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POINT-TO-LINE DISTANCES
IN THE PLANE OF A TRIANGLE

CLARK KIMBERLING

ABSTRACT. Many inequalities involving notable points
and lines in the plane of a triangle ABC' are presented. Most
are new; however, they are only conjectured, not proved.
Each inequality was detected by computer and then confirmed
for 10,740 triangles, selected in such a way that it will be
remarkable if any of the conjectures should eventually prove
to be false. Ninety-one specific notable points are considered,
along with two notable lines, namely, the Euler line, £, and the
line perpendicular to £ that passes through the orthocenter
of ABC. Typical of the hundreds of inequalities is that the
distance from the incenter to £ never exceeds the distance
from the symmedian point to £.

1. Introduction. “Computers can solve mathematical problems,”
writes David Gale [3]. “They can also pose them and now, it seems,
they may be capable of killing off whole branches of the subject.” Gale
refers specifically to Euclidean geometry, and even more specifically to
a list £ of notable points in the plane of a triangle which exhibit many
newly-discovered-by-computer collinearities and other properties. The
computer detects all cases of collinearity among points in £, so that
no further collinear subsets of £ will remain to be found in the future.
In that sense, the computer may be capable of killing off a branch, or
pruning a twig, of mathematics.

In the same killing spirit we now use the computer to investigate
distances among well-known notable points and lines of a triangle. An
example of such an inequality is

(distance from incenter to Euler line)

< (distance from symmedian point to Euler line).

There appear to be an astonishing number of new inequalities of this
sort. In order to list them, it is helpful to use an indexing of notable
points, or centers, as introduced in [5]. Here we consider a total of 91
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1010 C. KIMBERLING

centers, listed in the Appendix, beginning with X; = incenter, Xy =
centroid, X3 = circumcenter, and X4 = orthocenter.

In the plane of a triangle ABC), let L be a line, and let P and P, be
points such that Py does not lie on L. Define

(distance between P and L)
1 Dy(P,Py) =96
(1) £(P o) (distance between Py and L)’

where

5— 1 if P lies on the side of L containing Py or on L
~ | =1 if P lies on the side of L opposite the side containing Pj.

Let D(P) = Dg(P,X1), where £ denotes the Euler line of ABC'. Let
D(P) = Do(P, X3), where O denotes the line perpendicular to € and
passing through X,. We call O the ortho-FEuler line. In this paper we
consider four problems concerning the indexed centers:

Problem 1. For what centers X and Y is D(X) < D(Y) for all
triangles ABC?

Problem 2. Evaluate inf D(X) and sup D(X) over all triangles ABC.

Problem 3. For what centers X and Y is ﬁ(X) < ﬁ(Y) for all
triangles ABC?

Problem 4. Evaluate inf ﬁ(X ) and sup ﬁ(X ) over all triangles ABC'.

2. Distances in trilinear coordinates. The distance between a
point P = (a/,',7') given in actual trilinear distances and a line L
given by la +mpf +ny =0 1is

la' +mpB +ny'
VI124+m2+4+n2—2mn cos A—2nl cos B—2lmcosC

This formula appears in Carr [1, article 4624] and elsewhere. (The
reader unfamiliar with trilinear coordinates will find [5] and references



POINT-TO-LINE DISTANCE 1011

cited therein helpful.) If P is given by trilinears « : 8 : 7, then the
actual trilinear distances for P (i.e., the directed distances from P to the
sidelines BC,C' A, AB) are (ka, k3, kv), where k = 24/(aa + b8 + ¢v),
where A is the area of the reference triangle ABC. Thus, if Py = ap :
Bo : Yo is a point not on L then the ratio (1) is given by

l b
I s e
lag + mBy +ny aa+b8+cy

Note that Dy (P,Py) > 0 if and only if P lies on the side of L that
contains F;.

We wish to study distance ratios Dy (P;, P;) for various lines and
points. Since Dy (P, P;) = Dp(P1,Py)/Dr(P2, Py) for any three
points Py, P, P for which Dp (P, Py) # 0, it suffices to study
Dp (P, Py) where Py remains fixed. Unless the line L contains the in-
center, X3 = 1:1:1, we shall always choose Py = X;. We shorten the
notation Dr (P, Py) to Dr(P) and rewrite (3) as

_la+mB+ny a+b+c
I+ m+n aax+bB+cy

(4) Dr(P)

The ratios (3) and (4) serve as a basis for some of what follows
(e.g., Columns 2 and 4 of Table 1). Note that inequalities of the form
Dy (X, Py) < Di(Y, Py) simplify via (3) to

(5) lax + mBx +nyx < loy + mBy + nyy
acx +bBx +eyx T aay +bBy +oyy

If (aax + bBx + cyx)(aay + bBy + cyy) > 0, then (5) simplifies to

nb—mec lec—na ma—1b

(6) ax Bx vx | >0.
ay By 05%
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TABLE 1. Distances from centers to the Euler line.

For: =1,2,...,91, let | X;£| = distance between center X; and the Euler

line £, and let

&ZJM where §={ 1 '%f X; lies on the same side of £ as Xjoron &
[X1€]° —1 if X; lies on the side of £ opposite that of X7.

Limiting values (inf and sup) of the ratios &; occur in five types:

: scalene limit as (A, B,C) — (7/3,7/3,7/3)

: scalene limit as (A, B,C) — (0,0, )

: scalene limit as (4, B,C) — (0,7/2,7/2)

: all (4, B, C) satisfying A+B+C=m, A>0,B>0,C >0, B£C

C+A A#B

X : none of the above

bo<om o

The meanings of the heading “next centers <” will be clear from
Figure 1, and similarly for “next centers >.” The notation L(i,j)

means the line centers X; and Xj;.

i inf&; type supé&; type next centers < next centers > remarks
1 1 A 1 A 34,52 7 L(1,76)||E
2 10 28,45,82,83 on &
3 10 28,45,82,83 on &
4 10 28,45,82,83 on &
5 10 28,45,82,83 on &
6 1 \%4 16/9 E 39,42,54,86 55
7 1 H 10/9 E 1,56 62,78,79
8 -2 A -2 A 73,75 60
9 -5/9 E -1/2 H 68 10
10 -1/2 A -1/2 A 9 2,19
11 1 H 00 E 46 14,77,85 L(11,36)||E
12 1/2 E 1 H 45,82,83 17,52 L(12,35) €
13 8/9 E 3/2 H 17,56 41,58 L(13,15)]|€
14 1 14 00 E 11,59 44
15 8/9 E 3/2 H 17,56 41,58 L(15,13)||€
16 1 \%4 00 E
17 2/3 E 32 H
18 —oo X 0o X
19 -1/2 H 1/9 E 10 28,45,82,83
20 10 28,45,82,83 on &
21 10 28,45,82,83 on &
22 10 28,45,82,83 on &
23 10 28,45,82,83 on &
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TABLE 1. (Continued)
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i inf&; type sup&; type next centers < next centers > remarks
24 10 28,45,82,83 on &
25 10 28,45,82,83 on &
26 10 28,45,82,83 on &
27 10 28,45,82,83 on &
28 0 H 4/3 E 2,19 29,62,78,79

29 0 H 4 E 28

30 —o© X oo X

31 1 \%4 7/3 E 55 43,85

32 1 \%4 8/3 E 55 59

33 —o© X oo X

34 —1 E 1 H 81 1

35  1/2 E 1 H 45,82,83 17,52 L(35,12)||€
36 1 H 0o E 46 14,77,85 L(36,11)||€
37 11/18 E 1 \%4 38, 83 17,52

38 1/3 E 1 \%4 45 37

39 1 \%4 3/2 H 58 6,41

40 - H -5 E 66, 75

41 1 \%4 5/2 H 13,39,42,54,62,79 43

42 1 Vv  3/2 E 62,78 6,41

43 1 1% 3 E  31,41,46,55,59 44

4 1 1% 00 E 14,43,77

45  2/9 E 1 \%4 2,19 12,38

46 1 H 3 E 53 11,43

47 —oo X [eS) X

48 —o0 X oo X

49 —oo X 0o X

50 —oo X 00 X

51 —o0 X oo X

52 2/3 E 1 H 37,80,83 1

53 1 H 2 E 54 46,55

54 1 H 5/3 E 62 6,41,53

55 1 \%4 2 E 6,53 31,32,43

56 —oo E 1 X 7,13

57 1 \%4 2 H 58,62,79 41

58 1 \%4 3/2 H 13,17,18 39,57

59 1 \%4 8/3 E 32 14,43,85

60 —2 H -5/3 E 8 64,72
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TABLE 1. (Continued)

7 inf€; type sup&; type next centers < next centers > remarks
61 —00 \%4 00 \%4 L(61,65)||&
62 1 H 3/2 E 7,28 41,42,54,86

63 —00 \%4 9] 14

64 —3/2 H 00 E

65 —00 \%4 00 14 L(65,61)||€
66 —32/9 E -2 \%4 40 73

67 —00 X oo X

68 —13/18 E -1/2 H 81 9

69 —o0 X oo X

70 —00 X oo X

71 —0o0 X o9 X

72 -2 v -11/19 FE 60 81

73 -3 H -2 \%4 66 8

74 —0o0 X o9 X

75 -5 E -2 H 40 8

76 1 A 1 A 34,52 7 L(76,1)||€
e 1 H 00 E 11 44

78 1 \% 4/3 E 7,28 42,58,86

79 1 \% 13/9 E 7,28 41,57,86

80 2/5 \% 2/3 E 83 17,52

81 -1 A -1 A 72 34,68

82 1/3 E 1 H 2,19 12

83 2/5 % 4/9 E 2,19 12,37,80

84 —o0 \%4 o9 E

85 1 \%4 00 E 11,31,59

86 1 \% 14/9 E 62,78,79 6

87 —o0 X o9 X

88 —00 X oo X

89 —oo X [e's) X

90 —o0 X oo X

91 —oo X 00 E

3. Problems 1 and 2: Conjectures based on computer
output. Three programs were used to find and test possible solutions
of Problems 1 and 2. The first, names FIND, finds for each of the 91
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centers X; all those of the other 90 centers X; that satisfy (5):
(7) D(X;) < D(X;)

for 40 thoughtfully chosen triangles.

We call an inequality of the form (7) a fundamental inequality if the
(single) condition

D(X;) < D(Xy) < D(X;) or D(X;) < D(Xy) < D(X;) for all triangles

implies k =7 or k= j.

The second program, names TEST, rejects inequalities found by
FIND that fail for at least one of 10,740 triangles ABC formed sys-
tematically as follows:

A ranges from 0.5001° to 59.5001° in increments of 0.5°;

B ranges from (A +.01)° to just less than (90 — A/2)° in increments
of 0.5°;

C = (180 — A — B)°.

For each i, TEST also prints the least and greatest values of D(Xj;)
found over the 10,740 triangles. These values indicate that in many
cases an infimum or supremum is approached as the triangle, regarded
as a variable, approaches one of three limiting configurations:

(i) (A,B,C) = (n/3,7/3,m/3), which we call the E configuration;
(ii) (4,B,C) = (m,0,0,0), the H configuration;
(i) (4,B,C)=(0,7/2,7/2), the V configuration.

In order to provide data regarding these limiting cases, the third
program, named XTREME, evaluates D(X;) at triangles that are very
near a limiting configuration, such as the triangle (59.998°, 59.999°,
60.003°).

Note that each of the 91 centers, when evaluated at an equilateral
triangle, either coincides with the incenter or else is undefined, as is the
case, for example, with Xy6. It follows that the Euler line (by which
we mean the set of all points « : 8 : v satisfying equation (8) below) is
merely a single point in the E configuration. Thus, a limit of D(X;) as
(A, B, C) approaches (m/3,7/3,7/3) certainly cannot be evaluated by
substituting 7/3 for the angles, or equivalently, 1 for the sidelengths.
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In fact, if ABC is isosceles, then the Euler line contains many of the 91
centers X;, so that D(X;) is undefined. Accordingly, when we speak of
a limit of a D(X;) as ABC approaches a fixed configuration, such as
E, H, or V, we shall mean a scalene limit: the three conditions B # C,
C # A, A # B remain in force during the approach.

The existence of these scalene limits may be difficult to prove in
general. However, numerical evidence indicates that the limits do exist.
That is, for each finite number listed in Column 2 or Column 4 of
Table 1, this is the number approached from a variety of “directions
of approach” checked by computer. Many of these numbers have also
been obtained analytically using one particular approach, as described
in Section 4. It would be of interest to have a general proof of the
existence of these limits.

Because D(X) failes to exist when (A, B,C) is one of (0,0,),
(w/3,7/3,7/3), (0,7/2,m/2), many of the inequalities D(X;) < D(X})
can be strengthened to D(X;) < D(X}); that is, the inf and sup are not
attained for any (A, B,C). It would appear that the only exceptions
are the obvious ones: i € {8,10,76,81}, since in these cases D(X;) is
constant over all triangles.

Consider the symmedian point, Xg, as an example. Columns 2 and
4 assert that Xg always lies on the side of the Euler line that X; lies
on, and that

| X1€| < | X6€| < (16/9)| X1 E|

for all triangles. Column 3 asserts that |X&| comes arbitrarily near
|X1€| as ABC' scalene-approaches the V' configuration; and Column
5, that |Xe€| comes arbitrarily near (16/9)|X:E| as ABC scalene-
approaches the E configuration.

Column 6 asserts that for all triangles ABC', we have D(X;) < D(Xg)
for ¢ in the set S = {39, 42, 54,86}, and, further, that if D(X;) < D(Xg)
for some j ¢ S U {6}, then D(X;) < D(X;) for some i € S. Similarly,
for Column 7.

Now, applying Table 1 to the set S U {55}, we can build chains of
inequalities:

D(X5s) < D(X39) < D(Xg) < D(X55) < D(X32)

and
D(X62) < D(X42) < D(Xg) < D(Xs55) < D(X43).
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The graph in Figure 1 shows all such chains. In this graph, two vertices
1 and j are connected by an edge if and only if the vertex at the left-most
end of the edge, say ¢, satisfies D(X;) < D(Xj) for all triangles (i.e.,
the 10,740 sampled and, we conjecture, all others). Thus, for example,
four edges lead into vertex 6 and one edge leads out, in agreement with
the discussion above of the set S. The longest chain is indicated by the
horizontal line from 40 on the far left to 44 on the right. The 25 edges
in this chain represent 25 fundamental inequalities.

In Figure 1 the digit 2 represents X5, the centroid, whose distance
from & is zero. Loosely speaking, numbers i to the left of 2 represent
centers always on the side of £ opposite that of X;, and numbers ¢
to the right of 2, centers always on the same side of £ as X;. More
precisely, we must take “to the left of 2” to mean “is connected to 2 by
a path having 2 as its right-most vertex,” and similarly for “to the right
of 2.”Note that neither vertex 19 nor vertex 34 fits either description,
indicating that, of the centers represented in Figure 1, only these two
cross the Euler line; the others, except for X5 of course, stay on one
side of £ or the other as ABC ranges through the set of all triangles.

Some of the 91 centers listed in the appendix do not appear in Figure
1. For example, centers numbered 3, 4, 5, 20, 21, 22, 23, 24, 25, 26,
27 are all on the Euler line and so are represented by center 2, the
centroid, in Figure 1. Center 16 is represented by 14, since the line of
centers 14 and 16 is parallel to the Euler line. (The only known proof of
this parallelism is tedious and analytic; a geometric proof is editorially
solicited at the end of [4].) Other such parallelisms are indicated in
Column 8 of Table 1. Finally, for each of the centers X numbered 18,
30, 33, 47, 48, 49, 50, 51, 61, 63, 64, 65, 67, 69, 70, 71, 74, 84, 87, 88, 89,
90, 91, there is a triangle for which D(X) < D(40) and also a triangle
for which D(X) > D(44); moreover, if X and Y are any two of these,
then D(X) < D(Y) in some triangle but D(X) > D(Y) in some other
triangle. These assertions were all confirmed by a subroutine added to
the program TEST.

4. Problems 3 and 4. Table 1 and Figure 1 furnish many
(conjectured) solutions to Problems 1 and 2. In a similar way, Problems
3 and 4 lead to Table 2. We restrict Table 2 to only 12 of the 91 centers:
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TABLE 2. Distances from centers to the ortho-Euler line.

The ortho-Euler line is the line through X4 perpendicular to the Euler
line. An equation la + mf + ny = 0 for this line is given by
l=1(A,B,C)=cosA(2tan A — tan B — tanC), m = (B, C, A), and
n=1(C,A,B). Fori=1,2,...,91, let | X;0O| = distance between

center X; and the ortho-Euler line O, and let
0, =61%i0l G here § = { 1 if X; lies on the same side of O as X3

* [X30]” —1 if X; lies on the side of O opposite that of X3’
Limiting values (inf and sup) of the ratios O; occur in four types:

scalene limit as (4, B,C) — (7/3,w/3,7/3)

scalene limit as (A4, B,C) — (0,0, )

scalene limit as (A4, B,C) — (0,7/2,7/2)

all (A, B, C) satisfying A+ B+C=m, A>0, B>0, C >0,
BAC,C#A A4B

infO; type supO; type next centers < next centers >  remarks

S

.

1 0 v 2/3 H 6,7,13 2
2 2/3 A 2/3 A 1,5,13 9,10
3 1 A 1 A 9,10

4 40 5,6,7,13 on O
5 1/2 A 1/2 A 4 2
6 0 v 2/3 H 4 1
70 v  2/3 H 1
8 2/3 H 2 1% 9,10

9 2/3 H 1 1% 3,8
10 2/3 H 1 1% 2 3,8,9
13 0 Vv  2/3 H 1,2
40 -o0o H -1/2 V 4

5. Limits of D.(X) in Table 1. Recall that the scalene limits of
Dy (X) in (4), appearing in Columns 2 and 4 of Table 1, have not been
proved to exist. Assuming that they do exist, we can evaluate some of
them along well-chosen directions of approach. In order to carry out

such evaluations, we use an equation of the form oo+ mfB +ny = 0 for
the Euler line (e.g., Carr [1, article 4644]):

asin2Asin(B — C) + Bsin2Bsin(C — A) 4+ vsin2Csin(A — B) = 0,
which can be rewritten as

(8)
aa(b*+c*—a?) (b®—c?)+ Bb(*+a®—b?) (*—a® )+ ye(a®+b*—c?) (a?—b?) =0.
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Recall [5, 6, 7] that a center X = «: 8 : 7 is defined from a center-
function f:

(9) a= f(a,bc), B=f(bca), v=f(cab)
where f(a,b,¢) = f(a,c,b) for all triples (a,b,c) of sidelengths of

triangles.

Case 1. V configuration. Let a = 2, b=1— 2, c =1+ z. Then (8)
gives, for the line &,

I =a(d®+c —a®)(b* — *) = —da?(2® + 2)
m = b(c* + a® — b?)(c* — a®) = z(1 — z)(22* + 9z + 4)
n = c(a® + b — ¢*)(a® — b?) = —m(—2)

and (9) gives, for the center X,

Oéo(iL‘) :f($,1—$,1+l')
Bo(z)=f(1—z,1+4z,z)
Yl(z) = f(l+z,z,1—x).

Substitute into (4) and cancel z from the numerator and denominator
to see that

if Bo(0) 4+ v0(0) #£ 0, then limDDL(X) =1.
z—

Matching this limit in Table 1 are inf &, inf £14, and others, but not
inf &, inf £72, and others.
Case 2. H configuration. Let a #1,b=1—xz,c=1+ 2. Then

| = —az(22* + 2 — a?)
m = (z —1)(a* — a*(z — 1) — 42® — 82 — 4x)

n=-m(—z).
Write
oza(ac) :f(a,l—a:,l—i—m)
Bao(z)=f(1 —z,14+ z,a)

Yo(z) = f(1 +2,a,1 — 2).
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Substitute into (4) and note that the quotient has indeterminate form
0/0. If acg(0) + B4(0) + v4(0) # 0, then L’Hospital’s rule yields
(10)

. _ 4a(a®~2)aqe (0)+(a* ~3a®+4) (Ba (0) 474 (0)) +a (a2 —1) (74 (0) B4 (0))
Jim D L(X) = 2(a—1)2(a+2)(acra (0)+bBa (0)Tcva (0)) :

We have the H configuration when a = 2. Since 72(0) = £2(0) and
~v5(0) = —p4(0), we conclude that

355(0)

(11) if ao(0) + Bo(0) # 0, then  limy Dy (X) =1 = 573" =55

For example, in Table 1, corresponding to (11) are inf &7 and inf &,
but not inf £49.

Case 3. E configuration. Let a =1, b=1—x, ¢ =1+ x. Then
I,m,n and a;(z),B1(x),v1(z) are given by substituting 1 for a in the
formulas for Case 2. In (4), cancel z and apply L'Hospital’s rule twice
to find that if aq(0) + B1(0) + v1(0) # 0, then

(12)
. _ 803 (0)+5(81 (0)-+7(0)) +7(7 (0) =1 (0)) +20 (0) =B (0) ={'(0)
lim Dp,(X) = = I CT O E A C E=1 () B —

Since 71(0) = $1(0), 7;(0) = —B4(0), and 4} (0) = B (0), we conclude
that
(13)
if a1(0)+261(0) £ 0, then lim Dy (X) = 1+~ 0) — 9;5(()())) 781(0)

Corresponding to (13) in Table 1 are sup &, sup &7, and inf &5, but
not sup £11 and inf Esg.

6. Conclusion. Instead of using the Euler line £ and the ortho-
Euler line O as reference lines with respect to which to form distance
ratios, one could use other central lines. (A central line is defined
in [6] as a line that passes through two distinct centers.) Tables like
Table 1 could be used to record the results, including scalene limits.
As mentioned earlier, we would like to see a proof of the existence of
these limits.
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Methods discussed in Chapter III, “Homogeneous Symmetric Poly-
nomial Geometric Inequalities,” of [8] do not appear to apply directly
to inequalities conjectured in our Section 3. In this regard, suppose
an inequality (5) holds for all a,b,c¢ where X; = a; : B; : 7 and
X; = o5 : B : 74, where «,B;,7; are homogeneous polynomials of
degree m in a,b,c and «;, 8j,v; are homogeneous polynomials of de-
gree n in a,b,c. Then (4) yields an inequality of the form (6), except
that in some cases, > must be changed to <. The left-hand side of
(6) represents a homogeneous polynomial of formal degree 6 + m + n.
However, the polynomial (11) is generally not symmetric in a, b, c.

As an example of (11), one can write out the inequality mentioned in
the second sentence of Section 1: D(X;) < D(Xg). Writing as usual
sy, for the sum a* + b¥ + ¥, the result is

5153 — 33333 + 25985 + 2515284 — 2518 — 23% Z ab?

+ 459 Z a’b? —4sy Z a*h?® > 0,
where Y a’b? abbreviates a'b? + b'c? + cta? for i = 1,2, 4.

In [6], we distinguish between 1-lines and O-lines. The distinction
need not be repeated here, but we do mention that the Euler line is a
1-line, whereas the ortho-Euler line is a 0-line. For any 0-line L, the
left-hand side of (6) is symmetric in a, b, c. Methods of Chapter IIT of
[7], as well as methods introduced in [2] and [9], and references cited

in those papers, then perhaps apply in some cases when the degree of
the polynomials is < 6.

As a final thought on Section 3, we note that the orthogonal lines
€ and O meet at X4, which we may regard as the origin of an
ordinary cartesian coordinate system, where 1 unit along the z axis,
which we choose to be &, is the distance |X3X4|, and 1 unit along
the y axis is the distance |X;£|. Then there is for each center
X a rectangle (or point, segment, unbounded strip, etc.) R(X) to
which X is confined. For example, R(Xg) = [1,16/9] x [0,2/3], and
R(Xy) =[-1/2,-5/9] x [2/3,1].

APPENDIX

The specific triangle centers referred to above are listed here. This
list is reduced from [4], where many details, such as Euclidean con-
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structions, collinearities, and references are given. Each center is rep-
resented by a name of the form Xj, followed by an equation of the form
a = f(a,b,c) or a = g(A, B,C). For each «, one can write out trilinear
coordinates for Xj, using

a =

8=

Xy
X2
X3
X4
Xs

X6
Xr

Xs
X9
X10
X11
X12

X13
X14
X1s
X16
X7
X1s
X19
X0
X1
Xa22

f(a,b7c),ﬂ = f(b,c’a)7’y = f(c’a,b) or @ = g(A7B7C)7
g(B,C,A),’Y :g(C’,A,B).

a =1 (incenter)

a = 1/a (centroid)

a =cos A, or a = a(b?®+ c® — a?) (circumcenter)

a = sec A (orthocenter)

a=cos(B—C), or a« =cos A+ 2cos BcosC (center of the
nine-point circle)

a = a (symmedian point, Lemoine point)

1
a(b+c—a)’
a=(b+c—a)/a, or a = csc® A/2 (Nagel point)
a=b+c—a, or a = cot A/2 (Mittenpunkt)

a = (b+ c)/a (Spieker center)
a =1—cos(B — C) (Feuerbach point)
a =1+ cos(B — C) (harmonic conjugate of X;; with

a= or sec? A/2 (Gergonne point)

respect to X; and X5
a= csc(A +7/3) (1°" isogonic center, Fermat point)
27 isogonic center)
1°* isodynamic point)

(
(
(2" isodynamic point)
(15* Napoleon point)

(

tan A, or a = sin 2B + sin 2C — sin 24 (crucial point)
= cos A — cos B cos C' (De Longchamps point)
1/(cos B + cos C) (Schiffler point)

%
%

o

a

a = csc(A — 7/6) (2°¢ Napoleon point)
%

o

a=

a = a(b* + ¢* — a*) (Exeter point)



Xas
X4

X25

X6

Xar
Xos

Xso0
X31
X32

X34
X35
X36

X3s
X3o
X40

X2
X3
X4
X5
X6
Xar
X4s
X9
Xs0
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a=a(b* +c* —a* — b*c?) (far-out point)

a = sec A cos 2A (center of perspective of ABC and
orthic-of-orthic triangle)

a = sin Atan A (homothetic center of orthic and tangential
triangles)

a = a(b® cos 2B + ¢? cos 2C — a” cos 24) (circumcenter of the
tangential triangle)

a=(secA)/(b+c)

a = a® cos(B — C) (centroid of the orthic triangle)

= cos 2A cos(B — () (orthocenter of the orthic triangle)

=sin2Acos(B — C)

= a? (24 power point)

Q

a® (3™ power point)
=1+4+secA

=1-secA

=1+4+2cosA

=1-2cosA

=b+c

=b%+ 2

a(b? + ¢*) (Brocard midpoint)
=1/(cos B+ cosC —cos A —1)
=a?*(b+c—a)

=a(b+c)

=ca+ ab — bc

=b+4+c—2a

=2b+2c—a

=cos B+ cosC —cos A

= cos2A

=sin24

a = cos 3a

a =sin3A4

Q Q R QR R R Q 2 2 R R L LQ LR Q Q L R R
Il
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X1 =x;' a=sec(B-C)
Xs2 =x;' a=a(b+c—a), or a=cos?A/2, or
a=1+cosA
. :xgl a=sin? A/2, or a = —1+ cos A
X54 =x5' a=1/(b+c—a), ora=tanA/2
Xs5 xio a=a/(b+c)
Xs6 =x;;7 a=1/(1-cos(B~-C))
Xs7 =X;5 a=1/(1+cos(B—C))
Xs74n  =Xigpn forn=1,23,...,34.

REFERENCES

1. G.S. Carr, Formulas and theorems in pure mathematics, 2nd ed., Chelsea, New
York, 1970.

2. M.D. Choi, T.Y. Lam and B. Reznick, Positive sextics and Schur’s inequalities,
J. Algebra 141 (1991), 36-77.

3. D. Gale, From FEuclid to Descartes to Mathematica to oblivion?, Math.
Intelligencer 14 (1992), 68—69.

4. C. Kimberling, F. Rosado and E. Ferrari, Problem 1685, Cruz Mathematicorum
18 (1992), 276-278.

5. C. Kimberling, Central points and central lines in the plane of a triangle,
Math. Mag. 67 (1994), 163-187.

6. , Functional equations associated with triangle geometry, Aequationes
Mathematicae 45 (1993), 127-152.

7. , Triangle centers as functions, Rocky Mountain J. Math. 23 (1993),
1269-1286.

8. D.S. Mitrinovié, J.E. Pecari¢ and V. Volenec, Recent advances in geometric
inequalities, Kluwer Academic Publishers, Dordrecht, 1989.

9. S. Rabinowitz, On the computer solution of symmetric homogeneous triangle
inequalities, Proceedings of the ACM-SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation (ISSAC ’89), July 17-19, 1989, Portland,
Oregon.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EVANSVILLE, 1800 LINCOLN
AVENUE, EVANSVILLE, IN 47722



