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AN EXPLICIT UPPER BOUND FOR
THE RIEMANN ZETA-FUNCTION
NEAR THE LINE ¢ =1

YUANYOU (FRED) CHENG

ABSTRACT. In this paper we give the following explicit
estimate for the Riemann zeta-function. Let ¢ > 2. For
1/2<0<1,

. _)3/2
I¢(o + it)| < 175t46(1=) " 15g2/3 ¢,

foro > 1,
|¢(o +it)] < 17510g?/3 t.

1. Introduction. In regard to the prime number theorem, the zero-
free region of the Riemann zeta-function plays an important role. The
best known zero-free region of the Riemann zeta-function asserts that
there are no zeros of (o + it) for ¢ > 1 — c(logt)~2/3(loglogt)~1/3
and t >ty where ¢ and ty are absolute positive constants. This zero-
free region was established by using the methods from Vinogradov and
Korobov, and the principal tool was an upper bound for the Riemann
zeta-function near the line o = 1.

In 1963, Richert proved the following result, see [11]. For1/2 <o <1
and t > 2, there exists an absolute constant A such that

(+) C(o + it)] < AtBA=0"""15g2/3 ¢

with B = 100. In 1975, Ellison proved the same result as (x) with
B = 86 and A = 2100, see [7]. There are also other results with
sharpened numbers B, see [10, 1].

In some applications one needs to have the result completely explicit.
That is, to have the number A calculated out. To prove the above
result with a reasonable size of the number A, it is convenient to use
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a slightly sub-optimal method and be satisfied with a slightly bigger
B. In this paper, based on an explicit version of Vinogradov’s mean
value theorem in [9], we give the same result as (x) with B = 46 and
A = 175, the inequality holding for all ¢ > 2 and 1/2 < ¢ < 1. We also
prove for t > 2 and o > 1 that

¢(o +it)] < 175l0g??¢.

The main tools we use include the Euler summation formula, the
double sum method of Korobov, an explicit version of the Vinogradov
mean value theorem from Korobov, and an idea from Ellison.

In a subsequent paper, we hope to use the results of this paper
to establish an explicit zero-free region for ((s) of the shape found
by Vinogradov and Korobov. This in turn will allow us to establish
the prime number theorem with an explicit error term of the sharpest
known form, i.e., to find specific constants, say C, D and x¢ such that,
for x > xo,

(z) = /2 L g+ Ba),

logt

with |E(z)| < Czexp{—D(logz)*°(loglogz)'/°}. Such an explicit
form of the prime number theorem has useful applications. For ex-
ample, in [5], a tool involved is an explicit form of the prime number
theorem established by Rosser and Schoenfeld, see [12] and [14]. For
related references, one may see [3].

After we have an explicit zero-free region for ((s), we may also use
it in giving an explicit form of Ingham’s theorem [8], which states that
there is a prime between two sufficiently large consecutive cubes. To
make this theorem explicit means to find a numerical value for the
number ng such that, for every n > ng, there is a prime between n®
and (n + 1)3.

2. Approximation formula for ((c + it). We first give the
following approximate functional equation.

Proposition 1. Let 0 > 1/2 and t > 2. Then

(]
(1) ((s) = o+ ),

n=1
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where |C(s)| < 5.505.

Remark. A result without an explicit number is standard. See [15,
Theorem 4.11]. We have adapted the idea of using the Euler summation
formula and the Fourier expansion of z — [z] — 1/2 from Titchmarsh’s
proof. We give a slightly weaker result with explicit constant, which is
sufficient for our application later. Our proof is also slightly different,
using the approximate formula in (2).

For 0 > 0 and s = o + it # 1, the Riemann zeta-function can be
represented by

ol | *u— [u 1
C(S):T;ES/ pyres du+m,

N

where N is a positive integer. For reference, see [2, p. 69]. Starting
from this point, under the condition o > 0 and s # 1, we note that

1 < Nl—o’
(s—=1)Ns—1| = ¢

For o > 1/2, t > 2, we have

oy — * 1 t/o)2+1
s/ u—Jr[lu]du g\s\/ +1du—\/(/tf)-i- .
N u’ N u’

= G
Let N = [t?]. Then t> —1 < N < t2. Tt follows for o > 1/2, t > 2, that

l-0o 2
< N N (t/o)?+1
-t No

42 +1

<1+ 1 < 3.381.

= 2

To get a suitable approximate formula for our purpose, we need the
following lemmas.

Lemma 1. If f and g are both differentiable real-valued functions
and f is either positive decreasing or negative increasing, then

[ 1019 de| < 211(@)] o 9(o).
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Proof. We may assume that f is positive decreasing. Integrating by
parts, we have

[ 1@ (@) dz = £©)9®) - f@)gla) - [ gl@)f (@) do.

Using the fact that the modulus of an integral does not exceed the
integral of the modulus, fab F(z)dz < f; G(z) dz whenever F(z) <
G(z), and |f'(z)| = —f'(x), we obtain that

/f 2)dz < f(b)g(b) — f(a)gla) — max |g(e |/f

a<lz<b

— 11{o) - max,loto)l}

a<z<b

+ 1@ (o) - o0

<2f(a) rgagb\g( z)|.

This proves Lemma 1. ]

Lemma 2. Letb > a > t/(2r). Then, for any positive integer v and
any o > 0, we have

sin(tlogz + 2nvx) 2
3 do| < —————
3) / zlte = a’(2rva +t)’

where the three + signs are all + or all —. Also,

‘ / sin(tlog z + 2nvz) £ sin(tlog z — 2wy )

e dm‘

8mva
a®(4m2v2a2 — 12)’

The above statements are also valid if we change the sine functions to
cosine functions. We also have

(5)

‘/ sin(tlog ) sin(27rvx)

dal < 8nrra
ml+o’ T

~ a’ (2721202 — t2)
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and

(6) ‘ /b cos(tlog z) sin(2nvz) p 8rva

xlto x‘ = a’(47%v2a? — t2)’

Proof. Trivially, the integral on the left of (3) is

3 /b d{cos(tlogz £ 2mvz)} /b d{cos(tlogx &+ 2nvz)}
gt (t/z +2nv) ), z°(t £ 2nvz)

Note that

1
f(z) = x° (2mve F t)

is a positive decreasing function for x > a > t/(2m). It is easy to get
(3) by applying Lemma 1 for f(z) and —f(z).
The inequality (4) is a direct consequence of (3), noting that

1 n 1 _ drva
2nrva—t  2mva+t  4Ar2v2a2 — 2

As for (5) and (6), note that

1
sin(tlog z) sin(2wvz) = 5(— cos(tlogx + 2mvz) + cos(tlog x — 2mwve)),

1
cos(tlog z) sin(2rvz) = §(sin(t log z + 2wva) — sin(tlog z — 2wva)).

Applying (4) and the analog with cosines to the integrals, it is straight-
forward to prove (5) and (6). O

For brevity, especially for later utilization, we denote n(z) = z
1/2 and define ((z)) = n(z) if = is not an integer and ((z)) = 0 if = is
an integer. Note that, by our definition,

lim ((z —§)) + lim ((z +9)) = 2((z)).

li
§—0+ §—0+
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By Jordan’s test, see [6], we can easily see that the function ((z))
converges to its Fourier series. That is,

i 27r1/ac

v=1

3=

This result can be found in [15, p. 74]. We then have

Lemma 3. Suppose o > 1/2 and t > 2. Then we have

(t1
(7) ‘\/ﬁ 1/ / w dm‘ < 0.176;

and

(t1
(8) VEF / w dx‘ < 0.176.

Proof. Replacing the Fourier expansion of the function ((z)) inside
the integral, the left side of (7) is

‘m/ Zsm (tlog x) sin(2mvx) "

myglte

We may exchange the order of the integral and the summation in
the expression by applying Lebesgue’s bounded convergence theorem,
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see [13]. This leads to the estimation

myglto

S e
<8WZ(4 )

=81+ 1/(4%) Z(m>
WY (i) <00

‘\/W/ Zsm (tlog z) sin(27rvx) dx‘

2
- 0.106% < 0.176,

using (5). This concludes (7). The inequality (8) may be proved
similarly by using (6). O

Remark. If we replace ((z)) by n(z), at most finitely many values
in the interval are changed. Hence, we also have the same result with
n(z) in the place of ((z)).

Proof of Proposition 1. It follows from (2) that

[t]

(9) c<):2—+ Z

n=1 t<n<t2

with |E(s)] < 3.381. We use Euler’s summation formula, see [15,
Theorem 2] to estimate the second sum on the right side of (9). Note

that
1 ¢ dﬂ? t t2 £ €T
2 T / R L / i

t<n<t?
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For the first item, we have

2
t ds
¢ x°

t2

<t
. T VELL o)

<+ <

ml—s

1—s

(t2—2a 4 tl—a)

N

since 0 > 1/2 and t > 2. For the second and third items, we have the
trivial estimate

1 1

@)z - (@)

tS

< 1/1 n 1 < 1 n 1 < 3
“ 2\t 2 ) T 212 2t~ 8
by using the fact that |((z))| < 1/2. For the fourth item, we have that

/t2 (), _ /t2 ((z)) cos(tlogz)

$1+s $1+0

g / (@) sin(tlogz)

m1+a
Recalling Lemma 3, we get that

1
2

t<n<t?

< g + % +0.176 x V2 < 2.124..

Noting that 2.124 + 3.381 = 5.505, we have finished the proof of
Proposition 1. ]

3. Zeta-sums. In this section we are concerned with an estimate of
the so-called zeta-sum

G+H

S(G@)= > n,

n=G+1
where G and H are positive integers, H < G, and H is chosen as to
maximize |S(G)|.

The following proposition is almost the same as [9, Lemma 27|, except
for the constants involved. The proof is also similar.
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Proposition 2. Let k > 2 and S(G) be defined as above, and

M
(10) Sp(M, M) = Z e itFk(mima)

ml,’H'LQ:].

where Fy,(z) = (1/n)z—(1/(2n?))2z%+- - -+ (=1)*~1(1/(kn*))z*. Then,
for any positive integer M with M < G'/2, we have

EMPRH2 (M 4 1)?
max |Se(M, M)| + (M+1)

< —
(1) 15@) < M? G<n<G+H (k+1)G* i 2

Vinogradov’s mean value theorem establishes an upper bound for
N(M,1, k), the number of integral solutions of the system of equations

ittt =nto-tuy
............ , lggjwy]SM
e =y R

Our next lemma contributes to the estimate for the sum Sp(M, M).

Lemma 4. Let k, Il and M be positive integers and Sp(M, M) be
defined as in (10). Then

|Sp(M, M)[** < M3 4N (M,1,k)*V,

where

Ve =Y | Y exp(—it{aiprs + - + arpmrn})|,
v i
aj = (=1)77Y(1/(jn?)) for j = 1,... .k, and the sums run over the

set of integer vectors fi = (u1,- -+, pk) and UV = (v1,... ,vg) such that
lnj| < IM? and |vj| <IM? forj=1,... k.

Proof. See [9, Lemma 25 and the first six rows on p. 120] and use the
result [9, (162), p. 80]. o
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Our estimate of zeta sums shall come out from the estimate of the
following sum:

V= Y

K1y Rk

L1 1
R

2
o

.1
+(—1)k 1m#k’/k}>
0

where ng is an integer with G < ng < G+ H < 2G. We have

> el ! ! 4ot (1) !
exp | — ) —piv1 — V2 + -+ (— — WKV
P nom 1 Qngﬂz 2 knlguk k

Vi, Vk

)

V1, Vk
L1 L1
= Z exp | it—pivy )| - Z exp zt—k,ukyk .
o kno
[vi|<iM |vg | <IMF
For each j = 1,2,... ,k, using Weyl’s lemma, see [9, Lemma 1], we
have

1 . 1
g exp (it—.ujuj> < min {2ZMJ —}
jni

;| <IMi 2““’"]/(27‘-.7”%)”
‘We thus have

Vr= > ﬁmin{lei ;}

oo =1 2tp;/ (2ming)l

:ﬁ > min{Qle ;}

) . y
=1 |p;|<IMI 2||tu;/(2mjng) ||

(12)

Let )\ be such that t = G*. For j < A, we shall use the trivial estimate
that

(13) > min {2le, —J} < A4PM.
| <IM 2[|tp; / (2mjmg)||
For j > A, let
t 1
a; = =5 An(?]
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Using G < ng < 2G, we have o; < 1. Let

dj = |:OJLJ:| and 9]' = d? (Olj — %)

For each j with A < j < k, we have |6;] <1 and
1 6;

It follows that
(14) rGI™ < ’/TjGj—)\ <d; < 2j+17erj—)\ < ok+1 Li—A g

We need the following lemma, which is similar to [9, Lemma 14].

Lemma 5. Let a = (a/d) + (0/d?), where a and d are integers with
d > 0, (a,d) =1 and |6] < 1. Then for any integers H,Q and an
arbitrary real number B we have

1 2

|| <@

For the proof, refer to Korobov’s proof with some slight change.
Applying the lemma and using (14), we get

: 1

> min {2ZMJ, —J}

| <IM 2|t/ (2mjmi) ||
21M

| /\

> (2LM7 + d;) log(21M7)

3

(4l2M21

+ 2IM7 + 2IMY + d; > log(21M7)

IN

3((4/m)PM* GA T 4 AIM7 4 28 1k GI—2) log (21 M7Y).

Let us assume that £k > 3 and [ > 8k2/3 as we shall have. Note that
3((4/m)I2 + 4l + 2k +1nk) < 2%12. Thus,

) 1
Z min {QZMJ, —J”}
[ | <UM3 2t /2mjmy

< 2k12(M2jG)\—j + M+ Gj_)‘) log(QIMj)-
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Let p be a number such that

A <k

(15) 5 <k

We shall choose the integer k so that 1/logG < p < 1/2. (So, in
addition, in what follows, we shall have G > 8.) We shall let

(16) M =[G"], sothat 1<Gt-1<M <G*.
Thus, for A < j7 < k, we have

: 1
> min{leJ, —J}
2/tp; / (2mgng|l

|y |<IMI
< 2F2(GPITATT 4 G 4 GO log(2LMY).

Noting that 2uj + A —j=puj=j5— Xat j = A/(1 — u), we see that

2uj+A—j HA<j <M1 p),

2017 }\—" ',.—)\: . .
max{2uj + Jy 135 }{]_)\ if A/(1—p)<j<k.

Then note that j— A\ = 2uj for j = A/(1—2p). Also, we have log(2l) <
and

log(21M7) < klog(M) + log(21) < (k + 1) log(M)
1
< §(k+l) logG <llogG.

Recalling the trivial estimate in (13) for j < A, which we shall also
use when /(1 —2p) < j < k, we obtain that

> min {21MJ’, ;J} < 262G9rnn D 10g (@),
| <i0 2||tps /(2w gmy) ||
where
2uj if j <\,
() = 2uj +A—j fA<j<AN/(1—p),
PtV =9 G- A i A/(1— ) < 3§ < A/(1—2u),

2uj it A/(1—2u) <j<k.
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‘We obtain that

k
(17) Ve < [[2RPG2 0 10g G < 281G 10gh (),

j=1
where

)= > 2ui+ Y (A—j+2u))
1<5<A A<GSA/ (1=p)
+ > G-N+ > 2
A/ (1) <5<A/(1-2p) A/ (1-2u) <5<k
= > 2w+ Y, (A-4)
1<j<k A<G<A/(1=p)
+ > (G = A = 2uj).
M(1-p)<G<A/(1-2p)
We get
2 p 2

18 h(A\ p) = pk* + pk — ——————— X"+ E(\, 1),
s T2 T
with

1 A\ /1 A’
19) E =-n(\)?—-(1- —— = — — -
19) B =30 - =12 ) + (5015

Using (18) and (19) in (17) finishes the estimate of V.

4. Upper bounds for the zeta sums. Using Vinogradov’s mean
value theorem, see [9, Theorem 16], we have

(20)  N(M,1,k)? < (20)*(2k)2F MA-F k(=R (-1/B)"
with 7 being a nonnegative integer and

kE(k+1)

(21) ===

+ rk.
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Note that 2!/ is a decreasing function of z for = > 4, as are z1/®°
and z1/%" for x > 2. For k>3 and [ > 8k2/3 > 24, we have

((2l)4l(2k)2k32k2l3k)1/(412) _ 21/l+k3/(2l2)+k2/(412)ll/1+3k/(4l2)kk3/(2l2)
< 1.245.

Recalling (10), Lemma 4, (17), (18), (19), (20), and using our
assumption (16), we have

|Sp (M, M)
< M812—4l(21)4l(Qk)2k3M4l—k2—k+(k2_k)(1_1/k)r
% 2k2 l3kGh(A,y,) Ing(G)
< 1.2454° GBI ik —pk+u (R k) (1=1/k) +h(Am) 166 (@)

< 1‘245412G8p127;12/((172;1)(17;1)))\2+u(k27k)171/k)r+E(>"") logk(G)‘

If > 1, then it is easy to see that logz < yz!/¥ for any positive
number y. Taking y = 4 x 10°, we get log G < 4 x 106G1/(4x10%)
so (log G)F/(4%) < (4 x 106)k/(4*) Gk/(16x10°1%) * We shall be taking
[ > 8k%*/3 and k > 2)\. Thus,

(log G)k/(412) < (4x 106)1/768G9/(1024><106k3) < 1.02G1/(109)‘2).

Thus,
< 2u+g(A )/ (4%)+1/(10°A%)
(22) 1Sk (M, M)| < 1.2699G 7
where
p’Z 2 2 1\"
(23) 9O =g oa—p’ THF R (k - E) +E(\ ),

with E(A, 1) being defined in (19).

We claim the following lemma.

Lemma 6. For each A > 1, there are choices of u,k,r where k and
r are positive integers, 5/18 < u < 1/3, k > 3, (15) holds, and such
that if | is given by (21), then | > 8k?/3 and we have

g(\, 1) 1
2 < - .
(24) 412~ 14101.3)2
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We shall prove this lemma in the next two sections. We now use
Lemma 6 to prove the following proposition.

Proposition 3. Let G and H be any positive integers with H < G
and t = G*. Then, for A > 1, we have

(25) 1S(G)] < 1.26992G1 1/ (141022%) 50 opy G > 1.

Proof. Proposition 3 follows from the trivial estimate |S(G)| < G
when G < 101400,

We then assume that G > 101409, Using 5/18 < p < 1/3 and
= [G*], we have

G2+ Gr \?

- < <1+10 1.

i < (@) <1

Now, applying the result (22) to |Sp(M, M)| defined in (10), we get

M2 G<n<G+H |Sr(M, M)

G —1/(14101.3A2)+1/(10° A2
SI'QGQQGWG /( )+1/( )

< 1.2699(1 + 10*10)G171/(14101,3)\2)+1/(109)\2)
< 1_26991G1—1/(14101.4A2)_
Recalling that ) is defined by ¢ = G* and that A < (1 — 2u)k, we have

tMZR+2 |Gk < GAM(2R42)p—k < G2¢, From our assumption k& > 3 and
p < 1/3, we obtain that

tM2RtL N (M +1)?
(k+1)G* 2

EG2/3+ G2/3 < 10~ 10@G1-1/(14101. 4)\2)
!

Finally, putting these estimates into (11) we complete the proof of
Proposition 3. u]

We then have the following corollary.
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Corollary. Lett > 2, let X < t be any real numbers, and let
1 <Y < X. Then we have

(26) ‘ >t

X<n<X+Y

< 1.27x 1-log® X/(1410210g” t)

Proof. Similar to what we mentioned in the proof of Proposition 3,
the result is trivial when X < e!®. We may assume X > e!8. Using
(25) by letting G = [X], H = [Y] and A = logt/log G, we get

G+H
‘ § n—zt < Z n—zt + ‘ Z n—zt
X<n<X+Y n=G+1 [X]+[Y]<n<X+Y

< S([X]) + 1 < 1.26992[ X} ~1/(141020%) | 4
< 1.97X 1-log” X/(1410210g” t)

This completes the proof of the corollary. o

5. The cases for A > 6. In this section we prove Lemma 6 when
A > 6. Let z = [A] and assume that z+ (z —1)/3 < XA < z + /3 where
z € {1,2,3}. We let 4 = 1/3. Thus \/(1 —2u) = 3. Noting that
3z4+2—-1<3\=X/(1-2p) < 3z+z, we may let k = 3z + z, which
is compatible with (15). We also let 2k < r = 3k —4 = 92 + 3z — 4.
(Note that 2k < 3k — 4 holds since z > 6, so that £ > 19.) From (23),
1 > 8k?/3.

Now we evaluate E(\,u). For brevity, we only exhibit the detail
for the case that z is odd and z = 1, which is our assumption in the
following evaluation.

First we have n(A\) =X — 2z —1/2, and

1, 1 1
A e A e

(27) 2 2 8

1 1\?> 1 1
77()\)2——<)\—z——> :—)\2—)\2—5)\4—

1
2 2

Second, noting that A/(1 — ) = 3X/2, and

R
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we have

A 3 3
(25) -5

Noting also —(1 — p) = —2/3, we obtain that

A2 2 /3\? 3 3
— 1— _— = — — — = — — 2 —_ = 2_
( u)n<1u> 377(2)\> 2)\ + 3z 5%

Third, we see that n(3\) = 3\ — 3z — 2 + 1/2, so we have

(i) -G
1

3. 1 3, 1
—2)\ 3z 2)\+2z +2z+24.

We acquire that

1 1 1
E\1/3) =2 —2d = A+ 222 + 2+ .
2 2 6
Recalling (23), we have

g(\,1/3) = —%,\2 +E(\1/3) + %k(k - 1) <1 - %)

Substituting £k = 3z + x and 7 = 9z + 3z — 4 in the above equation for
each case respectively, we have

9z—1
1 1 1
1/3) = —2A At =224 24+ -+ 2(32+1)(1— .
g(A\,1/3) ZA— A 52 tztg z(3z )< . l>

It is now obvious that g(\,1/3) is decreasing on the interval z + (x —
1)/3 < A < z + z/3. Hence, we get

r—11 1 1 1 \>¥!
A 1/3) < T ) =222+ 3z4+1)[1- .
o1/ < o+ 550 7) = g stz (1- )

From this, we can easily see that

AP AE IS
9;3 =g 3 '3

1 1 1 \¥!
<24 432411 - .
< —3% +6+z( z+ )< 3z+1>
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Recalling (21) and our choices of k and r, we have 412 = (6322 + 21z)2.
As we shall see, the function g(),1/3) is less than zero and so is
g(\,1/3)/(41%). Thus, it will be true for each x that

9N 13N _ gz + (& —1)/3,1/3)(2 + (z — 1)/3)?
4]? - 412 ’
and g(\,1/3)A\%/41? < F,(z) where
(—(1/2)22 +1/6 + 2(32 + 1)(1 — 1/(3z + 1)) 1) 22
(6322 + 212)2 ‘

F.(z) =

We find out that F,(z) is a decreasing function for z > 6, so that
F,(z) < Fp(6+(x—1)/3). We have F,(64+(z—1)/3) < —0.0000712. The
evaluation for other cases can be done similarly, only with —.0000727
and —0.0000755 in place of —0.0000712. We have proved (24) for A > 6.

6. The cases for A\ < 6. We now prove Lemma 6 when 1 < A < 6.
Recall that z + (z — 1)/3 < A < z+ 2/3. To prove (24) for 1 <\ <6,
we let k =3z+4+2 —1, p = (k— \)/(2k), which makes (15) actually an

equality. We have k£ > 3. Note also
5 1 1 1 z+z/3
18 =3 182+6x—-6 2 23z+x—1)

z+(x—-1)/3 1

1
2 2Bz4+xz-1) 3
Also, we let 2k < r = 3k —z = 9z+2z — 3 so that, from (21), [ > 8k?/3.

We again evaluate F(\,p). The evaluation for the first term in
E(X, ) stays the same as in (27). Corresponding to the second term,
we note that

IN

IN
IN

U

A,

1—p k+A E+ X
so that, for each fixed pair of integers z and x, the function A/(1 — p)
is increasing for z 4+ (x — 1)/3 < A < z+ z/3. Thus,

3 z-1 9 3 2h(z+ (z—1)/3
AT S Caut Al wreppray pg v
p A
— <
S1-4°1-1/3
3 T

REERIE
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so we still have (28). Also, note that

(1u):<%+%>.

The following evaluation is for z being odd and z = 1. We obtain

that
LAY 2 kA (AN
WMTZ,) =7 28 M\ k+a
_ (LA (232
o\2 2k \k+X 27

As for the third term, we have that n(A\/(1 — 2u)) = —1/2, since
A/(1 = 2p) is actually equal to the integer k. We get

1-2u (X \° (1 k=A\1_ X
2 N1-24) “\27 2k )1~ sk

Recall the function E(A,p) from (19). With p = (k — A\)/(2k),
denoting the resulting function Ey()), we have that

1 N\ A E+A\ [/ 2kx 3z\°

Substituting 4 = (k—X)/(2k) in (23), denoting the resulting function
from g(A, ) by go()), we obtain that

o) = gy =~ EZ X Lo gy (1 - 1>T L Ey(),

2k +A) 2 k

We then estimate A%gy()). Using (19) and replacing k = 3z +z — 1
and r = 9z 4+ 2z — 3, we obtain

1 9z—-1
TS 5(32—)\)(3z—1)(1—£>

P ORISR S 2 P YA 2 A
2 2 24z 6z 3z2+X 2 /)7
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We find that fo(A\) := A?go()) is a decreasing function of A on the
corresponding interval [z + (z — 1)/3,z + 2/3). Thus,

< (et T52) ot (1 L) T 4 L
0 S Jol 3 - 22 z 4 32 62

Recalling (21) and our choices of k and 7, we have 412 = (6322 — 3z)2,

and
Jo(2)

(1/2)22 — (32 — 1)2(1 — 1/(32))°*1 — 1/6
412 ‘

(632 — 3)2

Sf

This value is less than —1/14101.3. For other cases this is also valid.
This shows that fy(z)/41% < —1/14101.3 for 1 < z < 6 and completes
the proof of (24) for 1 < A < 6, which finishes the proof of Lemma 6. O

7. The upper bound for ((s). Let us first note trivially that we

have
Z noTH < Z n .

0<n<T 0<n<T

|So| =

If 0 < o <1, we get an upper bound of the above sum as

—0 1—0

T
d 1 1
|50|§1+/ @y 1o
1 x° 1

— Tl—a _ g < 1 Tl—cr‘

1—0 l—-0c " 1-90

If o <1, then n'=7 < T1=9, For T > e, we see that

1
Sol< Y n7<THT Y —T'7(log T +1).
0<n<T 0<n<T

We let T = exp(log?/3t), so that log T = log?/3t. We then consider
two cases. For 1/2 < o <1—1/log??¢, we have (1 —o)log?/t > 1.
It follows that
1

_ =
1—06

1—0) log?/3t < 6(170)3/2 10gt10g2/3 t.

1
S <_T17¢7:
| 0|_1—0’
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For 1 —1/log??t <o <1, we get (1 —o)log?3t <1, and
1So| < T (log T + 1) = e1=9) 10g2/S‘t(logwg’ t+1) <elog??t+e.
We conclude from the above that, for t > e, T'>eand 0 < o <1,

[So| < max{e(l_”)3/2 o8t 10g2/3 ¢ elog??t + €}

29
(29) < 61+(1—a)3/210gt10g2/3t+e'

For o > 1, we also have a similar estimate, since in this case

1 2/3
< — < =
(30) |So| < g - <logT+1=log™°t+1.
0<n<T

From Theorem 1 in Section 2, it remains to estimate the sum S =
dorencgn T for T = exp(log?/® t).

The next step is to split the sum S into the zeta sums. Let r be the
least integer such that 2”7 > t. Then

logt —logT
9T >t or TZEEL_%_'
log 2

We have

B Fogt—logT-‘ < logt — logT + log 2 < logt

log 2 log 2 ~ log?2’

if T > 2, which of course is the case. Thus, we have that

r—1
S = Z Z ,nfafit’

Jj=02iT<n<U;

where ]
o {27+1T ifj=0,1,...,r—2,
Tt ifj=r—1.

It follows that

r—1
EESY

=0

§ n—o’—zt .

21T<n§Uj
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For o > 0, note that n™7 is decreasing as n tends to infinity. We can
use the partial summation formula to estimate the inner sum, getting
that

Z n o7 < (2'T)~7 max
) V<U;
2iT<n<Uj;

E n—zt

2iT<n<V

E n”t.

21T<n<V

< (29T)™° max
v<aitir

The last sums are zeta sums, and we have the estimate from the
corollary in Section 4 that

E n—it

2T <n<V

(31) < 1_27(2jT)1—1og2(sz)/(14102 log? t)

It follows that

r—1
(32) |9] < 1.272(31’(1*‘7) log 2+(1—0) log T—(j log 2+log T)* / (14102 log” t)

i=0

For the next step we split the exponent into the sum of two functions
as Ellison did in [7]. We let g;(j) = —a(jlog2 + logT)?/log®t, and
g2() = j(1 —o)log2 + (1 — o)logT — b(jlog2 + log T')?/log®t. If
a+b=c:=1/14102, then

(jlog2 + log T)?

91(J) +92(j) = j(1 —0o)log2 + (1 — o) logT — ¢

log2t
‘We have
r—1
(33) Z n—o it < 1'272691(3')-"—92(]')_
T<n<t j=0
It follows that
d (jlog2 +1ogT)?

—g2(j) = (1 —0)log2 — 3blog2

dj log” ¢t
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We find the critical point

. (1—0-)1/210gt 1ogT d '
34 = — d — < 0 f > 1.
(34) o V/3blog 2 log2z dj92(J) <0, foro>
Since .
L 2,Jlog2+logT
. = —6blog? 2-—="_—"°— <,
dj? 92(J) og loth

for j > 0 we know that the function g»(j) takes its maximal value at
j=Jjofor 0<j < oo. Thus, for 1/2 <o <1,

(35) 0205) < g2jo) = 3%%@ ~0)¥/logt.

For our later use, we note here from (34) and the definition of g2(j)
that

(36) 92(j) <0 for o>1.

Now

r—1 r—1
§ :egl(j) — § e—a(jlog2+log T)? /log? t
Jj=0 j=0

r—1

_ § :e—a(j log 2/ log?/3 t+1)3
Jj=0

oo
< / efa(j log 2/ log?/3 t+1)3 d_]
-1

Changing the variable by letting w = a'/3(j log2/ 10g2/3 t+1), we get

2/3
/oo efa(j log 2/ log?/? t41)3 d] — M /oo @711)3 dw
. a'/310g2 Ja1/s(1-10g2/ 1082/ 1)

2/3 oo
< log™/° t / J— dw,
al/3log2 J,

since 1 —log2/ log?%¢ >0 for t > 2.
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Here we use Mathematica finding the value of the last integral, which
is I'(1/3)/3 < 0.893. It implies that

= 893
91(7) « 999 4 2/3
(37) JE:O e < a1/ logd log™/* t.

We conclude from (33), (35) and (37) that, for¢ > 2and 1/2 <o <1,

§ nfa'fzt

T<n<t

< L63T iy gyere

2/3
< log™ ¢,

(38)

with B = 2/(3v/3b) and, for t > 2 and o > 1, recalling (36), we have

1.637
logz/3 t

= all/3 ’

E n—a—lt <

T<n<t

(39)

where a and b are positive numbers such that a +b = ¢ = 1/14102.

We are in a position to prove our main theorem.

Theorem 1. Let t > 2. Then, for 1/2 < o <1, we have
C(s)] < 175¢460-9° " 19g2/3
and, for o > 1, we have

¢(s)] < 17510g*/3 ¢.

Proof. Recalling Proposition 1 in Section 2, we see that, for 1/2 <

c<1,t>2,
Z n—o’—it

0<n<t

C(s)] < + 5.505.

If 2 < t < €5, then we use the estimate |1/n®| = 1/n° < n~'/2 for each
item in the above sum. We get |Z£f]:1 1/n*| <1+2(t/2 —1) and

¢(s)| < 262 +1 4+ 5.505 < 175log/> ¢.
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We then assume t > €5, Taking b = 1/14283 in a + b = 1/14102, we
have a > 1/11128112. By the formula B = 2/(3v/3b), we get B = 46;
from (29) and (38) we have

E n—o’—it

1<n<exp(log?/3 t)

E nfa'fzt

exp(log2/3 t)<n<t

2 nfafit
t<n<oo
(1—0)3/%1ogt

[C(s)] <

+

+

2
ee /3

IN

t+e

1.637
+ ( 3 >tB(1_")3/2 log?/® t + 5.505
a

log

< (e+ 169.7 + (e + 5.505)6~2/3)446(1=0)*/* 1552/3 4

< 17546007 15g2/3 .

Recalling Proposition 1 in Section 2, (30) and (39) for ¢ > 1 and
¢ > 2, similarly, we can prove that |¢(s)| < 1751log?® ¢. This completes
the proof of the theorem. ]
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