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LIKE VANISHING
HOLOMORPHIC RANDOM FUNCTIONS

F. MARTINEZ AND A.R. VILLENA

ABSTRACT. For every random function holomorphic in
mean on an open connected subset D of C satisfying P[f(z) =
0] > 0 for all z € D, there is a measurable set |A satisfying
P[A] > 0 and f(z,w) = 0 almost surely on A for every z € D.

1. Introduction. The most realistic formulations of the equations
arising in applied mathematics typically involve the study of random
functions, which are presently a very active area of mathematical
research (see [1, 6, 10]). On the other hand, it is of considerable
interest in the stochastic analysis to know whether a sample property
of a random function can be automatically derived from its behavior
in mean [2-4, 8]. In [8] we proved that every random function
holomorphic in mean on an open subset D of the complex field is
equivalent to a random function whose paths are holomorphic on D.
This paper is devoted to investigate the behavior of those random
functions which are holomorphic in mean on an open connected subset
D of C and vanish in a very broad sense; namely, for each z € D, the
event [f(z) = 0] can happen, that is, each set A, = {w: f(z,w) = 0}
has a positive probability which depends on the element z. In such a
case we prove that there is a measurable set A satisfying P(A) > 0
and f(z,w) = 0 almost surely on A for every z € D. In particular,
we obtain a surprising conclusion; namely, two holomorphic random
functions f and g on D have versions with a nonzero probability of
having common paths if, and only if, P[f(z) = g(z)] > 0 for all z € D.

2. The results. Throughout the paper, (2,%,P) will denote a
complete probability space, and X will stand for a complex Banach
space. Given a subset D of C, a map f : D x 2 — X is said to be
an X-valued (first-order) random function on D if, for each z € D,

Received by the editors on December 20, 1995, and in revised form on June 1,

1996.
AMS 1991 Mathematics Subject Classification. Primary 30G30, 60G17.

Copyright ©1998 Rocky Mountain Mathematics Consortium

657



658 F. MARTINEZ AND A.R. VILLENA

the map w — f(z,w) lies in £1(P,X), the linear space of all X-
valued first-order Bochner random wvariables. For every fixed w € (2,
the function z — f(z,w) from D into X is called a path of f. Given
€ € L1(P, X), [€] denotes the equivalence class of £ for the usual almost
surely identification. The space Li(P,X) = {[¢] : £ € L1(P,X)}
becomes a complex Banach space with the norm [|[¢][[ = [ [[¢]l dP.
For the basic information on Bochner integrability we refer to [5]. An
X-valued random function f on D is said to be holomorphic in mean
on D if, for every zop € D, the quotient (f(z,-) — f(20,-))/(z — 20)
has a limit in mean as z approaches zg, which obviously means that
the function z — [f(z,-)] from D into the complex Banach space
L, (P, X) is holomorphic in the traditional sense. For a full discussion
on holomorphic vector-valued functions, the reader is referred to [7;
Section 3.2].

Lemma 1. Let {{,} be a sequence of X-valued random variables
converging in probability to a random variable £. Then limsup P[¢,, =

0] < Ple=0].

Proof. The sequence { [, ([l ]|/ (1+]|€xl)) dP} converges to [, ([I€]|/(1+
[€])) dP. Now we note that [o,([l€x]l/(1 4 [|€nll)) dP < P&, # 0] =
1—-P[¢, = 0], for all n € N, and therefore

el g o i
/(; T+ €] dP <liminf(1 — P[{, =0]) =1 — limsup P[¢, = 0].

Given a natural number k, {k&,} converges in probability to k£. Hence,

k[€]] . .
————dP <1 —limsup P[k§, = 0] =1 — limsup P[¢,, = 0].
i en =0 =0

Letting k — oo, we deduce that P[§ # 0] < 1 — limsup P[¢, = 0] and
so limsupP[¢, = 0] < P[{¢ = 0]. u]

Given two random variables ¢ and ¢, the quantity P{w € Q: ¢(w) =
¢(w)} is independent of which members of [¢] and [(] we choose and we
shall write it as P[[¢] = [¢]].
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Lemma 2. Let F' be a holomorphic function from an open subset D of
C into L1 (P, X) such that there exists § > 0 satisfying § < P[F(z) = 0]
forallz€ D. Then § <P[F(z) = F'(z) =0] forall z € D.

Proof. Fix z € D and consider the holomorphic function G on D
given by G(w) = (w — 2) " }(F(w) — F(2)) if w # z and G(z) = F'(z).
Then F(w) = F(z) + (w — 2)G(w) for all w € D and, for 0 < |w — 2|
small enough, we have

§ <P[F(w) =0]
=P[F(2) + (w — 2)G(w) = 0]
< P[[F(2)]| = |G(w)]| = 0]
+P[|F(2)]| = |w — 2| [|G(w)], | F(2)]| # O]

and letting w — z we have
§ < limsup P[[|F(2)]| = [|G(w)]| = 0]
w—rz
+limsup P{[F(2)[| = |w — 2|[|G(w)]l, [|F ()] # 0].
Further, applying Lemma 1, we get

limsup P[||F(2)] = |G(w)ll = 0] < PIF(2)]l = ()]l = 0]

and
ligljgpP[llF(Z)\l = |w = z[[|G(w)]], [|F'(2)]| # 0] = 0.

Therefore,
§ <P[|F(2)] = |F'(=)]| = 0.

O

For a subset A of 2, let XA denote the characteristic function of A.

Theorem 1. Let F be a holomorphic function from an open con-
nected subset D of C into L1 (P, X) such that there exists & > 0 satis-
fying § < P[F(z) = 0] for all z € D. Then there exists a measurable
set A with P[A] > § such that F(z)[Xa] =0 for all z € D.
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Proof. By the above lemma, P[F(z) = F'(z) =0] > § for all z € D.
Assume inductively that P[F(z) = F'(z) = --- = F(")(z) = 0] > § for
all z € D. Then the function z — (F(z),...,F(z)) may be viewed
as a holomorphic function, G, from D into L; (P, X X Mox X) satisfying
P[G(z) = 0] > ¢ for all z € D. On account of the above lemma, we
have

§ <P[G(2) = G'(2) = (]
=P[F(z)=F'(z) =--- = F™(2) = F"*D(2) = 0]
for every z € D.

Thus we get § < P[F(z) = --- = F(™(2) = (] for all z € D and
n € N U {0}, and fixing 29 € D, this clearly forces the existence of
a measurable set A with P[A] > § and F(™(z)[xa] = 0 for every
n € NU{0}. Consequently, the function z — F(z)[xa] is a holomorphic
function from D into L; (P, X) having zero derivatives of all orders in
zo and therefore equals zero on a suitable open disc contained in D.
From the uniqueness theorem [7, Theorem 3.11.5], it may be concluded
that F(z)[xa] = 0 for every Z € D, which is the desired conclusion.
O

Lemma 3. Let F be a continuous function from a subset D of C
into L1 (P, X). Then, for every § > 0, the set C5 = {z € D : P[F(z) =
0] > 6} is closed in D.

Proof. Let {z,} be a sequence in Cjs converging to an element z
in D. Then the sequence {F(z,)} converges in probability to F(z)
and, applying Lemma 1, it follows that § < limsupP[F(z,) = 0] <
P[F(z) = 0]. o

Theorem 2. Let F be a holomorphic function from an open con-
nected subset D of C into L1(P,X). If, for each z € D, P[F(z) =
0] > 0, then there exists a measurable set A with P[A] > 0 such that
F(z)[xa] = 0 for every z € D. Furthermore, the set {P[A] : A €
%, [Xa]F = 0} attains a mazimum, which coincides with the infimum
of the set {P[F(z) =0]:z € D}.

Proof. For each k € N, let C, be the closed subset of D given by
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Cr ={2€ D:P[F(z) =0] > 1/k} (see Lemma 3). Then D = U2, C.
Since D is a locally compact Hausdorff space, from Baire’s theorem [9,
Theorem 2.2(b)] Cj contains an open disc, say Dy, for a suitable k& € N.

Note that 1/k < P[F(z) = 0] for all z € Dg. From Theorem 1,
F(z)[xa] = 0 for all z € Dy, for a suitable measurable set A with
P[A] > 1/k. According to [7, Theorem 3.11.5], we have F(z)[Xa] =0
for all z € D.

For shortness, we denote Ey = {P[F(z) =0]: z € D}, E2 = {P[A] :
A € X,[XalF = 0}, ;1 = inf By and 12 = sup E2. Let {A,} be a
sequence in Fy with im P[A,] = 72 and consider A = U2 ; A,,. Then
[Xa]F = 0 and P[A] € F5. Hence P[A,] < P[A] < 7, and therefore
P[A] = 12 and 79 is the maximum of E,. Clearly 1, > 79 and, from
Theorem 1, actually it is satisfied n; = 9. ]

Corollary 1. Let f be an X-valued random function holomorphic
in mean on an open connected subset D of C. Then the following
conditions are equivalent:

1. P[f(z,w) =0] >0 for all z € D.

2. There is a A € X with P[A] > 0 such that f(z,w) = 0 almost
surely on A, for every z € D.

Moreover, the set {P[A] : f(z,w) = 0 almost surely on A for all
z € D} attains a mazimum which coincides with the infimum of the set
{P[f(z,w) =0]: z € D}.

Corollary 2. Let fi and fy be X -valued random functions holomor-
phic in mean on an open connected subset D of C. Then the following
conditions are equivalent:

1. P{f1(z,w) = f2(z,w)] > 0 for all z € D.

2. There exist two random functions g1 and g on D equivalent to f,
and fa3, respectively, whose paths are holomorphic on D and satisfying
Plg1(z,w) = g2(2,w) for all z € D] > 0.

Proof. It suffices to show that the second assertion follows from
the first one. If 1 holds, then Corollary 1 shows that there is a A
satisfying P[A] > 0 and fi(z,w) = f2(z,w) almost surely on A for
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every z € D. Let g; and g2 be random functions with holomorphic
paths equivalent to f; and f,, respectively, given by [8]. It is clear
that, for every z € D, g¢1(z,w) = ¢2(2,w) almost surely on A.
Accordingly, if S is a countable dense subset of D, then for each z € S
there exists a negligible set A, such that ¢1(z,w) = g2(z,w) for all
w € A\A, - Ay = U.esA. is a negligible set and for all z € D and
w € A\Aj we have g;(z,w) = ga(z,w) since g; and g2 have continuous
paths. u]
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