LIKE VANISHING HOLOMORPHIC RANDOM FUNCTIONS

F. MARTINEZ AND A.R. VILLENA

ABSTRACT. For every random function holomorphic in mean on an open connected subset D of C satisfying P[f(z)] $|0\rangle > 0$ for all $z \in D$, there is a measurable set $|\Delta|$ satisfying $\mathbf{P}[\Delta] > 0$ and $f(z, \omega) = 0$ almost surely on Δ for every $z \in D$.

- 1. Introduction. The most realistic formulations of the equations arising in applied mathematics typically involve the study of random functions, which are presently a very active area of mathematical research (see [1, 6, 10]). On the other hand, it is of considerable interest in the stochastic analysis to know whether a sample property of a random function can be automatically derived from its behavior in mean [2-4, 8]. In [8] we proved that every random function holomorphic in mean on an open subset D of the complex field is equivalent to a random function whose paths are holomorphic on D. This paper is devoted to investigate the behavior of those random functions which are holomorphic in mean on an open connected subset D of C and vanish in a very broad sense; namely, for each $z \in D$, the event [f(z) = 0] can happen, that is, each set $\Delta_z = \{\omega : f(z, \omega) = 0\}$ has a positive probability which depends on the element z. In such a case we prove that there is a measurable set Δ satisfying $\mathbf{P}(\Delta) > 0$ and $f(z,\omega) = 0$ almost surely on Δ for every $z \in D$. In particular, we obtain a surprising conclusion; namely, two holomorphic random functions f and g on D have versions with a nonzero probability of having common paths if, and only if, $\mathbf{P}[f(z) = g(z)] > 0$ for all $z \in D$.
- 2. The results. Throughout the paper, $(\Omega, \Sigma, \mathbf{P})$ will denote a complete probability space, and X will stand for a complex Banach space. Given a subset D of C, a map $f: D \times \Omega \to X$ is said to be an X-valued (first-order) random function on D if, for each $z \in D$,

Received by the editors on December 20, 1995, and in revised form on June 1, 1996. AMS 1991 Mathematics Subject Classification. Primary 30G30, 60G17.

the map $\omega \mapsto f(z,\omega)$ lies in $\mathcal{L}_1(\mathbf{P},X)$, the linear space of all X-valued first-order Bochner random variables. For every fixed $\omega \in \Omega$, the function $z \mapsto f(z,\omega)$ from D into X is called a path of f. Given $\xi \in \mathcal{L}_1(\mathbf{P},X)$, $[\xi]$ denotes the equivalence class of ξ for the usual almost surely identification. The space $L_1(\mathbf{P},X) = \{[\xi] : \xi \in \mathcal{L}_1(\mathbf{P},X)\}$ becomes a complex Banach space with the norm $\|[\xi]\|_1 = \int_{\Omega} \|\xi\| d\mathbf{P}$. For the basic information on Bochner integrability we refer to $[\mathbf{5}]$. An X-valued random function f on D is said to be holomorphic in mean on D if, for every $z_0 \in D$, the quotient $(f(z,\cdot) - f(z_0,\cdot))/(z-z_0)$ has a limit in mean as z approaches z_0 , which obviously means that the function $z \mapsto [f(z,\cdot)]$ from D into the complex Banach space $L_1(\mathbf{P},X)$ is holomorphic in the traditional sense. For a full discussion on holomorphic vector-valued functions, the reader is referred to $[\mathbf{7};$ Section 3.2].

Lemma 1. Let $\{\xi_n\}$ be a sequence of X-valued random variables converging in probability to a random variable ξ . Then $\limsup \mathbf{P}[\xi_n = 0] \leq \mathbf{P}[\xi = 0]$.

Proof. The sequence $\{\int_{\Omega} (\|\xi_n\|/(1+\|\xi_n\|)) d\mathbf{P}\}$ converges to $\int_{\Omega} (\|\xi\|/(1+\|\xi\|)) d\mathbf{P}$. Now we note that $\int_{\Omega} (\|\xi_n\|/(1+\|\xi_n\|)) d\mathbf{P} \leq \mathbf{P}[\xi_n \neq 0] = 1 - \mathbf{P}[\xi_n = 0]$, for all $n \in \mathbf{N}$, and therefore

$$\int_{\Omega} \frac{\|\xi\|}{1 + \|\xi\|} d\mathbf{P} \le \lim \inf (1 - \mathbf{P}[\xi_n = 0]) = 1 - \lim \sup \mathbf{P}[\xi_n = 0].$$

Given a natural number k, $\{k\xi_n\}$ converges in probability to $k\xi$. Hence,

$$\int_{\Omega} \frac{k\|\xi\|}{1+k\|\xi\|} d\mathbf{P} \le 1 - \limsup \mathbf{P}[k\xi_n = 0] = 1 - \limsup \mathbf{P}[\xi_n = 0].$$

Letting $k \to \infty$, we deduce that $\mathbf{P}[\xi \neq 0] \le 1 - \limsup \mathbf{P}[\xi_n = 0]$ and so $\limsup \mathbf{P}[\xi_n = 0] \le \mathbf{P}[\xi = 0]$.

Given two random variables ξ and ζ , the quantity $\mathbf{P}\{\omega \in \Omega : \xi(\omega) = \zeta(\omega)\}$ is independent of which members of $[\xi]$ and $[\zeta]$ we choose and we shall write it as $\mathbf{P}[[\xi] = [\zeta]]$.

Lemma 2. Let F be a holomorphic function from an open subset D of \mathbf{C} into $L_1(\mathbf{P}, X)$ such that there exists $\delta > 0$ satisfying $\delta \leq \mathbf{P}[F(z) = 0]$ for all $z \in D$. Then $\delta \leq \mathbf{P}[F(z) = F'(z) = 0]$ for all $z \in D$.

Proof. Fix $z \in D$ and consider the holomorphic function G on D given by $G(w) = (w-z)^{-1}(F(w)-F(z))$ if $w \neq z$ and G(z) = F'(z). Then F(w) = F(z) + (w-z)G(w) for all $w \in D$ and, for 0 < |w-z| small enough, we have

$$\delta \le \mathbf{P}[F(w) = 0]$$

$$= \mathbf{P}[F(z) + (w - z)G(w) = 0]$$

$$\le \mathbf{P}[\|F(z)\| = \|G(w)\| = 0]$$

$$+ \mathbf{P}[\|F(z)\| = |w - z| \|G(w)\|, \|F(z)\| \neq 0]$$

and letting $w \to z$ we have

$$\begin{split} \delta & \leq \limsup_{w \to z} \mathbf{P}[\|F(z)\| = \|G(w)\| = 0] \\ & + \limsup_{w \to z} \mathbf{P}[\|F(z)\| = |w - z| \|G(w)\|, \|F(z)\| \neq 0]. \end{split}$$

Further, applying Lemma 1, we get

$$\lim \sup_{w \to z} \mathbf{P}[\|F(z)\| = \|G(w)\| = 0] \le \mathbf{P}[\|F(z)\| = \|F'(z)\| = 0]$$

and

$$\lim_{w \to z} \mathbf{P}[\|F(z)\| = |w - z| \|G(w)\|, \|F(z)\| \neq 0] = 0.$$

Therefore,

$$\delta \le \mathbf{P}[\|F(z)\| = \|F'(z)\| = 0].$$

For a subset Δ of Ω , let χ_{Δ} denote the characteristic function of Δ .

Theorem 1. Let F be a holomorphic function from an open connected subset D of \mathbf{C} into $L_1(\mathbf{P},X)$ such that there exists $\delta > 0$ satisfying $\delta \leq \mathbf{P}[F(z) = 0]$ for all $z \in D$. Then there exists a measurable set Δ with $\mathbf{P}[\Delta] \geq \delta$ such that $F(z)[\chi_{\Delta}] = 0$ for all $z \in D$.

Proof. By the above lemma, $\mathbf{P}[F(z) = F'(z) = 0] \geq \delta$ for all $z \in D$. Assume inductively that $\mathbf{P}[F(z) = F'(z) = \cdots = F^{(n)}(z) = 0] \geq \delta$ for all $z \in D$. Then the function $z \mapsto (F(z), \dots, F^{(n)}(z))$ may be viewed as a holomorphic function, G, from D into $L_1(\mathbf{P}, X \times \cdots \times X)$ satisfying $\mathbf{P}[G(z) = 0] \geq \delta$ for all $z \in D$. On account of the above lemma, we have

$$\delta \le \mathbf{P}[G(z) = G'(z) = 0]$$

= $\mathbf{P}[F(z) = F'(z) = \dots = F^{(n)}(z) = F^{(n+1)}(z) = 0]$

for every $z \in D$.

Thus we get $\delta \leq \mathbf{P}[F(z) = \cdots = F^{(n)}(z) = 0]$ for all $z \in D$ and $n \in \mathbf{N} \cup \{0\}$, and fixing $z_0 \in D$, this clearly forces the existence of a measurable set Δ with $\mathbf{P}[\Delta] \geq \delta$ and $F^{(n)}(z_0)[\chi_{\Delta}] = 0$ for every $n \in \mathbf{N} \cup \{0\}$. Consequently, the function $z \mapsto F(z)[\chi_{\Delta}]$ is a holomorphic function from D into $L_1(\mathbf{P}, X)$ having zero derivatives of all orders in z_0 and therefore equals zero on a suitable open disc contained in D. From the uniqueness theorem [7, Theorem 3.11.5], it may be concluded that $F(z)[\chi_{\Delta}] = 0$ for every $Z \in D$, which is the desired conclusion.

Lemma 3. Let F be a continuous function from a subset D of \mathbf{C} into $L_1(\mathbf{P}, X)$. Then, for every $\delta > 0$, the set $C_{\delta} = \{z \in D : \mathbf{P}[F(z) = 0] \geq \delta\}$ is closed in D.

Proof. Let $\{z_n\}$ be a sequence in C_δ converging to an element z in D. Then the sequence $\{F(z_n)\}$ converges in probability to F(z) and, applying Lemma 1, it follows that $\delta \leq \limsup \mathbf{P}[F(z_n) = 0] \leq \mathbf{P}[F(z) = 0]$.

Theorem 2. Let F be a holomorphic function from an open connected subset D of \mathbf{C} into $L_1(\mathbf{P},X)$. If, for each $z \in D$, $\mathbf{P}[F(z) = 0] > 0$, then there exists a measurable set Δ with $\mathbf{P}[\Delta] > 0$ such that $F(z)[\chi_{\Delta}] = 0$ for every $z \in D$. Furthermore, the set $\{\mathbf{P}[\Delta] : \Delta \in \Sigma, [\chi_{\Delta}]F = 0\}$ attains a maximum, which coincides with the infimum of the set $\{\mathbf{P}[F(z) = 0] : z \in D\}$.

Proof. For each $k \in \mathbb{N}$, let C_k be the closed subset of D given by

 $C_k = \{z \in D : \mathbf{P}[F(z) = 0] \ge 1/k\}$ (see Lemma 3). Then $D = \bigcup_{k=1}^{\infty} C_k$. Since D is a locally compact Hausdorff space, from Baire's theorem [9, Theorem 2.2(b)] C_k contains an open disc, say D_0 , for a suitable $k \in \mathbf{N}$.

Note that $1/k \leq \mathbf{P}[F(z) = 0]$ for all $z \in D_0$. From Theorem 1, $F(z)[\chi_{\Delta}] = 0$ for all $z \in D_0$, for a suitable measurable set Δ with $\mathbf{P}[\Delta] \geq 1/k$. According to [7, Theorem 3.11.5], we have $F(z)[\chi_{\Delta}] = 0$ for all $z \in D$.

For shortness, we denote $E_1 = \{ \mathbf{P}[F(z) = 0] : z \in D \}$, $E_2 = \{ \mathbf{P}[\Delta] : \Delta \in \Sigma, [\chi_{\Delta}]F = 0 \}$, $\eta_1 = \inf E_1$ and $\eta_2 = \sup E_2$. Let $\{ \Delta_n \}$ be a sequence in E_2 with $\lim \mathbf{P}[\Delta_n] = \eta_2$ and consider $\Delta = \bigcup_{n=1}^{\infty} \Delta_n$. Then $[\chi_{\Delta}]F = 0$ and $\mathbf{P}[\Delta] \in E_2$. Hence $\mathbf{P}[\Delta_n] \leq \mathbf{P}[\Delta] \leq \eta_2$ and therefore $\mathbf{P}[\Delta] = \eta_2$ and η_2 is the maximum of E_2 . Clearly $\eta_1 \geq \eta_2$ and, from Theorem 1, actually it is satisfied $\eta_1 = \eta_2$.

Corollary 1. Let f be an X-valued random function holomorphic in mean on an open connected subset D of C. Then the following conditions are equivalent:

- 1. $\mathbf{P}[f(z,\omega) = 0] > 0 \text{ for all } z \in D.$
- 2. There is a $\Delta \in \Sigma$ with $\mathbf{P}[\Delta] > 0$ such that $f(z, \omega) = 0$ almost surely on Δ , for every $z \in D$.

Moreover, the set $\{\mathbf{P}[\Delta] : f(z,\omega) = 0 \text{ almost surely on } \Delta \text{ for all } z \in D\}$ attains a maximum which coincides with the infimum of the set $\{\mathbf{P}[f(z,\omega) = 0] : z \in D\}$.

Corollary 2. Let f_1 and f_2 be X-valued random functions holomorphic in mean on an open connected subset D of C. Then the following conditions are equivalent:

- 1. $\mathbf{P}[f_1(z,\omega) = f_2(z,\omega)] > 0 \text{ for all } z \in D.$
- 2. There exist two random functions g_1 and g_2 on D equivalent to f_1 and f_2 , respectively, whose paths are holomorphic on D and satisfying $\mathbf{P}[g_1(z,\omega)=g_2(z,\omega) \text{ for all } z\in D]>0$.

Proof. It suffices to show that the second assertion follows from the first one. If 1 holds, then Corollary 1 shows that there is a Δ satisfying $\mathbf{P}[\Delta] > 0$ and $f_1(z,\omega) = f_2(z,\omega)$ almost surely on Δ for

every $z\in D$. Let g_1 and g_2 be random functions with holomorphic paths equivalent to f_1 and f_2 , respectively, given by [8]. It is clear that, for every $z\in D$, $g_1(z,\omega)=g_2(z,\omega)$ almost surely on Δ . Accordingly, if S is a countable dense subset of D, then for each $z\in S$ there exists a negligible set Δ_z such that $g_1(z,\omega)=g_2(z,\omega)$ for all $\omega\in\Delta\backslash\Delta_z\cdot\Delta_0=\cup_{z\in S}\Delta_z$ is a negligible set and for all $z\in D$ and $\omega\in\Delta\backslash\Delta_0$ we have $g_1(z,\omega)=g_2(z,\omega)$ since g_1 and g_2 have continuous paths. \square

REFERENCES

- A.T. Bharucha-Reid, Random integral equations, Academic Press, New York, 1977.
- 2. S. Cambanis, The measurability of a stochastic process of second order and its linear space, Proc. Amer. Math. Soc. 47 (1975), 467–475.
- 3. ——, On the path absolute continuity of second order processes, Ann. Probab. 3 (1975), 1050–1054.
- 4. S. Cambanis and G. Miller, Some path properties of pth order and symmetric stable processes, Ann. Probab. 8 (1980), 1148-1156.
- 5. J. Diestel and J.J. Uhl, Vector measures, Amer. Math. Soc. Surveys 15 (1977).
- 6. J.L. Doob, Stochastic processes, Wiley, New York, 1953.
- 7. E. Hille and R.S. Phillips, Functional analysis and semigroups, Amer. Math. Soc., Colloq. Publ. 31 (1957).
- 8. F. Martinez and A.R. Villena, A note on the path holomorphy of random functions holomorphic in mean, Proc. Amer. Math. Soc. 125 (1997), 1751–1754.
 - 9. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
- 10. A.V. Skorohod, Random linear operators, D. Reidel Publishing Company, Holland, 1984.

DEPARTAMENTO DE ESTADÍSTICA E I.O., FACULTAD DE CIENCIAS, UNIVERSIDAD DE GRANADA, 18071 GRANADA, SPAIN E-mail address: palvarez@goliat.ugr.es

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE GRANADA, 18071 GRANADA, SPAIN E-mail address: avillena@goliat.ugr.es