the element of M (Q)* such that for each
A e M)
(1g,\) = A(B).

If X and Y are Banach spaces, we denote by X ®. Y the algebraic
tensor product of X and Y endowed with the norm

n
> o] =su
i=1 =

>t @)y ()

i=1
The completion X®. Y of X ®.Y is called the injective tensor product
of X and Y. If Q is a compact Hausdorff space, then C(Q,Y) is
isometrically isomorphic to C(Q)®.Y. All notions, notations and
results used and not defined can be found in [9, 16].

Let X be a Banach space, and let K denote the unit ball of X*
equipped with the weak* topology. Let Y be another Banach space,
then X®. Y can be viewed as a subspace of C'(K,Y). It was shown in

1] 1] < 1}.
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[20] that if X* is isometric to an L!-space, then for any Banach space
Y there exists a linear isometry

S:(X&.Y)* - M(K,Y*)

such that for each L € (X®.Y)* one has S(L) = L on X®.Y. In
the sequel we will always refer to this isometry by S. In case Y is the
scalar field, then S will be denoted by s : X* — M (K') which is a linear
isometry such that s(I) =1 on X.

It follows from [20] that the two mappings S and s are such that
if L € (X®.Y)* and if (y,L) is the element of X* with (y,L)(z) =
L(z®y) for all z € X, then

(1) (y,S(L)) = s((y, L))-

Definition 1. A Banach space E is said to have Pelczynski’s
property (V) if every unconditionally converging operator on E is
weakly compact.

Pelczynski [17] showed that if  is a compact Hausdorff space, then
the space C'(Q2) has property (V). In [14] the authors showed that more
generally any Banach space X whose dual is isometric to an Lj-space
has property (V). This fact was crucial for the proof of the following
proposition which was proved in [20] and which we shall use later.

Proposition 1. Let X,Y and Z be Banach spaces such that X* is
isometric to an Ly-space, and let T : X®.Y — Z be an unconditionally
converging operator, then the set

{s(T =) =" < 1}

is uniformly countably additive in M(K,Y™).

Proposition 2. The following properties of a Banach space X are
equivalent:

(i) X* is isometric to an L*-space;
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(ii) For any Banach spaces Y and Z, every bounded linear operator
T:X®.Y — Z extends to a bounded linear operator T : C(K,Y) —
zZ** with |T)| = ||T||.

Proof. To show (i) = (ii), let
S:(X®.Y) — M(K,Y™")

be the isometry mentioned above. It is enough to define T:C (K,Y) —
Z** as the composition 7' = T**0S*oi where i : C(K,Y) — C(K,Y)**
denotes the natural embedding of C(K,Y) into C(K,Y)**. It is
immediate that 7 = T on X&.Y and that ||T|| = ||T||. Conversely,
assume (ii); then there exists a bounded linear operator u : C(K) —
X** such that u(z) = « for all z € X and ||u|| = 1. This in particular
implies that u* restricted to X* is an isometry. Let R : C(K)* — X*
be the bounded linear operator such that for each p € C(K)*, Ry is
the restrict of u to X. Then P = u* o R is a bounded linear projection
of C(K)* onto u*(X*) and |[|P|| = 1. An appeal to [12] shows that X*
is isometric to an L;-space. ]

In case Y is the scalar field, the above proposition follows immediately
from [15].

Remark 1. Assume that X* is isometric to an L!-space and let
Y and Z be any Banach spaces. To every bounded linear operator
T:X®.Y — Z one can associate a finitely additive vector measure G
defined on the o-field ¥ of Borel subsets of K with values in £(Y, Z**)
the space of all bounded linear operators from Y to Z**. The measure
G:X — L(Y,Z**) is defined as follows:

G(B)(y) =T"(5"(1p @y))

for all B € ¥ and all y € Y. For each z* € Z*, let G« denote the
element of M(K,Y™) such that

G=-(B)(y) = 2" (G(B)y
for all B € ¥ and y € Y, then it is not hard to check that

G- =85(T"z")
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for all z* € Z*. We can also define the semi-variation ||G|| of G as
follows. For each B € ¥

|IGI[(B) = sup{|G-|(B) | ||z"]| < 1}.

Since S is an isometry, it follows that ||G||(K) = ||T|| = ||T]|.

In what follows we shall refer to G as the measure representing T.
Our next result can be viewed as an extension of a theorem of [10],
where the author showed that unconditionally converging (respectively,
completely continuous) operators on C(2,Y") spaces satisfy conditions
similar to conditions (ii) and (iii) of Theorem 3 below.

Theorem 3. Let X,Y and Z be Banach spaces. Assume that X*
is isometric to an L'-space. If T : X®.Y — Z is unconditionally
converging (respectively, completely continuous), then

(i) T takes its values in Z,

(ii) there exists a nonnegative regular Borel measure A on K such
that limy gy, ||G||(B) = 0, and

(iii) for each Borel subset B of K, the operator G(B) : Y — Z is
unconditionally converging (respectively, completely continuous).

Proof. Let
S (X®.Y) = M(K,Y™)

and

st X* = M(K)
be the two isometries mentioned above. To prove (i), note that since
the set {f®y: f € C(K),y €Y} istotal in C(K,Y), it is enough to
check that 'f’(f ®y) € Z for each f € C(K) and y € Y. For this, fix
feC(K) and y € Y, then

(2) T(f@y) =T"(S*(f®y)).
Let T, : X — Z such that

Ty(z) =T(z®y) for all z € X.



CLASSES OF OPERATORS AND APPLICATIONS 325

It follows easily from (1) that, for any Borel subset B of K,
(3) T (8" (15 @ y)) = T, (" (15))-
To see this, let z* be an arbitrary element in Z*, then

T (S*(1p ®y))(z") = S*(1p @ y)(T"2")
=S(T*2*)(1 ®y)
= (y,S(T"z"))(1)

but, by (1),
(y,8(T"z%)) = s((y, T"2")).
On the other hand,
(y, T*2") =T, 2"
Hence,
s((y, T72"))(1s) = s(T;2")(15)
=s"(15)(T,2")
=1, (s*(1B))(2").

Since T' is unconditionally converging, it follows that T}, : X — Z
is unconditionally converging. Hence, T}, is weakly compact by [14].
Thus, T,/* takes its values in Z. The equations (2) coupled with (3)

now imply that T takes its values in Z.

To prove (ii), note that by Proposition 1 we have that the set
{S(T2") [l"|l < 1}

is uniformly countably additive in M (K,Y™*). The existence of the
measure A > 0 follows from the general vector measure techniques (see
(9, p. 11)).

Finally, to show (iii), fix B a Borel subset of K. First note that it
follows immediately from (3) that G(B) is an operator on Y with values
in Z. To show that G(B) : Y — Z is unconditionally converging, it
is enough to show that for any weakly unconditionally Cauchy series
> yp in Y, lim, oo G(B)y, = 0. For this, let Y y, be a weakly
unconditionally Cauchy series in Y. Then, for each n > 1, we have

(4) G (B)yall < ||Ty, II-
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To see this, note that for all y € Y,

G(B)y =T"(5"(1g ®y))
= 1,7 (s*(1B)).

Thus, we have (4) since s is an isometry and ||15|] < 1.

Moreover, since T is unconditionally converging, one can easily show
(see [20]) that
lim sup ||T(z®yn)|| =0.
"7 2| <1
That is,
lim ||T,, || =0.

n—ro0

Hence,
lim [|G(B)ya| = 0.
n—oo

The case of the completely continuous operators follows in a similar
fashion. O

Remark 2. In [10] the author asked whether conditions (ii) and (iii)
characterize unconditionally converging operators on C(£2,Y’) spaces.
In [3] the authors gave an example to show that this is not the case in
geneal. Actually more can be said. In [23] it was shown that any time
the space Y contains a subpsace isomorphic to cg, one can exhibit a
bounded linear operator U : C(A,Y) — cg, here A = {—1,1}N is the
Cantor group, the operator U is not unconditionally converging, yet
its representing measure satisfies conditions (ii) and (iii) of Theorem 3.
Similar assertions can be made about completely continuous operators
as soon as Y fails to have the Schur property (weakly compact sets are
norm compact), see [23] for more details. In case the space Y contains
no subspace isomorphic to ¢g (respectively, Y has the Schur property),
we can offer the following result:

Theorem 4. Let X,Y and Z be Banach spaces. Assume that X*
is isometric to an L'-space and that Y contains no subspace isomor-
phic to ¢y (respectively, Y has the Schur property). Then every un-
conditionally converging operator T : X®.Y — Z (respectively, com-
pletely continuous) extends to an unconditionally converging operator
(respectively, completely continuous) T : C(K,Y) — Z.
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Proof. In case the operator 7' is unconditionally converging and
Y contains no subspace isomorphic to ¢y, the needed result follows
immediately from Theorem 3 and the following argument of [8] which
we shall include for the sake of completeness. Indeed, it is enough
to show that, for any weakly unconditionally Cauchy series ) @5,
in C(K,Y), one has lim, o |[|T¢,|| = 0. For this, let A\ > 0 be
a regular Borel measure whose existence is guaranteed by part (ii)
of Theorem 3, and let >, ¢, be a weakly unconditionally Cauchy
series in C(K,Y’). Then, for each k € K, the series ) pn(k) is a
weakly unconditionally Cauchy series in Y. By a result of [2], the
series Y ¢, (k) is unconditionally convergent in Y for all £ € K. Let
e > 0 be given. By (ii) of Theorem 3, one can find § > 0 such that

IGII(B) <e
whenever
A(B) < 6.
Since lim, o0 ||¢n(k)|| = 0 for each k € K, there exists a compact
subset K5 of K such that
)\(K\K(;) <4d

and
limsup |[on(k)|| = 0.

n—00 ke K,

To finish the proof, note that

Tgan:/ ¢ndG+/ ©0n dG
Ks K\Ks

and therefore, for each n > 1,

1Tpnll < S [len(B)HIGIE) +sup [[@nl | GII(ANKS)-
5 n

For the case when T is completely continuous, one can proceed in a
similar fashion (see [23]). o

We turn our attention now to those operators 7' that are weakly
completely continuous. As we pointed out earlier, since every weakly
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completely continuous operator is unconditionally converging, we can
very quickly obtain conditions (i) and (ii) of Theorem 3, we also have
a statement similar to condition (iii) of that theorem.

Theorem 5. Let X,Y and Z be Banach spaces. Assume that X*
is isometric to an L'-space, and let T : X®.Y — Z be a weakly
completely continuous operator; then

(i) T:C(K,Y) = Z,

(ii) there exists a monnegative regular Borel measure A on K such
that limy gy ||G||(B) = 0, and

(iii) for each Borel subset B of K, the operator G(B) : Y — Z is
weakly completely continuous.

Proof. We need only show (iii). For this, let

B1(Y) ={y™ € Y™ | y** is the weak” limit of some
weakly Cauchy sequence in Y'}.

Fix B a Borel subset of K. To show that G(B) : Y — Z is weakly
completely continuous, it is enough to show (see [11, p. 644]) that
G(B)**(B1(Y)) C Z. For this, let (y,) be a weakly Cauchy sequence
in Y and let y** € B1(Y') be its weak*-limit. Thus,

G(B)™y™" = weak"-limit G(B)y,.
But for each n > 1,

G(B)yn =T (5*(1B © yn)).

Since S* and T™** are weak® to weak® continuous, one can easily check
that

(5) G(B)"y™ =T"(5"(1p ®@y™))
where 1p ® y** is the element of M(K,Y*)* such that, for each

Ae MK, Y*),
1 ®@y™(A) =y (A(B)).
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On the other hand, let Ty«~ : X — Z be the operator defined by

Ty (z) =T (2 ®@y™)
= weak-limit T'(z ® y,).

It is clear that T+« (x) € Z for each « € X, since T is weakly completely
continuous and the sequence (z ® y,) is obviously weak Cauchy in
X®.Y. Moreover, Ty« is linear and bounded because

||Ty**

< Ty ).

We claim that T):~ is weakly compact. Since X* is isometric to an
L'-space, it is enough by [14] to check that T, is unconditionally
converging. To do that, let > x,, be a weakly unconditionally Cauchy

series in X. For each z € X, we let T}, be the operator from Y to Z
defined by T, (y) = T(x ® y) for all y € Y. With this in mind, we have

Ty () = T (20 @ y™) = T, (y"™)
for each n > 1. Thus,
[Ty~ (zn)[| < [Tz, IHHy™ |-

Since T is in particular unconditionally converging, one can argue as
in [20] to show that

lim sup [|T(z, ®9)|| = 0;

0 lylI<1

thus,
lim ||T,, || = 0.
n—oo

Therefore, T-- : X — Z is weakly compact. Now an easy computation
shows that

(6) Tt (" (Le)) = T (5" (Ly 9 4°).
It follows from (5) and (6) that

G(B)"y*™ =T~ (s*(1B))-
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Thus, G(B)**y** € Z. This completes the proof. O

In what follows, we offer some applications to the above theorem.
Our first application extends a result of [4].

Theorem 6. Let X,Y and Z be Banach spaces. Assume that X*
is isometric to an L'-space and thatY is weakly sequentially complete.
Every bounded linear operator T : X®.Y — Z whose representing G
is such that limy(p)_¢ ||G||(B) = 0 for some nonnegative regular Borel
measure X\, extends to a weakly completely continuous operator T on
C(K,Y). In particular, T is weakly completely continuous.

Proof Let T : X®.Y — Z be a bounded linear operator with
representing measure G, and let A > 0 be a regular Borel measure on
K such that

(") im 1161(B) =0,
As pointed out before, the above condition (7) is equivalent to the fact
that the set

{S(T*2") [|="|l < 1}
is uniformly countably additive in M (K,Y™), in particular this impleis
that for each y € Y, the set {(y, S(T™2*)) | ||z*|| < 1} is relatively
weakly compact in M (K) but

(y,S(T*z")) = s(T;‘z*).

Since s is an isometry, it follows that the set {T2* : [|z*|| < 1}
is relatively weakly compact in X*. Hence, for each y € Y, the
operator Ty, : X — Z is weakly compact and therefore T is a bounded
linear operator from C(K,Y) into Z. By [4], T is weakly completely
continuous. ]

Finally, we offer the following theorem which was proved in [4] for
the case where X = C(Q) space.

Theorem 7. Let X,Y and Z be Banach spaces. Assume that X* is
isometric to an L' -space and that Y* and Y** have the Radon-Nikodym
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property. Then an operator T : X®.Y — Z is weakly completely con-
tinuous if and only if its representing measure G satisfies the following
conditions: for each Borel subset B of K, the operator G(B) : Y — Z
is weakly completely continuous and limy gy ||G||(B) = 0, for some
nonnegative regular Borel measure A on K.

Proof. Let T : X®.Y — Z be such that G(B) : ¥ — Z
is weakly completely continuous for each Borel subset B of K and
limy(g)—0||G||(B) = 0 for some A > 0. As noted in the previous the-
orem, the above hypotheses imply that T takes its values in Z. Since
Y* has the Radon-Nikodym property, then in particular Y contains no
subspace isomorphic to /;. By Rosenthal’s theorem [19)], it follows that
for each Borel subset B of K the map G(B):Y — Z is a weakly com-
pact operator. Since Y* and Y** have the Radon-Nikodym property,
an appeal to [8] shows that 1" is in fact weakly compact. O

Remark 3. One should note at this stage that when we deal with
weakly compact (respectively, compact) operators on X&®. Y, where
X* is isometric to an L'-space, an operator T on X®.Y is weakly
compact (respectively, compact) if and only if T onC (K,Y) is weakly
compact (respectively, compact). This follows directly from the fact
that T is weakly compact (respectively, compact) if and only if T** is
weakly compact (respectively, compact) and T = T** o0 §* o i. While
we cannot easily claim similar results for unconditionally converging,
completely continuous or weakly completely continuous operators, it
seems natural to conjecture that this would be the case in general.

Let us now turn our attention to a new class of Banach spaces. In
[1, Theorem 8.3], Aron, Cole and Gamelin isolated a family of Banach
spaces that satisfies the following condition:

A Banach space E belongs to this family if any symmetric operator
T : E — FE* is weakly compact, T is said to be symmetric if
(Tz,y) = (z, Ty) for every z,y € E. Influenced by that, let us give the
following definition:

Definition 2. A Banach space E is said to have the property (w)
if and only if every bounded linear operator T' : E — E* is weakly
compact.
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In [1], the authors noticed that if Q is a compact Hausdorff space,
then the space C(Q) has the property (w). Actually more can be said.
But first, let us recall the following definition.

Definition 3. A Banach space E is said to have Pelczynski’s property
(V*) if a subset C of E is relatively weakly compact whenever

lim supz;(c) =0
n—o0 ceC

for all weakly unconditionally Cauchy series >« in E*.

In [17], Pelczynski showed that if E has property (V*) then E is
weakly sequentially complete. He also showed that if £ has property
(V), then E* has property (V*). It was observed in [22] that the
converse is not true.

Proposition 8. Any Banach space E such that E* has the property
(V*) has the property (w). In particular, any Banach space with the
property (V) has the property (w).

Proof. Let T : E — E* be a bounded linear operator, and let
C = T(Bg) be the image of the unit ball of E by 7. Let Y .°, u;
be a weakly unconditionally Cauchy series in E**. Since E* is weakly
sequentially complete, then 7™ is unconditionally converging and there-
fore lim,, ||T*(u,)|| = 0, but

lim sup u,(z*) = lim ||T" (u,)|| = 0.
Hence, C is relatively weakly compact since E* has (V*). O

Corollary 9. Any L., space has the property (w).

Proof. Let E be an L, space, then E* is an £;-space, and hence E*
has (V*). Apply Proposition 8 to conclude. o

The space constructed by Bourgain and Delbaen in [6] is an L, space,
so it has (w) but does not have (V) since it has the Schur property.
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The spaces X constructed by Pisier [18] are such that every bounded
linear operator from X to X™* is integral and hence weakly compact so
all these spaces X have the property (w).

It is easy to see that any complemented subspace of a Banach space
with the property (w) has this property. Since [; does not have the
property (w), then any space F with the property (w) cannot contain
a complemented copy of [, and, therefore, E* cannot contain a copy
of ¢o [2]. With the help of Proposition 8 and a result of [22], one can
deduce the following:

Corollary 10. Let E be a Banach space such that E* is comple-
mented in a Banach lattice or E* is isomorphic to a closed subspace of
an order continuous Banach lattice. Then the following statements are
equivalent:

(i) E has the property (w);
(ii) E does not contain a complemented copy of ly;
(iii) E* has the property (V*).

If a Banach space E does not contain a copy of [; and E* is weakly
sequentially complete, then E has the property (w). To see this, notice
that any bounded linear operator 7' : E — E* is weakly precompact
(the image of the unit ball of E by T does not contain a copy of /1) and
therefore is weakly compact since E* is weakly sequentially complete.

We can now offer the following theorem:

Theorem 11. Let X be the Banach space whose dual is isometric
to an Li-space, and let Y be a Banach space that does not contain a
copy of Iy and assume that Y* is weakly sequentially complete. Then
X®.Y has the property (w).

Proof. Let K be the closed unit ball of X* equipped with the weak*
topology. As pointed out earlier, it was shown in [20] that the dual of
X®,.Y is isometrically isomorphic to a closed subspace of the dual of
C(K,Y) which is weakly sequentially complete by [25]. This shows that
every operator from X®.Y to its dual is unconditionally converging.
We will be done if we can show that for any Banach space Z, any
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operator T : X®. Y — Z that is unconditionally converging is weakly
precompact. By Proposition 1, the set

{S(T*(z%));2z" € Z* and ||z*|| < 1}

is uniformly countably additive as a subset of (C(K,Y))* when the
latter is identified with M (K,Y™) the space of all regular Y *-valued
measures on K that are of bounded variation. Let A be a control
measure for this set [9], and let (fn),>1 be a sequence in the unit
ball of X®. Y. Since Y does not contain a copy of Iy, it follows from
[5, 25] that there is a subsequence (f,,)r>1 that is weak Cauchy in
L,(Y), the space of all A-Bochner integrable functions defined on K
with values in E [9]. To finish the proof, one has to show that the
sequence (I'(fn,))k>1 is weak Cauchy in Z. For this, fix z* € Z*
with ||z*|| < 1. Since S(T™(z*)) is A-continuous, then it has a weak*
\-derivative [26] g : K — Y* so that, for every f € X®. Y, one has

(1S D) = [ (70,90 X0
and
IS eI = [ llgeylaxe.
Now let € > 0 and choose N > 0 so that
/[ s <e

Let h = g1yg)|<n7, then h € (L1(Y'))*. To conclude, notice that

(5 T(foi)) = (T7(2%); fri)
= (S(T"(z%)); fas)

- /K (e (£),9(8)) dA(E)
- A @ 0
(1), (1)) dA(2).
+ /HMN}(f (0,9 dA({D). o
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In the special case where X = C(K), the above theorem can be
deduced from an unpublished result of C. Fierro [13].

The following question now arises naturally.

Question 1. Does the property (w) pass from any Banach space Y
to C(K,Y)?

By Proposition 8 and [21], the answer is yes if Y is Banach lattice.
Actually more can be said as the following proposition shows:

Proposition 12. Let X be the Banach space whose dual is isometric
to an Lq-space, and let Y be a Banach lattice having the property (w);
then X®.Y has the property (w).

Proof. The dual of X®.Y is isomorphic to a subspace of the dual
of a C(K,Y) space [20]. Moreover, the space C(K,Y’) cannot contain
a complemented copy of I3 by [21] and therefore its dual which is a
Banach lattice has (V*). An appeal to Proposition 8 finishes the proof.
O

Most of the Banach spaces Y known to us that have (w) are such that
their duals have the property (V*). However, the spaces constructed
by Bourgain and Pisier [7] have the property (w) but nothing can be
said about their duals according to Pisier (private communication).

Question 2. Suppose that a Banach space Y has the property (w);
does it follow that Y™* has (V*) or at least that Y* is weakly sequentially
complete?

Note added in proof. Recently D. Leung has shown that the
answer to Question 2 is negative.
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