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EISENSTEIN AND THE JACOBIAN VARIETIES
OF FERMAT CURVES

ALLAN ADLER

ABSTRACT. In this paper we present evidence that Eisen-
stein knew something about the Jacobian varieties of Fermat
curves, including the curve of degree 7. More precisely, the
evidence suggests that Eisenstein had some way of knowing
that certain differentials on these Fermat curves are reducible
to elliptic differentials without explicitly reducing them. Our
argument depends on a close examination of Gauss’ first mem-
oir [39] on biquadratic residues and of three related papers
[12, 13, 14] of Eisenstein. In particular, we include a certain
amount of expository material that may be of independent in-
terest to many readers. We do not insist that the hypothesis
presented here is necessarily true. We also point to evidence
against it and to interesting directions for further study of
Eisenstein’s work.

0. Introduction. The discovery that every prime of the form 4n+1
is the sum of two squares is due to Fermat! [34], [35]?, [36]% along with
results for representing the numbers in the form a? + 2b? and a? + 3b2.
Proofs of these results were published by Euler [27, 28]. In Gauss’
Disquisitiones [38, Section 182, pp. 159-163], the results are proved
again as simple consequences of his theory of binary quadratic forms.
A striking refinement of the results for primes of the form 4n+1 appears
in Gauss’ paper [39]. It is that refinement, rarely included in courses
on number theory, which concerns us here.

To state Gauss’ result, let p = 4n + 1 be a prime number. Then
Gauss’ theorem says that p can be written in the form a? + b where a
and b are integers and where 2a is congruent modulo p to the binomial
coeflicient (2:) Since the absolute value of a is necessarily less than

AMS Subject Classification Numbers (1980). 01A55, 10A03, 10A10, 10A15,

10B35, 10D25, 12C20, 14H40, 14H45, 14K07, 14K22, 32A05, 33A25.
Key words and phrases. Abelian function, binomial coeﬂ;'icient, CM type, com-

plex multiplication, diagonal hypersurface, Eisenstein sum, elliptic curve, elliptic
function, Fermat curve, Gauss sum, Jacobi sum, Klein curve, Kronecker congru-

ence relation, Lemniscatic function, permutation twist.
Received by the editors on July 29, 1992, and in revised form on September 15,

1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium

1



2 A. ADLER

p/2, the integer a is determined by its residue class modulo p. Hence
Gauss’ theorem provides one with a formula for a. The proof given by
Gauss is summarized in Section 1 of this paper. In Section 2 we present
Eisenstein’s proof [12] of a similar result for expressing primes in the
form a? + 2b% and a? + 7b2. Both Gauss’ proof and Eisenstein’s proof
are based on properties of Jacobi sums. However, in the introduction
o [12], Eisenstein tells us that he has alternative proofs of his results
for a® + 2b® and a® + 7b? using elliptic functions. It is our purpose,
in this paper, to investigate what this proof of Eisenstein might have
been.

Important clues are found in the proofs using Jacobi sums, which
is one reason for including them here. But what is crucial for our
investigations is Eisenstein’s proof in [14] of Gauss’ theorem on primes
of the form a2 +b2. In this proof, Eisenstein uses elliptic functions, and
it is natural to suppose that the argument he had in mind for the cases
a? + 2b% and a? + 7b? ran along similar lines. We therefore study in
Section 4 the argument which Eisenstein uses in [14] to prove Gauss’
theorem. This requires a preliminary discussion in Section 3 of elliptic
functions based on Abel’s paper [1]. In Section 5 we give a similar
proof in the case p = 8n 4 3. In Section 6 we indicate how, using some
assumptions which we do not justify, one might construct one for the
cases p="Tn+1,2,4.

In Section 7 we discuss the lessons of the earlier sections of the paper.
It is our main historical hypothesis in this article that Eisenstein had
some way of knowing that certain differentials on the Fermat curve of
degree 7 are reducible to elliptic integrals without explicitly transform-
ing them. We find it difficult to avoid the conclusion that Eisenstein
possessed some knowledge of the Jacobian varieties of Fermat curves,
but what it was that Eisenstein might have known and in what form is
not clear. However, we do mention at the end of Section 7 an alterna-
tive to the hypothesis which we have proposed in this article. We also
propose directions for the further study of Eisenstein’s work.

Some remarks about the style of the various sections of this article
are necessary. In those sections where results of Gauss or Eisenstein are
presented, we have tried to remain faithful to the methods and concepts
which they actually used in their articles. We do, however, make com-
ments using modern ideas and it should be understood that we do not
claim that either Gauss or Eisenstein actually possessed these modern
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concepts. To do so would be to commit the error of anachronism?. In-
stead, such comments are addressed to the modern reader. In Section 3
we use a mixture of modern notions and formulas from Abel. I have no
doubt that it could be rewritten in a manner that would have satisfied
Eisenstein’s contemporaries, but I have not attempted to do so. Simi-
larly, I have not attempted to base the discussion on the foundations of
elliptic functions given in Eisenstein’s Genaue Untersuchung [20]. In
Section 4 I have tried to follow Eisenstein [14] closely. In Section 5 I
present a proof, which I believe Eisenstein would have understood, for
the case p = 8n + 3 using elliptic functions. One of the lessons of Sec-
tion 5 is the role of differentials on Fermat curves. I do not have a proof
along these lines for the cases 7n + 1,2,4, and the purpose of Section
6 is to investigate how one might at least discover the elements of such
a proof. It freely uses modern concepts to deal with those elements.
The same applies to the corresponding portions of Section 7. One can
hope that, after the elements have been found, one can write such a
proof in the style of Eisenstein. But, for the moment, the discussion is
among our contemporaries, not Eisenstein’s, and modern terminology
and concepts are therefore used in Sections 6 and 7.

The author’s introduction to the work of Eisenstein came from André
Weil’s book [81] and the subsequent search, initiated by Weil, for
a geometric proof of the Chowla-Selberg formula. The author was
therefore motivated in 1979 to purchase a copy of [15]. While browsing
through the articles, he noticed the article [12] and began to study it.
Subsequent examination of [81] showed that there was no mention of
this work, and it appeared that this was an opportunity to pursue study
of Eisenstein in directions not already considered in [81]. Nevertheless,
many of the directions which the author was encouraged to pursue by
WEeil in connection with the Chowla-Selberg formula turned out to be
quite useful to this study as well.

Since it has apparently not been noticed elsewhere, the author wishes
to point out that the editors of [15] omitted diagrams which were orig-
inally part of the article [16] and without which the article is rendered
incomprehensible. This suggests that the articles were assembled and
copied by Chelsea Publishing Company but not, however, read. If so,
the reason the diagrams were omitted is easy to understand. In the
journal in which the article [16] appeared, the diagrams for the articles
were all collected at the end of the volume, as was a common practice
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at the time. Therefore, if the article was not read when copied for [15],
the editors would have been unaware that they were not also copying
the necessary diagrams. The reader interested in obtaining the dia-
grams may look for them in Crelle’s Journal 28 (1844) at the end of
the volume or in Cayley’s translation [10] of the article.

In the list of references at the end of the article, we have given multiple
citations of the works of certain authors under a single bibliographic
entry. Our purpose in doing so has generally been to give more
historical information about the date and journal where the work
appeared while, at the same time, providing a reference in brackets
to the author’s collected works, where the article is likely to be more
accessible to the reader. In such cases, page references are to the
collected works unless otherwise indicated. Footnotes in the body of
the article refer to notes collected near the end of the article, just before
the bibliography. For the convenience of the reader who happens to run
across a note in isolation at the end of the article, each note ends with
a pointer to the section, page, and line number of the present article
where the footnote occurs.

1. Gauss’ proof of Gauss’ theorem. In this section we present
Gauss’ proof that a prime of the form 4n + 1 can be written in the
form a? 4 b2 where 2a is congruent modulo p to the binomial coefficient
(2:) In order to save space, we have condensed the argument from
Gauss’ 28 page paper into just a few pages, cutting a few corners in the
process. The reader who finds our presentation too terse or who would
like to read something closer to the original is referred either to Gauss’
paper itself [39], to the German translation in [40] or to the author’s
amateurish bilingual Latin-English edition [5] of Gauss’ paper.5 Apart
from its utility for this paper, we hope that our presentation here of
Gauss’ results and the translation [5] will facilitate the study of Gauss’
work by people who do not speak Latin or German, in turn facilitate
the study of Weil’s paper [83] and perhaps encourage a few individuals
to add Latin to their repertoire.

Theorem 1.1. Let p be a prime of the form 4n + 1. Then we can
write p in the form a® + b®> where a and b are integers and where a
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satisfies the congruence

(1.2) 20 = <2:> (mod p).

Proof. Consider the sum of (z* + 1)?" as z runs over the nonzero
elements of the field F, with p elements. One can expand (z* + 1)
using the binomial theorem. Summing over the multiplicative group
F, of F,, we find that the sum is equal to

(1.3) 2 <2:>

On the other hand, let Ay denote the group of biquadratic residues
modulo p, A the quadratic residues modulo p not in Ay, and let A;
and Az denote the other two cosets of Ay in F,’. We denote by (ij)
the number of elements x of A; such that z + 1 lies in A;. With this
notation, we have

(14) 3 (@* +1)> = 4(00) — 4(01) + 4(02) — 4(03) (mod p),

where the summation runs over all z in F;. Let e denote an element
of A;. Then 16(ij) is the number of solutions modulo p of

(1.5;5) 1+ezt+elyt =0,

with = and y in Ay, where the sign is (—1)". One recognizes equation
(1.5;;) to be a twisted form of the Fermat equation a* + b* + ¢* = 0.
Gauss divides his proof into the two cases n even and n odd. For n
even, —1 belongs to Ay and (1.5;;) can be written as

(1.6) 1+e'z' +ely* =0.

If (x,y) is a solution of (1.5;;) in this case, then (1/z,y/x) is a solution
of (1.5_; j_;) and (y,z) is a solution of (1.5;;), so that

(17) (i5)= (=i j—i) and (ij)=(ji).
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If we form a symmetric matrix S whose entries are the (i5), then these
relations imply that S is given by

(1.8) S =

Hence the basic (i5)’s are (00), (01), (02), (03) and (12). If we denote
by u the column vector all of whose entries equal 1, then since —1 lies
in Ay when n is even, we have

n—1
n
n
n

(1.9) S u=

which imposes three independent conditions” on the entries of S. Gauss
then considers the number of solutions of

(1.10) L+ 2% +ey* + e22*

with z,y and z nonzero elements of F),. This is a diagonal variety of
degree 4. As z runs over F, z* runs over Ay and one can group the
solutions of (1.10) according to which A; contains 1 + z*. The number
of solutions in each group is readily computed, and one obtains for the
total number of solutions

(1.11) 64[(00) - (12) + (01)* + (02) - (03) + (03) - (12)].

On the other hand, as y runs over F;, ey* runs over A; and one can
group the solutions of (1.10) according to which A; contains 1 + ey®.
Again, it is easy to compute the number of solutions in each group, and
one obtains for the total number of solutions

(1.12) 64[(01) - (02) + (03) - (12) + (12) - (02) + (12)?].

Equating the two expressions (1.11) and (1.12) for the total number of
solutions of (1.10) with z,y and z nonzero and using the relations in
(1.9), one finds that®

p=a®+b
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where
(1.13) a=4-(02)—4-(12)+1
and

b=2-(03)—2-(01).

Using these expressions for a and b and the relations (1.9), one finds
that

16 - (00) = p — 6a — 11

16- (01) = p + 2a — 4b — 3
(1.14) (01) =p+2a

16 (02) = p + 2a — 3

16 - (03) = p + 2a + 4b — 3.

For n odd, the argument up to this point is quite similar. In this case,
—1 belongs to Az, and the number of solutions of (1.5;;) is the same as
the number of solutions of

(1.15) 1+e'a + T2yt = 0.

In this case, the matrix S has the form

(00) (01) (02) (03)
(10) (10) (03) (01)
(1:16) (00) (10) (00) (10
(10) (03) (01) (10)
and the identity (1.9) is replaced by
(1.17) S.u= nﬁl

Arguing as before, one obtains two expressions for the number of
solutions of (1.10), namely,

(1.18)
64[(00) - (10) + (01) - (03) + (02) - (01) + (03) - (10)]
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and

64[(00) - (10) + (10) + (00) - (03) + (01) - (10)].

Equating these and using the equations (1.4), one finds that

p=a?+b?
where
(1.19) a=4-(00)—4-(01)+1
and

b=2-(01) —2-(03).

Using these expressions for a and b and the relations (1.17), one finds
in this case that

16-(00) =p+2a -7

16-(01) =p+2a+4b+1

16 - (02) = p — 6a + 1

16-(03) =p+2a —4b+ 1.

(1.20)

In either case, substituting the values we have obtained for (00), (01),
(02) and (03) into equation (1.4), we obtain

(1.21) Zl($4 +1)>=-2—-2a (mod p).

Comparing (1.21) with the value obtained in (1.3), we conclude with
Gauss that

(1.22) 20 = <2:> (mod p). O
2. Eisenstein’s generalization of Gauss’ theorem. Turning

now to Eisenstein, we consider in this section a paper [12] entitled, “Zur
Theorie der quadratischen Zerfallung der Primzahlen 8n+3, 7Tn+2 und
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Tn + 4,” which appeared in Crelle’s Journal in 1848. In it, Eisenstein
derives results which are similar to the theorem of Gauss which we
discussed in Section 1. To be precise, Eisenstein shows that if p is a
prime of the form 8n + 3, then p can be written in the form a? + 2b?
where 2a is congruent to the binomial coefficient (4'”1) modulo p; while
if p is a prime of the form 7n + 2 or 7n + 4, then p can be written in
the form a? + 7b%, where 2a is congruent modulo p to (3:) ifp="Tn+2
and to (3";’1) if p="Tn+ 4.

Incase p=3n+1, p=8n-+1and p = Tn+1, such results were known
to Jacobi [46, 47] and, judging from Eisenstein’s introductory remarks,
similar results were known to Cauchy as well. Eisenstein mentions that
he has a general result to the effect that if A is a prime of the form
4n+ 3 and if p is a prime of the form m\ + 1, then four times a certain
power of p can be written in the form ¢? + \d?, where c is congruent
modulo p to

(2.1) By - m)!(Ba - m)!(Bs - m)!....

and where 1, 82, 83, ... run over the quadratic nonresidues modulo A
which are between 0 and A. He points out that a similar result already
occurs on page 171 of the version of Jacobi’s paper in Crelle (cf. [46,
p. 260]). Thus, Eisenstein, although he was quite pleased with his
earlier results along these lines, nevertheless acknowledges that they
are not far removed from the results of his contemporaries. In this
paper, however, he feels that a significant step has been taken in that
the cases 8n + 3, 7Tn + 2 and 7n + 4 were not amenable to the methods
of cyclotomy as they had been practiced by his colleagues. Eisenstein
obtains his results by considering Jacobi sums for fields of order p? and
p? instead of merely p. Today we define Gauss sums and Jacobi sums
with reference to any finite field, but the first step from prime fields to
general finite fields was taken by Eisenstein, which is why Stickelberger
[78] refers to them as Eisenstein sums. The proofs given by Eisenstein
are similar in spirit to that of Gauss. We will sketch them here. In
order to enhance legibility, we will avoid notation such as F, in favor
of the older notation GF(p?) of L.E. Dickson. Thus, for every prime
power ¢, we will denote the field with ¢ elements either by F, or by
GF(q).

The case p = 8n + 3. Let p be a prime of the form 8n + 3, let
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e = (p? —1)/8, and let w be a primitive eighth root of unity such
that w? = i. Let P be a prime of Z[w] lying over p. Then we can
identify Z[w]/P with GF(p?) and we denote by f the image® of w in
GF(p?). For every nonzero element x of GF(p?), let [x] = w’, where
x¢ = fJ. Then [z] is the eighth power residue symbol. Let tr denote
the trace from GF(p?) to GF(p). The following lemma is contained in
the discussion at the bottom of page 511 of [12].

Lemma 2.2. Let

(2.3) T= 3R]

where v is an odd number and where the sum runs over all pairs k, k'
of nonzero elements of GF (p?) such that tr (k+ k') = 2. Then we have
T =p.

Proof. Fix v. For each a in GF(p), let

(2.4) So =Y K[k

where the summation runs over all pairs k, &’ such that k+k' = 1 +ia.
Then we can write k = k'l and obtain

(2.5) Sa=> [I"=-[-1]=1

where the summation runs over all | # —1in GF(p?)*. Since T = > S,
with « running over GF(p), we have T = p. mi

Definition 2.6. Let v be an integer. We define I',, by

(2.7) r, = S

where the summation runs over all k in GF(p?) with tr (k) = 2.
The following lemma occurs on page 513 of [12] (Equation (1)).

Lemma 2.8. Let v be odd. Then |T',|* = p.
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Proof. By Lemma 2.2, we have
(2.9) p=T="Y [k

where the summation runs over all pairs k,k’ in GF(p?) such that
tr (k4 k") = 2. For every integer p, let

Uy = Y KK *

where k, k' runs over all pairs for which tr (k) = 0 and tr (k') = 2. Then

(2.10) U, = (Z[k]“) : <Z[k’]“> =0

provided that p is odd. Therefore, we have
(2.11) p=T-U,-U_,=> kK]
where the k,k" run over all pairs such that tr(k + k') = 2 and

tr (k)tr (k') # 0. Then letting 227 = tr (k) and 2zp = tr (k') in the

summation, we have

(212) p=ir2 3 (222)

where (+) denotes the Legendre symbol, and where the summation
runs over all nonzero x1, s in GF(p) such that z; +x2 = 1. Since that
summation is equal to 1, we are done. a

Definition 2.13. For 0 < j < 7, let o; denote the number of
elements 2z of GF(p) such that [1 + zi] = w/. We also define the
polynomial ¢(u) by

7
(2.14) d(u) = Z ojul.
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Lemma 2.15 [12, Section 3]. We have

1"1:1"3:(1—1—1)\/—2
1"5:1"7:(1—1)\/-2

(2.16) Ty =Tg=1
I'y=-1
To=p

where a and b are integers.

Proof. One sees at once that I', = ¢(w”). Furthermore, if we interpret
the subscripts as integers modulo 8, then o; = o3; because [1+2i] = w’
if and only if [1 — zi] = [1 + 2i]9 = w®. Therefore, I',, = T3, for all v.
Let

a = 0oy — 04, b:U — 0,
(2.17) 0o Lo

c= o9 — 0g, d=o03 — o7.

Obviously, a, b, c and d are integers. Furthermore, ¢ =0, b = d, and we
have

F1:F3:a+b\/—2

2.18
( ) F5:F7:a—b\/—2.

If v is even, then [2]Y =1 for all z in GF(p)*. For such v, we have
v 1 ! v
(2.19) r,= Z [1+ 23] = mz [z + yi]
z€GF(p)

where the primed summation runs over all pairs z,y of elements of
GF(p) with z # 0. If v = 0, then 'y = p. Otherwise,

(2.20) L= Yl =Gl
yEGF(p)*

If v = 2u, then we get

(2.21) T, = —[-1]* = (=1)»T1.
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Theorem 2.22. Write I'1 = a + b\/—2 as in Lemma 2.16. Then
(2.23) a=47+1—2n,

where T is the number of z in GF(p) such that 1 < z < (p—1)/2 and
such that 1 + zi is an eighth power residue. In particular, we have

(2.24) a=(-1)" (mod 4).

Proof. Since (—1)" = (1-2)" =1—2n (mod 4), the second assertion
follows from the first. As for the first, we have

7
(2.25) 809 =) ¢w)=4a+p+1
v=0

by Lemma 2.15. Therefore, a = 209 — 2n — 1. But since 1 + zi¢ is an
eighth power residue if and only if 1 — 27 is, we have o9 = 1 4+ 27 with
7 as above. It follows that a = 47 +1 — 2n. mi

Theorem 2.26. The number I'y lies in the ideal P and

(2.27) ;= (4" N 1) (mod P).

n

In particular, if we write I'y = a + b/—2 with a and b integers as in
Lemma 2.15, we have

(1) a>+2b2 =p
2a = 7(4"+1) (mod p)

n

Proof. That a and b are integers follows from Lemma 2.15. Assertions
(3) and (4) are contained in Theorem 2.22. The assertion (1) follows
from Lemma 2.8. Therefore, we just have to prove (2) and the assertions
about I'y and I'7. In general,

(2.28) I,= Y (1+2)% (modP).
2€GF(p)



14 A. ADLER

Since e = (p? — 1)/8, and since we can take 0 < v < 7, we can write
ev =a+ Bp with 0 < a, 8 <p—1. Then we have

(2.29) I,= Y (142)*(1-z)" (modP).
zEGF(p)

For v = 1, we have « = 3n+ 1 and 8 = n,s0o a+ 8 < p— 1.
Therefore, 'y = 0 (mod P) since the only powers of z occurring in
the summation have exponent less than p — 1. This proves that I'y
belongs to P. For v =7, we have a = Tn + 2 and 8 = 5n + 1, so that
p—1<a+pB<2(p—1). Therefore,

(7Tn +2)!(5n 4 1)!

(230) D=3 i e Gty (4P

where the summation runs over all pairs a, b such that 0 < a < 7n + 2
and 0 < b < 5n+ 1 with a + b = 8n + 2. By Wilson’s theorem,

(2.31) alb! = (=1)°*1  (mod p)
so that
™+ 2)!(5n + 1)!
(232)  Tr=), (7n Er 2 - a;!E5ni 1)— gy (mod P)

with the same summation convention as in equation (2.30). Every such
pair a, b is represented in one and only one way in the form

(2.33) a=r+3n+1, b=-r+5n+1,

where 0 < 7 < 4n + 1. Therefore,

4n+1

(2.34) r=3 (7&:f)1!(f”T)+!rl!)! (mod P).

The righthand side of equation (2.34) is just

(Tn+2)!(5n + 1)! gdnt1

(2:35) (4n + 1)!
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Using Wilson’s theorem again and the fact that 2 is a quadratic
nonresidue modulo p, we have

(2.36) Iy =— <4nrj_ 1> (mod P)
as required. To prove (2), note that since I'; belongs to P, we have

(2.37) 2a=T1+1I7,=T'y = — <4n: l> (mod P).

We note, as Eisenstein did, that by Theorem 2.26 the study of the
decomposition of p into a? + 2b? is reduced to finding the number of
elements z such that [1 + zi] = 1, and that this is equivalent to finding
all £ + in in GF(p?) such that the trace of (¢ + in)® is equal to 2.
Eisenstein leaves us with the algebraic curve

(2.38) €8 —28¢%)% + 704t — 2830 + 1 =1

and the task of finding its rational points over GF(p). Actually, the
form

(2.39) tr ((€ +1n)%) =2
is more useful since we can write it as

(2.40) (€ +in)® + (£ —in)® =2,

which shows that our curve is a twisted form of the Fermat curve of
degree 8. He points out that computing oy is equivalent to computing
the number of solutions of

(2.41) y? = 2% — 282% + 702 — 2827 + 1

in GF(p). O

The cases p = Tn+2 and p = Tn+4. Now let us turn to Eisenstein’s
proof for 7n 4+ 2 and 7n + 4, abandoning the notation and conventions
which we adopted for the case p = 8 + 3. Let p be a prime of the
form 7Tn+2 or Tn+4, let { = exp(27i/7), and let P be a prime of Z[(]
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lying over p. We can identify Z[(]/P with GF(p®) and denote by f the
image of ¢ in GF(p3). Let e = (p® — 1)/7, and for z in GF(p?), let
[z] = ¢* if z¢ = f*. Then we have [z] = 1 for all z in GF(p)*. Denote
by n1,m2 and 74 the elements of Z[(] given by

m=3C+3°+1
(2.42) m2 =32 +3¢° +1
ne =3¢t +3¢3 + 1.

Let tr denote the trace from GF(p?) to GF(p). For 0 < j < 6, let o
denote the number of elements z of GF(p®) such that tr(z) = 3 and
[2] = ¢?. We denote by ¢(u) the polynomial defined by

(2.43) d(u) = Zajuj.

For any integer v, we will write ', to denote ¢(¢¥). The proof of the
following lemma is quite similar to the proofs of Lemmas 2.2 and 2.8
and will be omitted.

Lemma 2.44. Suppose 7 doesn’t divide v. Let
(2.45) T=> KK

where the summation runs over all pairs k, k' in GF(p®) such that
tr(k+ k') =3. Then T = —p>. Furthermore, |T,|* = p.

Lemma 2.46. If we interpret the subscripts modulo 7, we have

Oy = Opy
for all v. Consequently,
247 S
and we have

Ii=a+b/-T7

(248) F3 = a— b\/_—7
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with a and b rational integers.

Proof. For z in GF(p®) the conditions tr (z) = 3 and [z] = ¢’ hold if
and only if the conditions tr (2?) = 3 and [2P] = (7 hold. This implies
the first assertion. The identity T, =T, follows at once from equation
(2.47), and the definition of I',. We have

(249) Ti=0ao+a1(C+C+¢H +06(C+C+ () =a+b/—T

where

g1 +0’6

(250) a =09 — 5 ) = T

Therefore 2a and 2b are integers. By equations (2.50), we have
a? + Tb? = p and therefore (2a)? + 7(2b)? = 4p. Reducing modulo 8,
we see that neither 2a nor 2b can be odd, so a and b are both integers.
O

Corollary 2.51. Let a be the integer defined in Lemma 2.46. Then
a=p? (mod 7) and p* + 6a = Toy.

Proof. The second assertion implies the first. As for the first, we have
p? = ¢(1) = 09 + 301 + 303 and 2a = ¢ — 01 — 03 by Lemma 2.44.

Therefore, p? + 6a = 7oy. o

Lemma 2.52. Let k run over all nonzero elements of GF(p®) such
that tr (k) = 3. Let k' = kP and k"' = k'P. If r,s and t are nonnegative
integers such that r + s+t < 2(p — 1), then

(2.53) S KKK =0.

Proof. Let «, B be a basis over GF(p) for the solutions of tr (z) = 0.
Then we can write kK = 1 4+ za + y8 where z, y run over GF(p). Since
z and y belong to GF(p), we have P = z and y? = y. Therefore, &’
and k" have degree 1 in z and y. The summation therefore represents
the average over GF(p)? of a polynomial in x,y and by hypothesis the
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degree of the polynomial is < 2(p — 1). Since only terms of the form
2P~ 1yP~1 can survive in this summation, the sum is zero. o

Lemma 2.54. If we let k run over all the elements of trace 3 in
GF(p®) and write k' to denote kP, then we have

(2.55) > kTP =1

Proof. Let a, 3 be a basis over GF(p) for the space of solutions of
tr (z) = 0. Then denoting the above summation by S, we have

|
—

p

S (—1)7a?gP—1-7). ((_1)p—1—jap(p—1—j)5pj)

(2.56)

I
=]

(a,Bp)j . (apﬁ)p—l—j_

J

Summing this geometric progression, we have
aPBP’ — P’ P
afP —arp

If we take a = 7, and B = 73, then we have

(2.57) S = = (afP — a?PB)P L.

-2 ifp=Tn+2
afP — aPB = 77;774 & .p
ni —nena ifp=Tn+4
{21 ifp=7Tn+2
=21 ifp=Tn+4.

(2.58)

In either case, af? — a?f lies in GF (p)*, so

(2.59) S=(aff —aPB)Pr =1 o

Lemma 2.60. Let k and k' be as in Lemma 2.54. Let u and v
be nonnegative integers such that u +v = 2(p — 1). In order that the
summation

(2.61) > Kk
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be nonzero, it is necessary and sufficient that u =v =p — 1.

Proof. The sufficiency follows from Lemma 2.54. Conversely, suppose
first that u > p—1and v <p—1. Then u = p — 1 + w with w > 0,
and we have

(2.62) SRR =D KT =0

by Lemma 2.52 since (w —1)+ (v+1) =w+v=p—1<2(p—1). On
the other hand, suppose that u < p—1 and v > p — 1. Then we can
write v = p — 1 + = with z > 0, and we have

(2.63) D kR =D KUk =0,

where k" = k'P, by Lemma 2.52, since u+ (z—1)+1=ut+z=p—-1<
2(p—1). O

Theorem 2.64. Let p be prime of the form Tn+2 or Tn+ 4. Then
T’y lies in the ideal P and modulo P we have

- <3:> ifp="Tn+2
2.65 I's =
( ) 3 <3n+1

n > ifp="Tn+4.

If we write T's = a — b\/=7 as in (2.48), then we have
(1) p=a®+ 72
(2) a=p* (mod?7)
(3) Top = 6a + p?

—<3:> (mod p) ifp=Tn+2

<n7j— > (mod p) ifp="Tn+4.

Proof. Assertions (1), (2) and (3) follow from Lemma 2.44, Lemma
2.46 and Corollary 2.51. If we can show that I'; belongs to P and that
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I'3 satisfies the congruence we claim for it, then modulo P we will have

(—1)”(37) ifp=Tn+2
(2.66) 2a=T; +T3 =TIy =

(=1)nt+L <3nrj— 1> ifp="Tn+4,

and (4) will follow at once. If 7 does not divide v, we have
(2.67) r,=Y 2% (modP)

where e = (p? — 1)/7 and the summation runs over all z in GF(p®)
with tr (2) = 3. If we write ev = a+ Bp+yp* with 0 < o, 8,7 < p—1,
then we have

(2.68) r, = Z 222'P2" (mod P)
where z has the same meaning as in equation (2.67) and where 2z’ = 2P
and 2" = 2'P. If p = Tn + 2, then we have

(4n+1,2n,n) ifvr=1

(2.69) (o, B,7) = { (5n+1,6n+1,3n) ifv=3.

On the other hand, if p = Tn + 4, then we have

(2n+1,4n +2,n) ifv=1

2.70 =

In either case, when v = 1 we have a4+ 8+~ = p — 1 so the summation
defining I'; vanishes modulo P by Lemma 2.52. This proves that I'y
lies in P. Now suppose that v = 3. Then we have a +5+~v =2(p — 1)
and

=) 223 —z-2)
(2.71) =2 ® )
= (-1)" Z 2P (2 +2')7 (mod P)

by Lemma 2.52. Expanding (z + 2')7, we have

(2.72) Ty=(-1)7> > (g) 20H05/8+9 (mod P).

z 6+5:'y
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By Lemma 2.60, only the term with o+ = 8+ = p — 1 survives the
summation over z, so that

= (—1)" v

(2.73) s =(-1) <p 1 a> (mod P).

Since p = n (mod 2), equations (2.69), (2.70) and (2.73) now imply
that

<?;:L> (mod P) ifp=Tn+2
(2.74) S
( nrj_ > (mod P) ifp=Tn+4

and we are done. O

Eisenstein does not pause to interpret o as he did for primes of the
form 8n+ 3. However, it is easy for us to supply such an interpretation,
just as it would have been easy for Eisenstein. By definition, o
is the number of elements z of GF(p®) such that tr(z) = 3 and
[z] = 1. Therefore, 7o is the number of elements y of GF(p*) such
that tr (y”) = 3. Since [z] = 1 for all nonzero elements z in GF(p), we
can replace 3 by any nonzero element of GF(p). Therefore, 7(p — 1)oy
is the number of nonzero elements y of GF(p3) such that tr (y”) # 0.
Consequently, computing oy is equivalent to computing the number of
elements y of GF (p?) such that tr (y”) = 0. We note that the equation
tr (y7) = 0 defines a twisted form of the Fermat curve of degree 7.

Eisenstein has brought to our attention the utility of Fermat curves
twisted by permutation representations of the Galois group. More gen-
erally, one can consider diagonal hypersurfaces twisted by permutation
representations. What can be said about them and their zeta func-
tions? The special case tr x (z%) = 0, where L/K is an extension of
A-fields seems particularly appealing. Since the permutation represen-
tations of Aut (Q) separate points of Aut (Q), it seems that the special
study of permutation twisted diagonal hypersurfaces ought to probe

deeply into Aut (Q).

3. Complex multiplication of the lemniscatic function. Al-
though Eisenstein’s arguments are quite interesting, what is of primary
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concern to us in this paper is his brief allusion,'® in the introduction

to the paper [12], to the relation of his results to the theory of elliptic
functions. He gives no clue here as to what he has in mind. Beyond
referring to his proofs [13, p. 453] of biquadratic and sextic reciprocity
using elliptic functions and to his priority dispute with Jacobi [13, p.
477], he merely promises to discuss the relevant principles on a more
suitable occasion.

Eisenstein’s paper [12] appeared in Crelle’s Journal in 1848. Two
years later, he published his paper [14], entitled, “Uber die Irre-
ductibilitdt und andere Eigenschaften der Gleichung, von welcher die
Theilung der ganzen Lemniscate abhingt, nebst Anwendungen dersel-
ben auf die Zahlentheorie.” In this paper we find an important clue to
what he has in mind regarding the relation of elliptic functions to the
results of [12], namely, we find a new proof of Gauss’ congruence for-
mula for the decomposition of a prime of the form 4n + 1 as the sum of
two squares. In this and the next section, we will examine Eisenstein’s
proof of Gauss’ theorem. The proof is based on some properties of the
equations for complex multiplication of the elliptic curve defined by

(3.1) y?=1-2*

by primes in the Gaussian integers.!! For primes of degree 1, these
properties were obtained earlier in the first [13] of Eisenstein’s series
of papers on elliptic functions. In Section 3 of [14], Eisenstein gives a
proof of this property which works for primes of degree 1 and primes of
degree 2 simultaneously. In this and the next section, we will present
his proof in [14] of these properties, drawing freely on the earlier paper
[13].

The lemniscatic function z = ¢(t) is defined as the inverse function
of the definite integral

(3.2) t:/om \/%_564.

If we let m be an element of the ring Z[i] of Gaussian integers, and we
let y = ¢(mt), then we have

(3.3)

v
mt = —_—.
0o /11—y
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The functions x = ¢(t) and y = ¢(mt) are related by the partial
differential equation

dy dx
3.4 =m-
(34) 11—y " V1—at

with the boundary condition that y vanishes when z does. We have
the identities

¢(it) = i(t)

(3.5) n _ 20V = o) +6(t) 1 = ¢()*
At 1+ 9EPo(t)?

from [13, p. 300]. The second of these identities is the addition formula
for the lemniscatic function. Using these identities separately, one can
in principle obtain an expression for ¢(mt) where m is any Gaussian
integer. However, in practice, the task is often very time consuming. It
is therefore not without surprise that we read at the beginning of the
paper [13, p. 299, equation (2)] that for odd Gaussian integers m, we
can express y in terms of z in the form

Ag + Az + Aga® + - - + Az
1+ Biz* + B8 + --- 4+ Bpz*n

(3.6) y=zx

where 4n + 1 = |m|? with n an integer and where the coefficients!?
are Gaussian integers. Eisenstein states this in [13] without proof and
without a suitable reference. As he is usually attentive to even the
smallest details of his arguments, the omission is somewhat puzzling.
On the other hand, in [14, p. 540], he indicates that formulas such
as (3.6) are well known from the work of Abel and Jacobi. Actually,
one can find similar formulas in the work of Jacobi [48, pp. 265-267]
for multiplication of elliptic functions by integers and Eisenstein even
shares the notation U/V found on page 265 of [48]. However, I have not
found an explicit statement of a formula such as (3.6) for multiplication
of the lemniscatic function by odd Gaussian integers in either the work
of Jacobi or the work of Abel. Therefore, in this section, we will present
a proof (cf. Proposition 3.18 below) of equation (3.6) based on the lucid
paper of Abel [1] and, in the next section, we will return to Eisenstein’s
proof of Gauss’ theorem using the lemniscatic function.
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Denote by E the elliptic curve belonging to the equation
(3.7) w? =1 2%

We take the point (z,w) = (1,0) as the origin of E and denote it by
e. The choice of E uniquely determines a group law on E. Let us
introduce, with Abel [1, p. 265], two new functions to accompany ¢(t),
namely,

(3.8) f(t) = v1-9(t)?
and
(3.9) F(t) = /14 ¢(t)2.

Referring to page 268 of Abel’s paper, we find that the addition
formulas are given by

9(a) £(B)- F(8) + 6(8) - f(a) - Fla)

dlath) = T+ 6(a)20(8)°
(3.10) fla+pB) = fe) - 1(6) 1_ fi;&l)z;?;)f(a) F(4)
_ F(a) - F(B) + ¢(a) - 0(B) - f(a) - f(B)

Flatp)= T+ 6(c)26(8)?

If we now put z = ¢(t) and w = f(t)- F(t), we obtain a parametrization
of E which maps 0 to the point e. Using the addition formula given
above, we can now write the group law on E explicitly in the form

(311) (zl,wl) + (Zz,wz)
_[(mws + 2wy wiwe(1 — 2323) — 22120(2F + 23)
142222 7 (1 + 2222)2 '

Our parametrization, which we will call ®, defines a homomorphism
of the additive group of complex numbers onto the group E. The
endomorphism ring of E is isomorphic to the ring Z[i] of Gaussian
integers. We can identify Z[¢] with the endomorphism ring by requiring
that @ be a morphism of Z[i] modules. Denote by M the endomorphism
of E corresponding to the Gaussian integer m. Then M is a morphism
of degree |m|? from E to itself.
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Now let © = ¢(t) and y = ¢(mt). Denote by R the ring of all
polynomials in z with coefficients in the ring of Gaussian integers.
Denote by S the multiplicative semigroup consisting of all polynomials
in R whose constant term is equal to 1. Denote by R’ the ring consisting
of all rational functions of the form r/s with 7 in R and s in S.

Lemma 3.12. Let m be an odd Gaussian integer, and let G be one
of the functions ¢, f, F'. Then the function

G(mt)

(3.13) 0

lies in R'.

Proof. Let us say that a number n has property X if n is a Gaussian
integer such that the lemma is true with m replaced by n. Using
equation (3.5), we see that +n and +in all have property X if and only
if n does. Using the addition formulas (3.10) with o = 8, we obtain
the duplication formula [1, p. 279)

2¢(8) - £(B) - F(B)

PR = T ey

2
(3.14) F(28) = -1+ %
F(28) = —1+ %.

Combining equations (3.14) with the addition formulas (3.10) and
equation (3.5), we see that n has property X if and only if n £ 2
and n =+ 2¢ have property X. Starting with the trivial observation that
41 and 47 have property X and using the hypothesis that m is not
divisible by 1 + 4, it now follows by induction that m has property X.
O

Lemma 3.15. Let ¢ = ¢(t) and y = ¢(mt), where m is an odd
Gausstan integer. Then y is a rational function of z of the form
y = U/V where U and V are relatively prime, with U in R and V
mn S. We can write U = W with W in R. Furthermore, V. and W
both have degree |m|? — 1.
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Proof. 1t follows from Lemma 3.12 that y is a rational function of
z of the form U/V with v in R and V in S and that U = zW with
W in R. Furthermore, we can assume that U and V have no factor in
common. Denote by z the rational function on E which associates to
a point (a,b) on E the coordinate a. Then what we have shown is that
there is a morphism A of P!(C) onto itself such that the diagram

E—M |
(3.16) z z
P(c) —~ - PL(C)
is commutative, or what is the same, that

(3.17) N(z)=U/V =y.

Since = divides U and does not divide V, it follows that y vanishes
whenever & does. Now consider the endomorphism M of E. It has
degree p = |m|?, which is an odd number!®. It follows that A/ also
has degree p. Therefore the maximum of the degrees of U and V is p.
Furthermore, the morphism M is unramified. Therefore, the branch
points of the morphism N must lie among the branch points of z, that
is to say, at the points +1 and +i of P!(C). In particular, 0 and oo
are not branch points of A/. Since oo is not a branch point of N, the
degree of U minus the degree of V' cannot exceed 1. Similarly, since 0 is
not a branch point of A/, the degree of V' minus the degree of U cannot
exceed 1. If we replace t by it, we change x into ix, but the value
of y/x is unchanged. Therefore, writing U = W as above, we have
y/x = W/V, and we conclude that W and V are really polynomials in
x*. Tt follows that the degree of W equals the degree of V. Therefore,
U has degree p, V and W have degree p — 1, and the lemma is proved.
O

Proposition 3.18. Let m be a Gaussian integer which is not divisible

by 1+ 1, and let 4n + 1 = |m|? be its norm, where n is an integer.
Let © = ¢(t) and y = ¢(mt). Then we can write y as a rational
function of z in the form of equation (3.6) where Ay, Ay,..., A, and

By,Bs,...,B, are all Gaussian integers, and where A, and B, are
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both nmonzero. Furthermore, the numerator and demominator have mo
factor in common.

Proof. This follows at once from Lemma 3.12 and Lemma 3.15. o

Corollary 3.19 (cf. [13, pp. 299-301]). Let m be a Gaussian integer
which is congruent to 1 modulo 2+ 2i, let x = ¢(t), and let y = ¢(mt).
Then we have

Ag + A1$4 + A2x8 4+ 4 An_1m4(n71) + zin

3.20 =z-
( ) Yy €z ]-+An—1l'4+An_2$8+"'+A1$4(n_1) +A0

where p = 4n + 1 = |m|?, and where Ag, Ay,... ,A, 1 are Gaussian
integers.

Proof. There is only one analytic function g(z) such that

(3.21) g(z)=m- ,/%(;)4

subject to the boundary conditions g(0) = 0 and ¢’(0) = m. The
uniqueness can be seen by writing g(z) as a power series with unde-
termined coefficients. The condition ¢’(0) = m then determines the
power series for the righthand side of equation (3.21) in terms of the
power series for g(z). One can then determine the coefficients of g(z)
by induction. The existence of g follows from Proposition 3.18. In
fact, g(z) = U/V where U and V are as in Proposition 3.18. Since the
degree of U is greater than the degree of V, it follows that as = goes to
infinity so does y. If we put z = 1/y and w = 1/z, then we have

dz m dw
V1—2z4 V1I—uw?
where w vanishes when z does and dz/dw has the value m at w = 0.

Therefore, by what we have just proved about the differential equation
(3.21), we have

(3.22)

A() —|— A1w4 —|— AQ’U)S e + Anw4”
1+ Byw* + Bow* + - - + Byw*n’

1
3.23 —=z=w
(3.23) y
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Since w = 1/z, we conclude that

B, + Bn—1$4 4+ o+ B1$4(n_1) + zin

3.24 =x- .
( ) y=x An+An71$4+"'+A1$4("71) +A0x4n

By the uniqueness of g and by comparison of equations (3.6) and (3.24),
we find that A2 =1 and

(3.25) Ay, = Bo_i A,

for 0 < k < n, where we let By = 1. If we let

1 dx
3.26 w= | ——
(3.26) / i

then ¢(w) = 1, and from the addition formula we have
(3.27) (1 + 2a + 2Bi) - w) = (—1)>P

for every pair of rational integers «, 3. Letting ¢ = w, we have x = 1,
and equation (3.25) implies that

At At 4+ A
Y= 14B, +B,+ - +B,

(3.28) A,.

If we write m as 1+ 2« + 284, then it follows from equations (3.27) and
(3.28) that

(3.29) A, =y =8((1+2a+2Bi) w) = (—1)*"~.

Therefore, if m is congruent to 1 modulo 2+ 2¢, we have A,, = 1. i

Corollary 3.30. Let m be an odd Gaussian integer, let x = ¢(t),
and let y = ¢(mt). Then we can expand y in a power series in x of the
form

(3.31) Y= Z Canqrzintt

n=0

where the cany1 are Gaussian integers.
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Proof. This follows immediately from Proposition 3.18. o

4. Eisenstein’s proof of Gauss’ theorem using the lemniscatic
function. In this section we present Eisenstein’s proof of Gauss’
theorem using the lemniscatic function. We begin with the following
proposition, which can be found with its proof in [14, Section 3.2-3,
pp- 547-548].

Proposition 4.1. Let M be an indeterminate, and consider the
expansion of ¢(Mt) in powers of x = ¢(t). Then we can write the
expansion in the form

oo

(42) o)=Y

4n+1
cHypy1 (M) - 237
n—p Pan+1

where Hypi1(M) is a polynomial in M with integer coefficients and
content 1 and pani1 18 an integer. The polynomial Hyp 1 (M) is
divisible by M but not by M?. Furthermore, if q is a Gaussian prime
number which divides pyn11, then the norm |q)* of q is < 4n + 1.

Proof. We can expand v/1 — x% as a power series in x and integrate
term by term to obtain

(4.3) t=az+ 52" + Boz® +--- .

We can therefore write x as a power series in ¢ with rational coefficients
(4.4) T=0¢(t) =t+ 5t +yot” +--.

Replacing t by Mt in the expansion of ¢, we have

(4.5) d(Mt) = Mt +ys Mt> + v Mt + - - - .

If we take ¢ as in equation (4.3), then any power of ¢ is also a power
series in x with rational coefficients. In particular, we can write

(4.6) pAntl _ pantl +B§1121)$4n+5 —i—ﬁiﬁgl)w“”*g .
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for all n > 1. Substituting the power series expansion (4.3) of ¢ into
the power series expansion (4.5) of ¢(Mt), we obtain

(4.7) p(Mt) = M + i Gany1(M)z*nH

n=1

where

Gan+1(M) = Bant1 M + ”/554&?+1M5

(4.8)
+ 7954(12)+1M9 4+t Yanp M

is a polynomial of degree at most 4n 4+ 1 with rational coefficients.
Let pgn41 be the lowest common denominator of the coefficients of
G4n+1(M), and let H4n+1(M) = p4n+1G4n+1(M)- Then H4n+1(M)
has integer coefficients and content 1. Furthermore, since (4,41 is
nonzero, it follows that Hy,,1(M) is divisible by M but not by M?2.
Now let ¢ be a Gaussian prime number, and suppose that ¢ divides
Pan+1- If ¢ = £1 414, then the norm of ¢ is 2, which is < 4n+1. On the
other hand, suppose that ¢ is odd. If we write y = ¢(mt) as a power
series in © = ¢(t), we see from Corollary 3.30 that, for any Gaussian
integer m, the coefficient c4,, 1 of 24" in the expansion of y in powers
of x is a Gaussian integer. But we have

1

Pan+1

(4.9) Cant1 = Hini1(m),

so that, for every Gaussian integer m, we have
(4.10) Hypy1(m) =0 (mod q).

Since ¢ is an odd Gaussian prime, as m runs over all odd Gaussian
integers the congruence class of m modulo ¢ will run over all residue
classes modulo g. It follows that Hy,1(M) has |g|*> distinct roots
modulo gq. Therefore, the degree of Hy, 1 must be > |q|?. But Ha,+1
has degree < 4n + 1, so we have 4n +1 > |q|>. O

The following corollary of Proposition 4.11 occurs in effect in [14,
Section 3, p. 548].
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Corollary 4.11. Let m be an odd Gaussian prime number, let
x = ¢(t), and let y = ¢(mt). Then, in the expansion (3.31) of y
as a power series in x, if 4n + 1 < |m|* we have

(4.12) Cant1 =0 (mod m).

Proof. Let Hypi1(M) and pyn41 be as in Proposition 4.1. Then, by
Corollary 3.30 and Proposition 4.1, we have

(4.13) Hyny1(m) = panti1Cant1

for all n. By Proposition 4.1, M divides Hy,y1(M) and therefore
Hyp1(m) is divisible by m. Furthermore, Proposition 4.1 also implies
that m does not divide p4,,+1 when 4n + 1 < |m|?. Therefore, for such
n, the congruence (4.12) must hold. o

The next corollary of Proposition 4.11 occurs in [14, Sections 3 and
4].

Corollary 4.14. Let m be an odd Gaussian prime number, x =
é(t) and y = ¢(mt). Then in Corollary 3.19, the Gaussian integers
Ag, Ay, ..., Ap_1 are all divisible by m.

Proof. According to Corollary 4.11, the coefficient ¢4, 1 of z***! in
the power series expansion of y is divisible by m whenever 4n+1 < |m/2.
Therefore, we can write y in the form

(4.15) y=mS + 2T

where p = |m|? and where S and T are power series in z with coefficients
in Z[i]. Since y = U/V, with U and V as in Lemma 3.15, we have

(4.16) U=m-S-V+af.T.V.

Therefore, all of the terms of U of degree < p have coefficients which
are divisible by m, which proves the Corollary. u]

Our last corollary of Proposition 4.11 occurs in [14, p. 550].
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Corollary 4.17. Let m be a Gaussian prime number which is
congruent to i modulo 2 + 2i. Let v = ¢(t), y = ¢(mt), and write
y=U/V as in Lemma 3.15. Then we have

(4.18) U =4"2P (mod m)
and
V=1 (mod m)

where p = |m|%. In particular, y = i*zP (mod m).

Proof. First suppose that m is congruent to 1 modulo 2 + 2i. In
that case, we are done by Corollary 4.14 and Corollary 3.30. If m is
congruent to ¢¥ modulo 2 + 2i, we can write m = i¥mg, where my is
congruent to 1 modulo 2 + 2¢. Then we have

(4.19) y _o(mt) ., ¢(mot) U

= =1 =
z 9t o(t) Vo

where Uy and Vj are polynomials with Gaussian integer coefficients such
that Up = 2P (mod m) and Vy =1 (mod m). The corollary follows at
once. o

We note that Corollary 4.17 amounts to the recognition of the Frobe-
nius endomorphism as a complex multiplication in the endomorphism
ring of the elliptic curve E. Although we do not need the irreducibility
of the polynomial W, let us also note, as Eisenstein did, that it follows
from Corollary 4.17 and the fact that W(0) = m, using the Eisenstein
irreducibility criterion. Eisenstein is also aware of the analogy of W to
the cyclotomic polynomial, as he remarks on page 540 of [14].

Eisenstein’s proof of Gauss’ theorem. Let p be a prime of the
form 4n + 1. That p is the sum of two squares was already proved by
Euler. Therefore we can write p in the form mm where m is a Gaussian
prime number which is congruent to 1 modulo 2+ 2i. Let z = ¢(¢) and
y = ¢(mt). Then, by Corollary 4.17 we can write y in the form U/V,
and we have

(4.20) y=2aP (modm).
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Therefore, by Corollary 3.30, the coefficient ¢, of 2P in the power series
expansion of y satisfies

(4.21) cp =1 (mod m).

It follows that the coefficient of P! in

1 dy
4.22 -
( ) m dx

is congruent to ™ modulo m. On the other hand, we have

1dy [1—qyt
4.2 —— = .
(4.23) m dx 1—24

But modulo m, we have

(4.24) \/1 —v \/(1 — 2 (g gy,

1—z4 1—2z*

The coefficient of zP~! in the expression on the right is (—1)" (2:) It
follows that

(4.25) ™= (—1)" (2:) (mod m).

If we write m = a + bi, then we have

(4.26) 2a = (—1)" (%;’) (mod p).

This value of a differs by at most a harmless sign from the value
obtained by Gauss. O

5. Generalized Eisenstein elliptic function proof for p =
8n + 3. to the best of my knowledge, the proof considered at the
end of the last section is the only clue we have from Eisenstein’s pub-
lished work as to what he has in mind for applying elliptic functions
to the primes of the form 8n + 3, 7n + 2 and 7n + 4. It is natural to
suppose that Eisenstein planned to imitate his proof of Gauss’ theo-
rem by using elliptic functions belonging to elliptic curves with com-
plex multiplication by Q(v/—2) and Q(+/—7) and by decomposing the
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Frobenius endomorphism in the endomorphism rings of these elliptic
curves. Eisenstein himself refers briefly to papers of Abel and Jacobi
in volume III of Crelle’s Journal in connection with the study of sin-
gular moduli. I am not aware of any of Eisenstein’s work which deals
explicitly with elliptic functions for the case of complex multiplication
by Q(v/~2) and Q(v/—7). However, I don’t think Eisenstein would
have made his claim without being certain that he could back it up. It
is perhaps also worth mentioning that the elliptic curves with complex
multiplication by the rings of integers of Q(i), Q(v/—2) and Q(v/—7)
are precisely those elliptic curves with an endomorphism of degree 2.
In this section and the next, we will generalize Eisenstein’s proof of
Gauss’ theorem considered at the end of Section 4. More precisely, we
will prove Theorem 2.26(2) using elliptic functions.

The first step in Eisenstein’s proof of Gauss’ theorem was a proof of
what we now call the Kronecker congruence formula in the lemniscatic
case. Kronecker’'s own proof of the Kronecker congruence formula
(equation (64), p. 439 of [69]) did not appear until 1886, almost
40 years after Eisenstein’s publication in the lemniscatic case. I am
not aware of any publication of such congruence relations before [69]
other than the publication in the lemniscatic case in [14]. Kronecker
himself, when discussing the antecedents of his congruence refers to
Euler’s congruences [22] for multiplication of sine and tangent.!* I
don’t know why he did not also mention the work of Eisenstein.!®
Under the hypothesis that Eisenstein did indeed have a proof along
the lines described in the last section using elliptic functions of the
results of [12], then it is natural to suppose that Eisenstein also proved
the congruence formula for elliptic curves with complex multiplication
by the rings of integers of Q(v/—2) and Q(v/—7). Therefore, we will
assume that he did so.

Denote by E the elliptic curve defined by

(5.1) y® =1+ 42® + 22,
If we let
(5.2) T="2y=3,

y

then we have
dT dz

5.3 _— =2,
(53) V14+4T2 + 274 V14+4z2 + 224
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This shows that E has complex multiplication by the ring J of integers
of the quadratic field Q(v/—2). Let m = a + by/—2 be an element
of J such that a? + 2b? is an odd prime number p. Then, by the
congruence relation which we suppose that Eisenstein proved, we can
find polynomials V(z) and W (z) of degree p — 1 with coefficients in J
such that

dX dz

= m )
V14+4X24+2X4 V1+4a? + 224

where X = 2W/V and such that
(i) V(0)=1
(ii) V=1 (mod mJ[z])
(iii) W = £2P~ ! (mod mJ[z]).

Replacing m by —m if necessary, we may assume that the sign in (iii)
is +. We can rewrite equation (5.4) in the form

55 1 dX [1+4X2+2X4

(55) m dr  V 1+ 42242zt

and equate the coefficients of zP~! in the two sides of equation (5.5).
Modulo m, we have by (ii), (iii) and equation (5.4) that X is congruent
to 2P modulo m. Therefore, the coefficient of zP~! on the left side
of (5.5) is congruent modulo m to the complex conjugate m of m.
It also follows that the right side of (5.5) is congruent modulo m to
(1 + 422 + 22*)N where N = (p — 1)/2. Therefore, m is congruent
modulo m to the coefficient of zP~! in

(5.4)

(5.6) (1 + 42% + 224N,

in perfect analogy with Eisenstein’s proof in the lemniscatic case. But,
unlike the lemniscatic case, it is not apparent how to compute this
coefficient. The difference between the two situations is that, in the
lemniscatic case, one needed a coefficient of a power of 1 —z*, which has
only two terms, and one can compute the coefficient using the binomial
theorem. In the present case, we have a power of 1 + 422 4 2z*, which
has three terms, and there is no simple expression for the coefficient.
In order really to imitate Eisenstein’s proof in the lemniscatic case, we
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need somehow to replace (5.6) by a suitable expression with only two
terms, say, of the form (1 — 2")%. Here is how we do that.

If we now put

w w

(5.7) x:k-(z—f—;), A (e

where w is a primitive eighth root of unity and & is a root of
(5.8) 2wk?4+1=0,

then equation (5.1) becomes

(5.9) w? =128

Therefore, we can regard the equations (5.7) as defining a mapping 1
of the curve C defined by equation (5.9) onto the elliptic curve E. If, in
the expression for y, we write u* instead of w, then instead of equation
(5.9) we get the equation

(5.10) ud=1-2°

of a Fermat curve of degree 8. While we prefer to work with the
hyperelliptic curve C, let us note that we could just as easily base our
discussion on the Fermat curve. If we pull the differential dz/y back
to C via ¢, we obtain the differential 17 on C defined by

(5.11) n= W - dz.

Examples of hyperelliptic integrals reducible to elliptic integrals had
already been considered by Euler [31, pp. 78-79]. Furthermore, in
Richelot’s paper [76] of 1846, which Eisenstein must surely have known

about, an explicit reduction of the integral [ {/(% to elliptic integrals

is given. Finally, Richelot refers to Legendre [73, p. 254], equation (VI)
P(x)dw

+6zt+yz6+Lx8
elliptic integrals.'® Therefore, we may suppose that Eisenstein knew
about the reducibility of the differential 7 to a differential on an elliptic
curve. We can now complete the proof of Theorem 2.26(2) as follows.

to

for the reducibility in general of the integral [ Jre
0%
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Now suppose that p is of the form 8n + 3. Let K be the extension of
Q generated by k, and let P be a prime of K lying over mJ. Let f(x)
be an algebraic function of the variable x such that

(5.12) X =K. <f + w73>

where k = +w - k' and the sign is chosen such that we have
(5.13) kP =k (mod P).

Reducing equation (5.12) modulo P and using the Kronecker congru-
ence relation and the equations (5.7), we have

k’.<f+w73>EXEIPE<k.<z+§>>p

(5.14) . (Zp N ‘:_D (mod P).

Let f be the solution of equation (5.12) which is congruent to zP.
Equation (5.4) then becomes

KU o)
Vir

We can rewrite equation (5.15) as

1 df k 22-w [1—f8
1 — .2 = .
(5.16) m dz k' f2-—w3 1-—28

and compute the coefficient of zP~! modulo P on each side of equation
(5.16). Since f is congruent to zP modulo P, the coefficient is congruent
to 7 modulo P. Since m =0 (mod P), the coefficient is congruent to
m + m = 2a modulo P. Since f is congruent to zP and we have

Eo22—w  [J1—f8 1 22-w S\
5.17 — : =+—- (1 -
(5.17) K f2—ws 1-—28 w  —wd (1-2%)

k(2?2 — w) &

(5.15) =

-df =m




38 A. ADLER

modulo 2P and P, where N = (p — 1)/2 = 4n + 1. Therefore, the
coefficient of 2P~ ! in the righthand side of equation (5.16) is congruent
modulo P to

11 wfdn+1\ | [4n+1
(5.18) £ () ( . >—i< . )

which proves Eisenstein’s results in the case p = 8n + 3.

6. Fermat curves and Eisenstein’s theorem. As we noted in
the last section, what made it possible to complete the proof of the case
8n + 3 was the fact that the elliptic curve with complex multiplication
by Z[v/—2] occurs in the Jacobian variety of the curve

(6.1) w?=1-2°
and therefore of the Fermat curve
(6.2) ud =1 28,

This amounted to saying that the differential defined by equation (5.11)
is reducible to an elliptic differential. Using contemporary knowledge
of the Fermat curves, it is therefore natural to expect that a proof in
the cases 7n + 2,4 would involve the Fermat curve ®; defined by
(6.3) X"+Y"+2"=0
and its differentials. The differentials on the Fermat curve ®; are
spanned by residues of the form
7-Xeybze

XT+Y"+ 277

dX/\dY dX/\dZ+dY/\dZ

X Y X Z Y Z
where a,b,c are integers such that 0 < a,b,c < 7 and a +b+ ¢ =

7. Calculating these residues as Griffiths [41] does, we get in local
coordinates with Z = 1 that

(6.4) wapbe = Res <

(DK dx | ay
Wabe = X +Y'+1 X 'Y
XoYb dX d(XT+YT+1
(6.5) _ Res JAX dXT+YT+])
Y7 X X"+Y7+1
 Xe-lgx

y7b
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The Fermat curve ®; is invariant under automorphisms of P%(C) of
the form

(6.6) $iin([X,Y, Z]) = [('X, Y, (* 7],

where ( is a primitive seventh root of unity, as well as under permuta-
tions of the coordinates. Let

(6.7) H= {6 |i+2j+4k=0 (mod 7)}.

Then H is a group. The quotient H\®; may be realized as a plane
curve via the mapping (cf. [44])

(6.8) [X,Y,Z] — [XY?Z%, Y Z?X*, ZX?Y*| = [A, B, C).

The image consists of all points [A4, B, C] of the projective plane such
that

(6.9) A*B+B*C+C*A=0.

This image is the famous curve of genus 3 with 168 automorphisms,
also known as the Klein curve[54].17 Tt is isomorphic to the modular
curve X (7) of level 7 and its automorphism group is isomorphic to the
group PSLs(F7). Denote this curve by C. The Jacobian variety of
C is isomorphic (cf. [6]) to the product of three copies of an elliptic
curve with complex multiplication by the ring of integers O of the
imaginary quadratic field Q(v/=7). The differentials on C are simply
the differentials on ®; which are invariant under H. A basis for the
invariant differentials is given by

dX X3dX XdX

(6.10) wi2a = 35 waz =~ waal = 5

The curves C and ®7 are defined over the field Q of rational numbers.
Since the mapping ®7 — C given in equation (6.8) is defined over the
field of rational numbers, the reduction of that mapping modulo a prime
p will commute with the pth power mapping fp.

Assume that, for such p, the differential equation

du dX

(6.11) Ao =™ X
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with m = a+by/—7, has a solution where U is a power series in X which
is congruent modulo P to X?. For any power series f(z), we denote by
v(f) the coefficient of X?~1 in f. Then comparing coefficients of X?~!
in the identity

1 1-U7 5/7
(6.12) du —( v )

mdX \1- X7

and then reducing modulo P, we have modulo P that
1-UT\"
((=x) )
(6.13) (1— XT)P\*7
(=)

(1 - X))

1l
2

where p = 7Tn + 1. But the coefficient in question is (—1)" (5:) By
Wilson’s theorem, this is congruent to (—1)"(*"). Since m = 2a
(mod P), we conclude that

2 = (—1)" (?) (mod p).

We could have used any of the differentials 7y, 12,74 with the same
result.

To deal with the cases p = 7n + 2 and p = 7Tn + 4, I again introduce
some assumptions which formally yield Eisenstein’s results in the style
of the preceding argument. The hint comes from Eisenstein, who
considered twisted forms of the Fermat curves. In his proof of the
cases p = Tn + 2,4 he essentially considers the twisted form of the
Fermat curve given by

(6.14) tr(X7) =0,

where tr denotes the trace from GF(p3) to GF(p). Equation (6.16)
can also be written as

(6.15) X"+ (X°) +(X7) =0.



EISENSTEIN 41

This is isomorphic to the Fermat curve ®; over the field GF(p®), and
the associated 1-cocycle of the Galois group is actually a homomor-
phism of the Galois group onto the group of cyclic permutations of
the three coordinates. There are two such homomorphisms, however.
The action of Frobenius on the twisted form may be identified with
the action of Frobenius f, on the untwisted form followed by a cyclic
permutation 7. Then we proceed as follows. We now have two cases.

Case 1. 7 is left shift. Assume that there is a formal power series
solution U = U(X) of the equation

au B XdX
1—unsm - " A= X7
such that U is congruent to X? modulo P. Examining the coefficient
of XP~! in (1/m)(dU/dX), we have modulo P that

. X'(17U7)5/7
TEI T xyerT

=X (1-X7))
where N = (5p — 3)/7. In order for the exponent N to be an
integer, p must be of the form 7n + 2. The coefficient of 2P~! is then
(—=1)™(°™*1). By Wilson’s theorem, this is congruent to (") modulo
p, hence m = (35) (mod p). Therefore, we have

(6.18) 2 = <3:> (mod p)

for p ="Tn + 2.

(6.16)

(6.17)

Case 2. T is right shift. Assume that there is a formal power series
solution U = U(X) of the equation

- X*.dX
1—unpm - " A= XT)e/T

such that U is congruent to X? modulo P. Examining the coeflicient
of XP~1in (1/m)(dU/dX) we have modulo P that

m= (=)

= (X% (1-XT)Y)

(6.19)

(6.20)
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where N = (5p — 6)/7. In order for the exponent (5p — 6)/7 to be an
integer, we must have p = Tn+4, so that the coefficient is (—1)" (5":2),

which by Wilson’s theorem is congruent to (B"le) modulo p. Therefore,
we have

(6.21) % = = (3”; 1> (mod P)

for p =Tn + 4.

Remark 6.22. The reader will note the dependence of the above
arguments for p = 7n + 1,2,4 on the existence of certain formal power
series. I do not know how to prove these assumptions.

7. Did Eisenstein do it? In Section 1, we presented Gauss’ proof
of Gauss’ theorem. We observed, as Gauss did, that the argument
depended on a knowledge of the number of points of a twisted form
of a Fermat curve over a finite prime field. In Section 2 we presented
Eisenstein’s generalization of Gauss’ theorem, which he proved along
similar lines, using Eisenstein sums. In this case, Eisenstein pointed
out that one is computing the number of points of a twisted Fermat
curve over a finite field. In the case of Gauss’ paper, the Fermat
curve is twisted by changing the coefficients from 1 to other values.
In the case of Eisenstein’s paper, the Fermat curve is twisted by a
homomorphism into the group of permutations of the three variables.
However, Eisenstein states that he has other ways of looking at his
results and indicates that he has proofs using elliptic functions.

In Section 3 we presented Eisenstein’s proof of Gauss’ theorem using
the lemniscatic function. In Section 4 we showed that a similar proof
could be given for Eisenstein’s theorem about primes of the form 8n+3,
but that it was necessary to know that a certain differential on the
curve w? = 1 — 2% is reducible to an elliptic differential. This, of
course, was already known from work of Richelot and earlier work of
Legendre. And, as we noted in Section 4, there is no difficulty in viewing
this differential as being on the Fermat curve of degree 8 instead. In
Section 5 we showed how one could arrive at Eisenstein’s results for
p = Tn + 1,2,4 by using differentials on the Fermat curve of degree
7 and by introducing certain hypotheses which we could not justify.
That proof, whatever its drawbacks, nevertheless has the same flavor
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and the same characteristic final trick as the proof Eisenstein gave in
the lemniscatic case and shows that proofs in the cases 7n + 1,2,4,
along the lines of Eisenstein’s proof in the lemniscatic case are at least
conceivable. This makes it tempting to suppose that Eisenstein might
have actually used the Fermat curve of degree 7 in his proof by elliptic
functions in the cases Tn + 1,2, 4.

Such a proof, if he possessed it, would have required him to prove
some form of the Kronecker congruence relation for elliptic curves
with complex multiplication by the ring of integers of Q(1/—7). He
could have done this without leaving the traditional realm of elliptic
functions. But there is no way that he could have completed the proof
along these lines, using the same final trick, without knowing that his
elliptic differential actually lived on a Fermat curve. It is unlikely that
he arrived at this knowledge by explictly working with a differential on
the Fermat curve and reducing it to an elliptic integral. The reason is
that the necessary transformations are apparently quite complicated,
and it is doubtful that Eisenstein would have found them by accident.
Nor is it likely that he would have attempted it without knowing in
advance that such transformations existed.

It is natural to object that the concept of the Jacobian variety lay
in the future, in the work of Riemann, but that is not entirely true.
For example, in the letter Galois wrote the night before his fatal
duel [37, pp. 25-32], he discusses the problems of extending to the
integrals of algebraic functions the results of the theory of elliptic
integrals, and his remarks indicate that he has anticipated some of
the work of Riemann.'® Furthermore, Galois’s letter was published in
September, 1832, by Auguste Chevalier in Revue Encyclopédique, page
568, in accordance with Galois’s request at the end of the letter, and
was therefore a matter of public knowledge 15 years before Eisenstein
published [12]. We may also suppose that the work of Euler was
available to Eisenstein.!® Therefore, he might have discovered Euler’s
papers [29, 31] either through his own browsings or by finding reference
to such work of Euler in papers of Jacobi, such as [49] or otherwise. In
[29, p. 340] he would have found the following differential equations

dy dx

7.1 =
(7-1) VI+gy® A+ gad
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and

dy _ dx
4 1 4 1’
VIi+at f+ox

which are the analogues of equation (6.13) for the Fermat curves of
degrees 3 and 4, as well as the differential equation

(7.2)

dy _ dx
Vh+ ey +dyt +eyb+ fu® b+ ca® + dat + eax + fad

(7.3)

which is quite similar to the equation which arises instead of equation
(5.15) in the case p = 8n+1. Euler asserts that none of these equations
admit algebraic solutions in general and Eisenstein might have thereby
been motivated to investigate whethere Euler was correct.

Alternatively, since the periods of the Fermat curve are computable
using Eulerian integrals of the first kind, Eisenstein could have known
something about the period lattice of the Fermat curve, and then de-
duced the existence of a relation to the elliptic curve. For example,
Jacobi [50, p. 377] mentions?® that Legendre [73] had investigated the
hyperelliptic integral fom (dz/+/1 — z®) and arrived at expressions in-
volving the gamma functions when £ = 1 and * = —oo. Eisenstein
could have imitated this. On the other hand, one knows almost with-
out computation that the Jacobian variety of the Klein curve is the
product of three copies of an elliptic curve with complex multiplication
by Q(v/~7) (cf. [6, p. 138]) from knowing that a certain group acts
on the curve and therefore on its period lattice. Perhaps such quali-
tative reasoning could have been the germ of Eisenstein’s idea.?! The
examples of Richelot, Legendre, Euler and Galois are cited to show
that Eisenstein could plausibly have known enough about the Jaco-
bian variety of the Fermat curve of degree 7 to know without explicit
transformation that certain of its differentials are reducible to elliptic
differentials. It would be desirable to construct, using the results and
concepts available in Eisenstein’s time, an argument for the reducibility
without giving an explicit transformation to an elliptic differential.

In this connection, we should also mention another resource available
to Eisenstein, namely Abel’s great memoir [2], which appeared in 1841
and which presented Abel’s theorem for general abelian integrals, not
just the hyperelliptic integrals that had been discussed in the memoirs
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of Abel that had appeared before. In [2], Abel devotes considerable
energy to discussing examples, and among these examples one finds
integrals of nth roots of rational functions, not just square roots.
However, the only thing we can say with certainty is that, as long
as the gaps remain in our approach to the cases p = Tn + 1,2,4, we
cannot accurately judge the technique and how far Eisenstein might
have gotten with it.

We should also mention that the method given in Section 5 in the
case p = 8n + 3 is not the only way to obtain the coefficient of zP~! in
(1 + 422 + 22*)™ modulo p, where N = (p — 1)/2. If we denote that
coefficient by ¢, then a priori we have

(7.4) c=— Z(l +42* 4+ 22*)Y  (mod p),

where the summation runs over all elements = of GF(p). This sum was
considered by Whiteman [86, p. 546]. An examination of his argument
shows that at one point he introduces a change of variables similar
to (5.7) to reduce to the case of the hyperelliptic curve (5.9). Thus,
the computation of the coefficient ¢ modulo p still seems to involve a
knowledge, whether conscious or not, of the fact that the hyperelliptic
curve (5.9) can be mapped onto the elliptic curve (5.1). Furthermore,
Whiteman [86] needs to draw on other parts of Eisenstein’s paper
[12] for his argument. The computation of this coefficient is therefore
not immediate and perhaps involves as much work as Eisenstein has
already done in [12]. Nevertheless, it does suggest an alternative to the
hypothesis which we have proposed in this article. It may be that what
Eisenstein meant by the connection with elliptic functions is no more
than the observation that the values of a such that a? +2b* = p (in the
case p = 8n +3) or a? + 7b%> = p (in the cases p = Tn +1,2,4) could be
described as the coefficients of zP~! in certain expressions such as (5.6),
the proofs being based on elliptic functions, and did not go so far as to
prescribe a uniform method of computing the coefficient. In the case of
the lemniscatic function, the coefficient is apparent by inspection. In
the case of p = 8n + 3, it involves character sums which are computed
by other methods.

In our opinion, this hypothesis, while perhaps true, is less satisfying
precisely because it does not address the method of computing the
coefficient. In the case of [86], some knowledge of the existence of a
mapping of the hyperelliptic curve (5.9) onto the elliptic curve (5.1) is
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involved. So the evidence of [86] tends to support the main hypothesis
of this paper. Another way to obtain the coefficient ¢ modulo p has in
effect been given by Rajwade [75], who uses the Riemann hypothesis
for an elliptic curve with complex multiplication by Q(v/—2). While
we must admit that Eisenstein himself points out that he is computing
the number of solutions modulo p of certain equations which we can see
define twisted Fermat curves, there is no evidence that Eisenstein had
made any such observations in the case of elliptic curves. And we have
no evidence of any knowledge of the Riemann hypothesis for curves on
the part of Eisenstein.

I would also like to draw attention to the letter [17] from Eisenstein
to his friend Stern dated July, 1849. Recall that it was Stern who
had empirically discovered that the binomial congruence formulas for
quadratic decompositions also held for decomposition of primes of the
form 8n + 3 as a? + 2b?. Towards the end of the letter (page 818),
Eisenstein refers to objections Stern had expressed in an earlier letter®?
to the effect that it appeared that every case treated by Eisenstein
required a separate argument and that therfore it seemed not to be
the way to approach the subject. Eisenstein replies that his method is
perfectly general and that he has merely specialized it to the examples
he discussed in order to illustrate the spirit of the method and to
show that it also applies when the “determinant” is not a divisor
of p — 1. Here he is apparently referring to the discriminant of the
quadratic form in terms of which one hopes to express the prime
number. Furthermore, he uses the same terminology in the introduction
to [12] when describing how his results are qualitatively different from
any that have gone before. So it is likely that he is referring to the
paper [12] and its methods. He then writes?®: “Ausserdem weif8ich
nur eine umfassende freilich hiervon ganz verschiedene Methode durch
die elliptischen Funktionen.” This does not sound as though Eisenstein
believes that his approach via elliptic functions applies only to the
lemniscatic case!

There is one last bit of evidence to consider. We find some severe
criticisms of Eisenstein in a footnote at the end of Jacobi’s article [51].
Jacobi complains about two articles of Eisenstein, namely [18] and
[19], specifially about certain errors. Jacobi concluded from [18] that
Eisenstein did not understand the period lattices of abelian functions,
precisely the point which is at issue in the present article. He also
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ridicules some of Eisenstein’s other speculations on abelian functions
n [18]. He also claimed that Eisenstein did not realize that the values
of some infinite product expansions arising in the theory of elliptic
functions depend on the order in which the factors are multiplied. This
fault he finds in both the articles [18] and [19]. On the other hand,
in his review [85] of the Chelsea edition [15] of Eisenstein’s collected
works, Weil cites the very same articles [18] and [19] of Eisenstein as
containing the basic principles expounded in Eisenstein’s great memoir
[20], the Genaue Untersuchung. So it appears that Jacobi’s opinion is
in conflict with that of Weil, who devoted half of his book [81] to a
close examination of the memoir [20].

Weil also quotes the opinion of Eisenstein’s contemporary Dirichlet,
to whom he attributes the remark in 1849 that Eisenstein “has learnt
the art of self-criticism, in which he had been lacking before.” Can this
be a clue to other contemporary criticisms of Eisenstein’s work? Weil
did not give a reference for this remark of Dirichlet and in fact one
cannot find it in Dirichlet’s collected works. However, the letter was
published by Biermann in [7, p. 39]. Actually, Dirichlet made the above
statement in a letter in which he was trying to get a promotion [8] for
Eisenstein. He apparently felt the need to explain why it was that the
number of articles published annually by Eisenstein had decreased, so
he explained it by saying, in effect, that Eisenstein had become more
selective about what he published. It was not intended to be a criticism
of the correctness of Eisenstein’s work.

As for the articles [18,19] themselves, although I have read them
and the article [51], I have not been able to do so carefully enough to
form a definite impression of Eisenstein’s intentions in his speculations
about abelian functions in [18], since he is not sufficiently explicit
about how he proposes to represent abelian functions. However, it does
appear that the criticisms that Jacobi levels at him are not accurate.
Jacobi suggests that Eisenstein is unaware of the principles regarding
quadruply periodic functions that Jacobi set forth in [52], whereas
Eisenstein refers explicitly to [52] in Section 2 of [18]. Eisenstein
is critical of [52], but it is clear from Eisenstein’s remarks that he
is criticizing the foundations of Jacobi’s work, not his conclusions.
In Section 3 of [18], Eisenstein proposes different foundations and
for that purpose considers functions with n-tuply infinite product
representations. Contrary to what Jacobi seems to be suggesting,
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Eisenstein is fully aware that there are no discrete subgroups of rank
n > 2 in the additive group of complex numbers, and part of his
speculations center around methods of getting around that problem,
specifically by restricting his infinite products to run over values of the
indices satisfying certain inequalities. Furthermore, nowhere in [18]
does Eisenstein explicitly claim that the functions represented by his
n-tuply infinite products will be related to Abelian functions. Although
I can see how the structure of Eisenstein’s paper and his remarks
could have led Jacobi to conclude otherwise, it is equally possible
to conclude that Eisenstein merely criticized Jacobi’s foundations in
Section 2 and then proceeded to describe what he considered to be a
promising generalization of the infinite products he had introduced in
Section 1 to study circular and elliptic functions.

One could dismiss Eisenstein’s proposal as pure speculation were it
not for the fact that at the end of the article, he writes:2*

Ganz im Allgemein 148t sich hier iiber die Wahl dieser Bedin-
gungsgleichungen nichts Naheres sagen. Aber es existirt eine ganze
Classe solcher Functionen, welche in sehr enger Beziehung zu gewis-
sen Resultaten in Zahlentheorie stehen; und gerade fir diese beson-
dere Gattung zeigen die Ungleichheitsbedingungen, von welchen wir
reden, eine sehr eigenthuimliche Beschaffenheit. Man findet ndmlich
fiir diese Félle immer eine Verbindung aus einer bestimmten Anzahl
von der Werthen des Ausdrucks N, zu welche kommen darauf hin-
aus, daf} sie eine ganze Gruppe unendlich vieler Werthe con N, fiir
welche dieser Verbindung der ndmliche Werth zukommt, und die
als die Glieder geometrischer Reihen erscheinen, auf ein einziges
N reducieren. Die Functionen, we welchen man auf diesem Wege
gefiihrt wird, scheinen sehr merkwiirdige Eigenschaften zu besitzen;
sie erroffnet ein Feld, auf dem sich Stoff zu den reichhaltigsten Un-
tersuchungen darbietet, und welches der eigentliche Grund und Bo-
den zu sein scheint, auf welchem die schwierigsten Theile der Anal-
ysis und Zahlentheorie in einander greifen.

It is clear from this passage that Eisenstein has something quite specific
in mind and also that he believes he possesses at least some examples.
What they might be is not clear from his brief comments. I feel that
Eisenstein’s article [18] deserves much closer study both by itself and
in the context of Eisenstein’s work as a whole. There are other clues as
well as to what he might have had in mind and I plan to discuss them
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in a future article.

This hint that Eisenstein was interested in functions expressible as
multiply infinite products (or sums, as in his subsequent comments)
might provide a missing clue as to Eisenstein’s ideas for an approach to
the results of [12] via elliptic functions. For example, and not the only
one, if p = 4n+ 3 is a prime, then any abelian variety of A of dimension
2n+ 1 with complex multiplication by the regular representation of the
ring of integers of the cyclotomic field Q((,) is isomorphic to a product
of 2n 4+ 1 copies of an elliptic curve with complex multiplication by the
ring of integers of Q(y/—p), as shown in [6]. The abelian functions on
this abelian variety will then be closely related to theta series, which
are multiply infinite sums. For p = 7, the abelian variety is a factor
of the Jacobian variety of the Fermat curve of degree 7, but for p > 7,
it is not.2> Thus, the connection with the Jacobian varieties of Fermat
curves might be hidden in the study of Eisenstein’s multiply infinite
products or sums and only valid for p < 7. In any case, it is not yet
clear how the characteristic final trick of Eisenstein’s lemniscatic proof
can be obtained in this setting.
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ENDNOTES

1. On p. 213 of [34] we find: “Toute nombre premier, qui surpasse de
I’unité un multiple du quaternaire, est une seule fois la somme de deux
carrés, et une seule fois ’hypotenuse d’un triangle rectangle.” [Section
0, p. 1, line 2]

2. The note [35] is not on what Diophantos wrote but in reference
to some of the commentary of Bachet on Diophantos. [Section 0, p. 1,
line 2]

3. Fermat actually sent the letter [36] to Carcavi, who then passed it
on to Huygens. On p. 432, Fermat states the result and then indicates
that he proved it by descent. The letter [36] also occurs as Letter 651
of Huygens’ correspondence. [Section 0, p. 1, line 2]

4. “Anachronism consists in attributing to an author such knowledge
as he never possessed...” (cf. [84], p. 438). [Section 0, p. 3, line 1]

5. Actually, both the Commentatio Prima and the Commentatio
Secunda will be translated in the final version of [5]. [Section 0, p. 4,
line 27]

6. If nis even, then —1 is a fourth power mod p and the equations
1+elzt+ely* =0 and 1 + e®z* — efy* = 0 have the same number of
solutions. [Section 1, p. 5, line 15]

7. We can take them to be 2(12) = n — 2(02), (00) =n — 1 — 3(02)
and (03) = 2(02) — (01). This expresses all (i j) in terms of (01) and
(02). [Section 1, p. 6, line 8]

8. After applying the relations (1.9) to the expression p — a? — b2,
one finds that it is proportional as a polynomial in (01) and (02) to the
difference between (1.11) and (1.12). [Section 1, p. 6, line -2]

9. We will sometimes write 7 for the image f? of w? = i in GF(p?)
when no confusion can occur. [Section 2, p. 10, line 3]

10. Eisenstein writes: “Auf diejenigen Principien, welche der Theorie
der Elliptischen Functionen zur Behandlung dieser Fragen an die Hand
giebt, werde ich bei einer kiinftigen Gelegenheit aufmerksam machen.”
This may be translated as: “On a future occasion I will discuss those
principles which the theory of elliptic functions provides for treating
these questions.” We note that he does not mention abelian functions,
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which is somewhat problematic for the approach we have suggested
here. However, see also the comments at the end of Section 7. [Section
3, p. 22, line 1]

11. The proof is found in the paper [14], which appeared two
years after the paper [12]. Perhaps [14] is the kinftigen Gelegenheit
mentioned in footnote 10. However, I consider it unlikely that this
is all Eisenstein had to say about the matter since he mentions the
connection to elliptic functions in the context of a discussion of primes
of the form 8n+3 and 7n+ 2, 4, not primes of the form 4n+ 1. [Section
3, p. 22, line 20]

12. In [14] the numbering of the coefficients is the reverse of the
numbering of [13]. We follow the numbering of [13]. [Section 3, p. 23,
line 15]

13. We follow Eisenstein in using p to denote |m|?, which is an odd
number and may be composite. [Section 3, p. 26, line 12]

14. Kronecker (p. 439 of [69], on the same page as the Kronecker con-
gruence relation (64)), writes: “Eben diese Congruenz (64) bildet den
Hauptzielpunkt der vorstehen Entwickelungen; sie ist fiir die Theorie
der Transformation der elliptischen Functionen, sowie fur alle arith-
metischen Anwendungen dieser Theorie von ebenso fundamentaler Be-
deutung, wie es die analogen, schon aus Euler’schen FEntwickelungen
hervorgehenden Congruenzen:

(—1)%("_1)32'71 nu = (sin u)", (—1)%("_1)tg nu = (tg w)" (mod. n)”

The word “Congruenzen” is marked by an asterisk pointing to a
footnote of Kronecker citing Ch. XIV of this work of Euler. Kronecker’s
Werke were edited by Kurt Hensel who added a footnote to Kronecker’s
footnote giving the more precise reference “FEuler, Opera, Series I,
Volumen VIII, p. 258” (i.e., [30], p. 258). However, this more precise
reference appears to be incorrect. In Ch. XIV, which Kronecker does
refer to, one does find on p. 273 of [30] the identity

(1+ty/=1)" — (1 — t/=1)"
(14 ty/~1)ny/—14+ (1 — ty/~1)ny/—1’

where t = tang.z and this immediately implies the congruence relation
for tangent stated by Kronecker when n is an odd prime. The analogous

tang.nz =
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formula for sine is stated on p. 272 of [30], which quotes from p. 141
of [30]. The work [30] of Euler is also available in a recent English
translation [32]. The relevant identities appear on p. 217. It is
noteworthy that although Kronecker refers to the work of Euler, he
makes no mention of that of Eisenstein. [Section 5, p. 34, line 22]

15. In [81], pp. 3-4, 53, Weil writes: “The first signs of an awakening
interest in elliptic functions, on the part of Kronecker, appears in 1853
(Werke IV, p. 11); there he mentions the lemniscatic case as providing
the generalization to the Gaussian field Q(7) of his theorem on the
abelian extensions of Q. Undoubtedly he must then have studied,
besides Abel, the work of Eisenstein on the division of the lemniscate;
but these (even Eisenstein’s great paper of 1850) were based on Abel’s
formulas and notations and bore no close relation to the Genaue
Untersuchung of 1847 which has been described in Chapters I to IV.”

WEeil is, of course, primarily concerned with the Genaue Untersuchung
[20]. The works he says Kronecker probably read were undoubtedly
[14] and [23], the only other paper of Eisenstein in 1850 being [19],
which is on a different topic. These do contain the Kronecker relation
for the case of the lemniscatic function, but there is no mention of
Eisenstein in this connection in the 1853 paper [72]. In order to
clarify the situation for myself, I turned the pages of all five volumes
of Kronecker’s Werke to find all of the places where he explicitly refers
to Eisenstein and obtained the following list, not guaranteed to be
complete: (a) (cf. [62], p. 9) mentions Eisenstein’s paper [25]. (b)
ibid., (cf. [62], pp. 10, 35) refers to Eisenstein’s paper [21]. (c) [63],
p- 19, refers to Eisenstein’s expression of the Legendre symbol as a
product of sines. Kronecker refers to this several times in other papers,
e.g., [64], pp. 27, 33; [66], p. 511, where it is called an Eisenstein
product; [67], p. 135, where an explicit reference is given to pp. 178,
179 of Eisenstein’s paper in Crelle (cf. [26], pp. 292, 293); (d) [65], p.
98 mentions Eisenstein in connection with power residue laws. (e) [68],
p. 247 cites Eisenstein’s 1850 paper [14] on the division of lemniscate.
(£) [69], p- 389, fn., mentions Eisenstein’s work on elliptic functions. (g)
[70], p. 129 refers explicitly to the Genaue Untersuchungen [20]. (h)
[71], pp. 149-183, refers constantly to Eisenstein’s [13]. In addition, in
[71], p. 152, he refers to something as Eisenstein’s invariant; on [71],
p- 159, he cites the use of Eisenstein’s work in Hurwitz’ thesis [45], pp.
20, 24, where Hurwitz refers to the Genaue Untersuchungen [20]; on
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[71], p. 183, he discusses what he calls Eisenstein’s elliptic integral of
the second kind. (i) In his letter [61] to Dirichlet, Kronecker mentions
Eisenstein’s paper [21] (cf. p. 415 of Vol. 5, of Kronecker’s Werke,
in [77]). (j) In his Jugendtraum letter to Dedekind of March 15, 1880
(cf. [60], vol. 5, pp. 453-457, lines 6-7), Kronecker mentions that
Eisenstein in effect proved a congruence relation for the Lemniscatic
case. This was six years before the congruence relation was published
in [69], p. 439, with no mention of Eisenstein. He does however refer to
Jacobi ( Werke, Bd.1, p. 55) as having provided an antecedent for elliptic
functions in the case of multiplication by rational primes. Perhaps
the footnote on p. 389 of [69], which mentions both Eisenstein and
Jacobi, is pertinent here. But I will have to read more of the works of
Kronecker, Jacobi and Eisenstein to form a definite opinion.

Thus, it is clear that Kronecker was certainly aware of some aspects
of the work of Eisenstein, although Weil is correct insofar as the neglect
of the Genaue Untersuchung [20] is concerned. The fact that in
[69] Kronecker never refers to Eisenstein’s version of the Kronecker
congruence relation for the lemniscatic integral, when contrasted with
his careful reference to other work of Eisenstein, suggests strongly
that this aspect of Eisenstein’s work was also neglected by Kronecker.
[Section 5, p. 34, line 23]

16. I have not checked whether the reduction given by Richelot and
by Legendre is equivalent to the transformation we have given here.
[Section 5, p. 36, line —3]

17.  In [11], W.L. Edge has drawn attention to the differences
between the version of [54] which appeared in Math. Ann. and that
which appeared in Klein’s edition of his collected works. [Section 6, p.
39, line 14]

18. It should perhaps be pointed out that, on p. 32 of [25], after
correctly giving the degree of the equation which gives the division by
p of the periods as p?® — 1 for genus n, in effect anticipating the special
case published by Jacobi (cf. [52], p. 50), Galois writes down what he
claims is the order of the Galois group of this equation. The value he
gives is easily seen to be the order of the finite general linear group
GLs,(F,), which is not the right group but which is not a bad guess if
one isn’t aware of the role of the symplectic group. On the other hand,
the fact that Galois, on the preceding page, claims to have generalized
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Legendre’s period relation to the case of abelian integrals suggests that
he might have been aware of the role of the symplectic group. It
happens that Jacobi ([53], p. 62) also claimed, without giving details,
to have generalized the Legendre relation. However, Weierstrass ([79],
p. 111), at the beginning of his paper in which he derives the general
symplectic relations for what he says is the first time, mentions this
claim of Jacobi (but not that of Galois) and suggests that what Jacobi
had in mind was a different and much simpler relation, one which had
been later published by Hadenkamp [43] and which I haven’t seen. So
it is not clear, based on this evidence, whether Galois had knowledge
of the symplectic relations and made an error computing the group or
whether he had the relation of Hadenkamp in mind, which gave him
no clues as to the correct Galois group. [Section 7, p. 43, line 26].

19. Weil ([84], p. 435) writes: “Eisenstein fell in love with
mathematics at an early age by reading Euler and Lagrange...”.
[Section 7, p. 43, line 31]

20. Although Legendre proves general results about the reducibility
of hyperelliptic integrals to elliptic integrals in the third supplement to
(73], his work with the integral [ \/% is confined to experiments

involving numerical computations. Most regrettably, no reprint of the
whole of Legendre’s three volume treatise [69] seems to have been issued
since it was first published in 1825-8. [Section 7, p. 44, line 14]

21. There is also an article [58] by Konigsberger in which he
gives criteria for such reductions, particularly in cases where there is
complex multiplication. The article does rely on Riemann’s theory for
its exposition, but it does not seem to use it in an essential way. It
is quite possible that the kind of qualitative arguments, as opposed to
explicit reduction, that went into it were already known to Eisenstein.
Konigsberger also wrote about reduction of abelian integrals in [56],
[67] and in his book [59]. [Section 7, p. 44, line —12]

22. Which I haven’t seen and which may not be extant. [Section 7,
p. 46, line 16]

23.  “Apart from that, I know only one truly different comprehensive
method, using elliptic functions.” [Section 7, p. 46, line —11]

24. This may be translated as “We cannot say anything precise here
about the choice of these [in?]equalities in general. However, there
exists an entire class of such functions which stand in a very close
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relation to certain results in number theory. And for just this kind,
the inequality conditions of which we speak prove to be very natural
conditions. In fact, for these cases one always finds a combination of
a definite number of values of the expression N such that they [the
inequalities| reduce a whole group of infinitely many N, appearing
as the terms of a geometric progression for which this combination
of the aforementioned values [of N] has the same integer value, to a
single N. The functions to which one is led in this way appear to have
rather remarkable properties. They open up a field in which the most
prolific studies offer themselves and which appears to be the proper
foundation upon which the most difficult parts of analysis and number
theory come into contact.” From the context, it appears that the word
“Bedingungsgleichungen” in the first line of Eisenstein’s remark ought
to have been “Bedingungsungleichungen,” and I have so indicated this
with the insertion of [in?] in my translation. [Section 7, p. 48, line 15]

25. The decompositin of the Jacobian variety of the Fermat curve of
degree N was studied in [42] and [55]. When N is prime to 6, complete
results have been obtained but apparently not when N is divisible by 2
or 3. In the case where N is a prime number p > 7, the simple factors
of the Jacobian all have dimension (p — 1)/2 or (p — 1)/6, hence > 1
for p > 7. [Section 7, p. 49, line 14]
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