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THE POINT SPECTRA AND REGULARITY FIELDS
OF NON-SELF-ADJOINT
QUASI-DIFFERENTIAL OPERATORS

SOBHY EL-SAYED IBRAHIM

ABSTRACT. In this paper the general ordinary quasi-
differential expressions of nth order with complex coefficients
are considered, and a number of results concerning the loca-
tion of the point spectra and regularity fields of the operators
generated by such expressions are obtained. Some of these are
extensions or generalizations of those in the symmetric case
in [9, 10] and [11], while others are new.

1. Introduction. The minimal operator T and TS‘ generated by
a general quasi-differential expressions M and its formal adjoint M,
respectively, form an adjoint pair of closed, densely defined operators
in the underlying L2 -space, that is, Ty C (T3 )*. The operators which
fulfill the role that the self-adjoint and maximal symmetric operators
play in the case of a formally symmetric expression M are those which
are regularly solvable with respect to Ty and T0+ . Such an operator S
satisfies Ty C S C (T;")*, and for some A € C, (S — AI) is a Fredholm
property of zero index; this means that S has the desirable Fredholm
property that the equation (S — Al)u = f has a solution if and only
if f is orthogonal to the solutions of (S* — AI)v = 0, and furthermore
the solution spaces of (S — Al)u = 0 and (S* — A\I)v = 0 have the same
finite dimension. This notion was originally due to Visik [12].

The main objectives of this paper are to investigate the location
of the point spectra and regularity fields of general ordinary quasi-
differential operators. Also, the results concerning the differential
operator generalize all of those given in [10, 11] for the symmetric
case and in [8] for the nonsymmetric case, by removing the condition
on the regularity field.

We deal throughout with a quasi-differential expression M of arbi-
trary order n defined by a general Shin-Zett]l matrix given in [7] and
[8], and the minimal operator T is generated by (1/w)M][.] in L3 (I),
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where w is a positive weight function on the underlying interval I. The
left-hand end point of I is assumed to be regular but the right-hand
end point may be either regular or singular.

2. Preliminaries. In this section we give some of the definitions
and results which will be needed later; see [1, 3 and 4].

The domain and range of a linear operator 1" acting in a Hilbert
space H will be denoted by D(T) and R(T'), respectively, and N(T)
will denote its null space. The nullity of T, written nul (T'), is the
dimension of N(T') and the deficiency of T, written def (T), is the
codimension of R(T) in H; thus, if T is densely defined and R(T) is
closed, then def (T') = nul (T*). The Fredholm domain of T is (in the
notation of [3]) the open subset As(T') of C consisting of those values
A € C which are such that (T'— AI) is a Fredholm operator, where I is
the identity operator on H. Thus A € A3(T) if and only if (T'— AI) has
closed range and finite nullity and deficiency. The index of (T — AI) is
the number

ind (T — AI) = nul (T — AI) — def (T — A\I),

this being defined for A € Az(T).

Two closely densely defined operators A and B acting in H are said to
form an adjoint pair if A C B* and consequently B C A*; equivalently,
(Az,y) = (z, By), for all z € D(A) and y € D(B), where (.,.) denotes
the inner product on H.

The field of regularity II(A) of A is the set of all A € C for which
there exists a positive constant k(\) such that

[|(A = ADx|| > k(N)||z|| for all z € D(A),
or equivalently, on using the Closed-Graph theorem

nul(A—X)=0 and R(A-— M) is closed.

The joint field of regularity II(A, B) of A and B is the set of A € C
which are such that A € II(A), A € II(B) and both def (A — AI) and
def (B —\I) are finite. An adjoint pair A and B is said to be compatible
if II(A, B) # 2.
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Definition 2.1. A closed operator S in H is said to be regularly
solvable with respect to the compatible adjoint pair A and B if A C
S C B* and II(A, B) N A4(S) € @, where

A4(S) = {X: A € Ay(S), ind (S — AI) = 0}.

The terminology “regularly solvable” comes from Visik’s paper [12].

Definition 2.2. The resolvent set p(S) of a closed operator S in
H consists of the complex numbers \ for which (S — A\I)~! exists,
is defined on H and is bounded. The complement of p(S) in C is
called the spectrum of S and is written o(S). The point spectrum
op(S), continuous spectrum o, (S) and residual spectrum o,.(S) are the
following subsets of o(S):

op(S) ={A € o(5) : (S — AI) is not injective},
i.e., the set of eigenvalues of S
0.(S) ={A€c(S): (S — Al is injective,
R(S—=A) G R(S—X)=H}
o (S) ={X € a(S) : (S — M) is injective,
R(S — M) # H}.

For a closed operator S we have

o(S) = 0,(S)Uoe(S)Uor(S).

An important subset of the spectrum of a closed densely defined T
in H is the so-called essential spectrum. The various essential spectra
of T are defined as in [3, Chapter IX] to be the sets

(2.1) oer(T) = C\A(T),  k=1,2,3,4,5

A3(T) and A4(T) have been defined earlier.

The sets oe, (1) are closed and e, (T') C 0¢;(T) if k < j, the inclusion
being strict in general. We refer the reader to [1] and [3, Chapter IX]
for further information about the sets oer (7).
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3. Quasi-differential expressions. The quasi-differential expres-
sions are defined in terms of a Shin-Zettl matrix A on an interval I.
The set Z,(I) of Shin-Zettl matrices on I consists of (n x n)-matrices
A ={ass}, 1 <r, s <n whose entries are complex-valued functions on
I which satisfy the following conditions:

ars € Ly (1) 1<r, s<n,n>2
(3.1) arry1 70 ae.on T 1<r<n-1
ars =0 a.e.onl 2<r+1<s<n.

For A € Z,(I), the quasi-derivatives associated with A are defined
by:

ylrl: —awﬂ{ (i 1y Za R ”}

ylnl ;= (yln=1y Zansys 1,

(3.2)

1 <r <n —1, where the prime ’ denotes differentiation.

The quasi-differential expression M associated with A is given by
(3.3) My]:=i"yl,  n>2,
this being defined on the set
(3.4) V(M) :={y:y" e AC,. (1), r =1,2,... ,n},

where AC),c (I) denotes the set of functions which are absolutely
continuous on every compact subinterval of 1.

The formal adjoint M ™ of M is defined by the matrix A* € Z,(I)
given by

(3.5) At = L 'A'L

where A* is the conjugate transpose of A and L is the nonsingular n xn
matrix,

(3.6) L={(-1)"0rnt1-s} 1<r, s<mn,
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d being the Kronecker delta. If AT = {a;,}, then it follows that

(3.7) al, = (71)””1&”_5“7”4“, for each r and s.

The quasi-derivatives associated with A" are therefore

yLE] =Y,

T —— r—1
y—[!—] = anlr,nr+1{(y—{i— })l

(3.8) — Z(—l)r+3+1(_lns+1,nr+1y£f1]}
s=1

n n—1
= iy

- Z(—l)wsﬂdn—sﬂ,lﬁ_l]-
s=1
Note that (A*)* = A and so (M*)T = M. We refer to [7, 8] and

[13] for a full account of the above and subsequent results on quasi-
differential equations.

Let the interval I have endpoints a,b, —0co < a < b < 00, and let w
be a function which satisfies

(3.9) w>0 ae onl, w e Li,. (I).

The equation

(3.10) Mlu] = dwu, AeC onl,

is said to be regular at the left endpoint a € R if for all X € (a,b),
(3.11) a€R; w, ars € L*a, X], rs=12,...,n.
Otherwise (3.10) is said to be singular at a. Similarly we define the
terms regular and singular at b. If (3.10) is regular at both endpoints,

then it is said to be regular; in this case we have

(3.12) a,b € R; w, a5 € L*(a,b), r,s=1,2,...,n.
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We shall be concerned with the case when a is a regular endpoint of
(3.10), the endpoint b being allowed to be either regular or singular.
Note that, in view of (3.7), an endpoint of I is regular for (3.10) if and
only if it is regular for the equation

(3.13) M*[v] = dwv AeC onl

Let L2 (a,b) denote the usual weighted L?-space with inner product

b
(3.14) (f.9) = / f(@)g(@w(z) dx,

and norm ||f|| := (f,f)Y/?; this is a Hilbert space on identifying
functions which differ only on null sets. Set
(3.15)
D:={u:ucV(M),uand (1/w)M[u] € L% (a,b},
(3.16)

DY :={v:veV(M"),vand (1/w)M*[v] € L2 (a,b)}.

The subspaces D and DT of L?(a,b) are domains of the so-called
mazximal operators T and T, respectively, defined by

Tu:=—M[u], ueD and TTv:=(1/w)MT[v], ve D

For the regular problem the minimal operators Ty and TO+ are the
restrictions of (1/w)M|[.] and (1/w)M*[v] to the subspaces
(3.17)
Dy:={u:uce€ D,u[r_l](a) = u[”_”(b) =0, r=1,2,...,n}

Df ={v:ve D+,vz_1](a) = vgf_l}(b) =0, r=12,...,n},

respectively. The subspaces Dy and D are dense in L? (a,b) and Tp
and T, are closed operators (see [ 13, Section 3]).

In the singular problem we first introduce operators T, and (T;")"; Tg
being the restriction of (1/w)M].] to

Dy :={u:u € D,suppu C (a,b)},
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and with (7,")" defined similarly. These operators are densely-defined
and closable in L2 (a,b); and we defined the minimal operators T and
T;" to be their respective closures (see [13, Section 5]).

We denote the domains of Ty and T(;" by Dy and D[‘)" , respectively. It
can be shown that
(3.18) ue Dy = ul"~(a) =0, r=12,...,n,
(3.19) veDf =o' @) =0, r=1,2,...,n

because we are assuming that a is a regular endpoint. Moreover, in
both the regular and singular problems, we have

(3.20) Tg=T%, TS =1%

see [13, Section 5], in the case when M = M and compare with the
treatment in [13, Section III.10.3] in the general case.

We see from (3.20) that Ty C T = (T,7)* and hence Ty and T}, form
an adjoint pair of closed, densely-defined operators in LZ (a,b). By [3,
Corollary T11.3.2], def (Tp — AI) + def (T,7 — AI) is constant on the joint
field of regularity I1(Tp, T, ), and we have shown in [5] that

(3.21) n < def (T —\I)+def (TT —XI) < 2n, for all X € I(Tp, Ty ).
In the regular problem,

(3.22) def (Tp — M) + def (T;" — M) = 2n, for all A € II(Ty, T;)").

Theorem 3.1. Suppose f € L], (I), and suppose that the conditions
(3.1) are satisfied. Then, given any complex numbers c; € C, j =
0,1,...,n—1 and zy € (a,b), there exists a unique solution of M[¢] =

wf in (a,b) which satisfies

oWl (zo) =¢;,  j=0,1,...,n—1.

Proof. See [3] and [9, Part II, Theorem 16.2.2]. O
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Theorem 3.2 (cf. [8, Theorem I1.2.5]). Let M be a regular quasi-
differential expression of order m on [a,b]. For f € L2(a,b), the
equation (1/w)M[¢] = f has a solution ¢ € V(M) satisfying

o) ="y =0, r=0,1,...,n—1

if and only if f is orthogonal in L2 (a,b) to the solution space of
M*[] =0, ie.,

(3.23) R[Ty(M) — X)) = N[T(M™*) — X]*.

Corollary 3.3 (cf. [8, Corollary I1.2.6]). As a result from Theorem
3.2, we have that

(3.24) R[To(M) — X|* = N[T(M™) — \I.

4. The spectra of Ty(M) and Ty(M™). In this subsection we deal
with the various components of the spectra of Ty(M) and To(M ™).

Theorem 4.1. The point spectra op(Ty(M)) and op(To(M™)) of
To(M) and To(M™) are empty.

Proof. Let A € 0,(To(M)). Then there exists a nonzero element
¢ € Do(M), such that

(To(M) — AI)é = 0.
In particular, this gives that

M[g] = Awg,
oM(a) =) =0, r=0,1,...,n—1.

From Theorem 3.1, it follows that ¢ = 0 and hence 0,[Ty(M)] = @.
Similarly o, [To(M )] = @. o

Theorem 4.2. (i) p[To(M)] = 2,
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(if) op[To(M)] = o.[To(M)] = @
(iii) o[To(M)] = o,[To(M)] = C.

Proof. (i) Since R[Tp(M)—M\I]is a proper closed subspace of L? (a, b),
then the resolvent set p[Tp(M)] is empty.

(ii) Since R[To(M) — A is closed, then the continuous spectrum of
To(M) is the empty set, i.e., 0.[To(M)] = @.

(iii) From (i), (ii) and Lemma 4.1, it follows that
o[To(M)] = or[To(M)] = C. O

Corollary 4.3. (i) o.[T(M)] = o.[T(M)] = 2,
(i) o[T(M)] = 0p[T(M)] = C,
(i) p[T(M)] =

Proof. From Theorem 3.2 and since T'(M) = [To(M™)]* it follows
that R[T(M) — AI] is closed, for every A € C; see [3, Theorem 1.3.7].
Also, we have

nul [T'(M) — M| = def [To(M ') — M| = n,

and
def [T'(M) — M| = nul [To(M 1) — M| = 0.

(i) Since R[T(M) — M| is closed and def [T'(M) — M| = 0, then
R[T(M) — M| = H and this yields that

o [T(M)] = o [T(M)] = &.

(ii) Since nul[T(M) — AI] = n, for every A € C, then we have
that o,[T'(M)] = C. It also follows that o[T'(M)] = C and hence
plT(M)]=2. o

Lemma 4.4 (cf. [3, Lemma IX.9.1]). If I = [a,b], with —00 < a <
b < oo, then for any A € C, the operator [Ty(M) — AI| has closed range,
zero nullity and deficiency n. Hence

o k=123,
oer[To(M)) = {C k—4,5.
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5. The field of regularity of Tj(M) and Ty(M*). We now obtain
some results which in fact are a natural consequence of those in Section
4.

Theorem 5.1. (i) II(To(M)] =II[To(M*)] = C for every A € C,

def [Ty(M) — AI] = def [To(Mt) — X] = n.

(i) M[T(M)]=1[T(M*)] = &, and for every A € C,

nul [T(M) — M| =nul [T(M*) — X| = n.

Proof. (i) We have from Theorem 3.2 and Lemma 4.1 that, for every
A € C, (To(M)—XI)~ ! exists and its domain R[Tp(M)— 1] is a closed
subspace of L2 (a,b). Hence, since Ty(M) is a closed operator, then
(To(M) — AXI)~! is also closed, and so it follows from the Closed Graph
theorem that (To(M) — AI)~! is bounded and hence II[Ty(M)] = C.
From Theorem 3.2, R[To(M) — M|+ is the n-dimensional subspace of
L? (a,b). Thus

def [To(M) — M| = dim R[To(M) — M|+ = n,

for every A € C. Similarly for M *.

(ii) AsII[To(M1)] = C, we have for every A € C that (To(MT)—AI)
has closed range and so, since T'(M) = [To(M™)]*, [T(M) — M| has
closed range, see [3, Theorem 1.3.7]. Furthermore, from (i),

nul [T(M) — M| = def [To(M 1) — M| = n.

Hence A ¢ II[T(M)] and so part (ii) of the theorem follows. u]

Corollary 5.2. The operators To(M), To(M™) form a compatible
adjoint pair with U[To(M), To(M )] = C.

Proof. From part (i) of Theorem 5.1, it follows that II[To (M), To(M )]
= C. Using (3.20), the corollary follows. O
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Theorem 5.3 (cf. [8, Proposition II1.3.24]). If for some )y € C,
there are n linearly independent solutions of

M[g] = Mowy and M*[¢] = Aw,
in L2 (a,b). Then all solutions of
M[¢] = Mwé and MT[y] = Awy

are in L2 (a,b) for all X € C.
From Corollary 5.2 and Theorem 5.3 we have the following lemma.

Lemma 5.4. If, for some Ay € C, there are n linearly independent

solutions of
M[¢] = Xow¢ and M*[p] = Aowyp

in L2 (a,b), then Ao € U[To(M), To(M™T)]; see also [10, Theorem 2.1]
and [11, Lemma 5.1].

Theorem 5.5. Let To(M) and To(M™) be the minimal opera-
tors associated with M and M™ defined on the interval [a,b). If
U[To(M), To(M™)] is empty, then

def [To(M) — M| + def [To(M ™) — M| # 2n.
In particular, if L[To(M), To(M™T)] is empty and n = 1, then

def [Ty (M) — AI] + def [To(M ™) — M| = 1.

Proof. If def [Ty (M) — M| = def [Ty(M ™) — M| = n for some )\ € C,
then ~
M¢] = dow¢ and MT[y] = Awep

each have n — L2 (a, b) solutions. Hence, by Theorem 5.3, we have that
all solutions of

M[p] = A\we and MT[] = dwp
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are in L2 (a,b) for all A € C, and hence by Corollary 5.2, we have
that X € I[Ty(M), To(M™)]. Thus, if [To(M), To(M™)] is empty, we
cannot have
def [To(M) — M| + def [To(M 1) — X] = 2n.

In particular, if n = 1, then the relation (3.21) gives that

1 < def [To(M) — M| + def [To(M™) — M| < 2,
so if II[Ty (M), To(M )] is empty we have

def [To(M) — M| +def [To(M™T) —X]=1. 0o

For a regularly solvable operator, we have the following general
theorem:

Theorem 5.6. Suppose for a regularly solvable extension of the
minimal operator To(M) that

def [Ty(M) — M| + def [Ty(M*) —X] =N, n<N<2n
for all A € TI[Ty(M), To(M™*)]. Then
nul [T(M) = M] + nul [T(M*) = X < N, for all A € C.
If T[Ty (M), To(M™)] is empty, then

nul [T(M) — M| +nul [T(M*) — XI] < N.

Proof. Let def [To(M) — M| = r, def [To(MT) — M| = s such that
def [To(M) — M| + def [To(M™) — M| =1 + s, n<r+s<2n,

for all A € I[To(M), To(M™)].
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Then for any closed extension of Tp(M) which is regularly solvable
with respect to Ty (M) and Tp(M ™), we have from [3, Theorem II1.3.5]

that
dim {D(S)/Do(M)} = def [To(M) — \| =,

dim {D(S8*)/Do(M™*)} = def [To(M*+) — M] = s.

Hence S and S* are finite dimensional extensions of Ty(M) and
To(M™), respectively. Thus, from [3, Corollary IX.4.2], we get

(51) Uek[TO(M)] = Uek(S)’ k= 172?3‘

Since [To(M) — AI] has closed range, zero nullity and deficiency r (see
Lemma 4.4). Then for any A € C, we have that

H[TO(M)] n Uek[TO(M)] =, k= 1,2,3.
By (5.1) we have that
H[TO(M)]mUek(S):Q’ k:1a273

Therefore,

Similarly,
Ap[To(M)] = Ar(S*) = C, k=1,2,3.
Furthermore, the equations
M) = \wé and MT[p] = dwyp

has at most r and s linearly independent solutions for A € C, respec-
tively. Hence

nul [T(M) — M| +nul [T(M*) =X <N forall A €C.

But if, for any A\g ¢ I[To(M), To(M™)], then either Ay ¢ I[To(M)]
or Ao ¢ H[To(M™1)]. If N\g ¢ II[To(M)], then either )y is an eigen-
value of Ty(M) or R[To(M) — M| is not closed. Similarly for Ao ¢
O[To(M™T)]. But To(M) and To(M™) have no eigenvalues, then if
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)\0 ¢ H[Tg(M), To(M+)], we have R[To(M) 7A0]] and R[Tg(M+) 7XOI]
are both not closed and so we cannot have

nul [T(M) — X\oI] +nul [T(M1) — X\pI] = N.

Hence, _
nul [T(M) — M| +nul [T(M*) — X] < N,

for any A ¢ II[To(M), To(M™)]. o

Remark. It remains an open question as to how many of the solutions
of M[¢] = Mw¢p and M+[s)] = dwp may be in L2 (a,b) for any A € C
when I[To(M), To(M™T)] is empty, except that we know from above
that not all of them are in L2 (a, b).
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